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Abstract
Image captioning, which involves automatically generating textual descriptions based on the
content of images, has garnered increasing attention from researchers.Recently, Transformers
have emerged as the preferred choice for the language model in image captioning models.
Transformers leverage self-attentionmechanisms to address gradient accumulation issues and
eliminate the risk of gradient explosion commonly associated with RNN networks. However,
a challenge arises when the input features of the self-attention mechanism belong to different
categories, as it may result in ineffective highlighting of important features. To address
this issue, our paper proposes a novel attention mechanism called Self-Enhanced Attention
(SEA), which replaces the self-attention mechanism in the decoder part of the Transformer
model. In our proposed SEA, after generating the attentionweightmatrix, it further adjusts the
matrix based on its owndistribution to effectively highlight important features. To evaluate the
effectiveness of SEA, we conducted experiments on the COCOdataset, comparing the results
with different visual models and training strategies. The experimental results demonstrate
that when using SEA, the CIDEr score is significantly higher compared to the scores obtained
without using SEA. This indicates the successful addressing of the challenge of effectively
highlighting important features with our proposed mechanism.

Keywords Image captioning · Visual model · Language model · Attention mechanism ·
CIDEr score

1 Introduction

Images and texts are two primary forms of information carriers. Images contain richer and
more comprehensive information, but they are relatively abstract and less easily comprehen-
sible. On the other hand, texts can express content more directly and intuitively. Therefore,
the aim of image captioning is to enable machines to automatically generate concise and
accurate textual descriptions based on the content of the images. Image captioning has exten-
sive applications in diverse fields, including the medical domain, where it can be utilized to
automatically identify lesions in organs and tissue structures within Computed Tomography
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(CT) images and generate concise medical condition descriptions. This technology assists
doctors in expediting the diagnostic process, enabling faster and more accurate assessments
[1, 3, 4]. Image captioning can also be utilized for analyzing remote sensing images [38] and
assisting individuals with visual impairments [40].

Image captioningmodels are primarily divided into visual and languagemodels. CLIP is a
widely adopted visualmodel in recent years[16, 35], achieved through joint trainingon images
and text data, enabling it to simultaneously comprehend images and textual descriptions.
When employing a pre-trained CLIP model, it takes an input image and encodes it into
embedding vectors, strengthening the correlation between the image and text. Language
models for image captioning have primarily gone through two major stages: the recurrent
neural network (RNN) phase and the Transformer phase. RNN is a deep learning architecture
specifically designed to handle data with temporal or sequential characteristics. Its design
includes recurrent connections, allowing the network to pass information between different
time steps [8, 21], effectively capturing temporal dependencies within the data. However, a
significant improvement overRNN is theLongShort-TermMemory (LSTM)network. LSTM
introduces three pivotal gating units: the forget gate, input gate, and output gate, enabling
the model to intelligently decide when to retain, forget, or output information, playing a
crucial role in enhancing sequence data modeling performance [47]. RNN’s role is to receive
image features extracted by a visual model and subsequently transform these features into
natural language textual descriptions. This model establishes associations between visual and
textual information, achieving cross-modal understanding and generation. However, when
dealing with sequential data, especially in the presence of long sequences, the issue of long-
term dependency becomes inevitably challenging [32]. While RNN theoretically holds the
potential to address these long-term dependencies, in practice, transmitting information from
early time steps to subsequent ones becomes exceptionally difficult in the context of extremely
lengthy sequences. This is why more advanced sequence models, such as Transformers, have
become the mainstream language models, as they are designed to effectively address long-
term dependencies [37].

The Transformer model, owing to its distinctive structural characteristics, effectively
addresses the issue of long-term dependencies during the training process. For example, the
self-attention mechanism in the Transformer allows the model to establish weighted connec-
tions between different positions within an input sequence [33]. This enables each position
to attend to information from other positions without being constrained by the length of
the sequence [5]. As a result, this self-attention mechanism permits the model to establish
long-range dependencies between different time steps without encountering the vanishing
gradient problem. The Transformer model comprises two main components: the encoder and
the decoder [27]. The encoder is constructed by stacking multiple encoder layers, with each
layer primarily incorporating Multi-Head Attention and Feed-Forward Networks (FFNs).
Similarly, the decoder is composed of multiple stacked decoder layers, each including Mask
Multi-Head Attention, Multi-Head Attention, and Feed-Forward Networks (FFNs) [19, 24].
From this perspective, attention mechanisms serve as the core components of the Trans-
former model, exerting a crucial influence on its overall performance. However, in the task
of image captioning, owing to the complexity of the input’s visual features, attention mecha-
nisms may struggle to accurately select essential features, potentially resulting in diminished
model performance. Addressing this challenge involves pursuing two primary avenues of
enhancement. Firstly, opting for more robust visual feature extraction models ensures that
the model receives more informative inputs. Secondly, enhancing the language model’s com-
prehension and expressive capabilities enables more effective encoding and association of
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visual information. These approaches working in tandem hold promise for improving the
model’s performance in image description tasks.

In this paper, we introduce an innovative attention mechanism known as SEA to address
the issue of accurately emphasizing important features in complex input data. Traditional
attention mechanisms typically employ a softmax function to transform similarity scores
into attention weights [34], which are then applied to input value vectors to generate atten-
tion context vectors. However, this allocation method comes with certain limitations. While
normalization allows important features to receive higher weights, these weights cannot
exceed 1. Multiplying any feature by a value less than 1 weakens its influence. Furthermore,
due to the constraint of weights being limited to 1, the differences between different features
are not adequately amplified, making it challenging for the model to better focus on key
information. To overcome these limitations introduced by normalization, we introduce the
SEA. After obtaining attention weights, we subject them to enhancement. The degree of
enhancement depends on the attention weights’ inherent capability to emphasize important
features. If the attention weights themselves exhibit relatively weak emphasis on important
features, the enhancement effect becomes more pronounced. We evaluate the performance
of the SEA mechanism using various optimization strategies, including SCST and Camel,
in experiments conducted on the COCO dataset. We also compare it with state-of-the-art
methods trained on the same dataset. Additionally, we perform result comparisons on the
COCO online testing server [43]. Experimental results demonstrate that our proposed solu-
tion achieves a new state-of-the-art performance level on the COCO dataset without relying
on external data.

The essential objective and commitments of this paper are summarized as follows.

– Firstly, we identify the issues encountered by Transformers in image captioning and pro-
pose a novel direction for research in image captioning.

– We propose the SEA as a replacement for the attention mechanism in the Transformer
decoder. The SEA aims to address the limitation of the attention mechanism in high-
lighting important features when dealing with different types of features. We validate the
effectiveness of the SEA across multiple visual models and training strategies.

– SEA boosts the baseline models and achieves comparable performance on MS COCO
public benchmarkwith a series of evaluationmetrics (BLEU-1, BLEU-2, BLEU-3, BLEU-
4, METEOR, ROUGE, CIDEr, SPICE).

2 RelatedWorks

2.1 Image Captioning

In the context of generating descriptions for images, the traditional approach has involved
using a two-step process known as an encoder-decoder architecture. In the early stages of
this approach, Convolutional Neural Networks (CNNs) were typically responsible for the
initial step, the encoding of visual features [10, 13, 26]. This process, however, faced chal-
lenges, particularly in extracting the most crucial information, as image captioning often
hinge on a few pivotal objects in the image and the connections between them. To overcome
these challenges, Anderson et al. [7].introduced the ’Bottom-Up and Top-Down Attention’
model. This model selectively identifies and extracts significant features from a set of region
proposals generated by Faster R-CNN, thus enhancing the quality of feature extraction. In a
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related development, researchers such as Yang et al. [9]. have explored the use of Graph Con-
volutional Networks (GCN) for image encoding. GCN leverages its graph-based structure
to better capture relationships between different objects within an image. In the decoding
phase, where the descriptive sentences are generated, there has been a shift away fromRecur-
rent Neural Networks (RNNs). The Transformer architecture has gained prominence in this
role, offering improved performance in image description tasks. Moreover, Transformer’s
influence extends beyond image description alone. Models like CLIP, built upon the Trans-
former framework, have demonstrated impressive results in encoding images. Leveraging
their capacity to effectively manage multimodal data, CLIP has achieved notable success in
the domain of image captioning. Furthermore, encoder models like Swin-Transformer have
made significant contributions to advancing the state of the art in this field.

2.2 Feature Optimization

Attention mechanisms, which emphasizes important features and diminishes the influence
of less significant ones, plays a pivotal role in image captioning tasks. During the caption
generation process, certain words like ’the’, ’of’, etc., cannot be extracted from visual infor-
mation alone and rely on the language model. Lu et al. [29]. proposed an adaptive attention
mechanism, allowing the model to autonomously decide when to rely on visual cues and
when to depend solely on the language model. When using CNNs to extract visual features,
it can be challenging to extract key information, as image descriptions often require only a
few crucial objects in the image and their relationships. Huang et al. [6] proposed the AoA
model, which enhances the existing attention mechanisms by incorporating a new attention
mechanism. The core idea of the AoA mechanism involves generating an information vector
and an attention gate to improve the model’s attention mechanism. The information vector
stores information from the current context and attention results, while the attention gate
determines the relevance and importance of each channel in the information vector. By using
element-wise multiplication, the AoA mechanism better captures essential features in the
input data.

Normalization is a commonly used method to optimize features, with the primary objec-
tive of scaling the value ranges of different features to a common scale, typically within
the range of 0 to 1 [42]. In the field of deep learning, various normalization techniques
are prevalent, including Batch Normalization, Layer Normalization, and Instance Normal-
ization. When discussing feature enhancement, it is essential to mention Adaptive Instance
Normalization, which has been extensively used in style transfer research. In the work of
Huang et al. [20], they introduced AdaIN (Adaptive Instance Normalization), which, for
the first time, enabled real-time arbitrary style transfer. AdaIN finds applications in various
image processing domains, such as the research conducted by Ling et al. [25], where AdaIN
was employed for image composition. The process of harmonizing composite images can
be viewed as a style transfer problem. Additionally, Kim et al. [23] applied style transfer
to real-noise denoising by building a denoiser using Adaptive Instance Normalization. They
also introduced a transfer learning scheme to transfer knowledge learned from synthetic noise
data to the real-noise denoiser.

2.3 Training Strategies

Training strategies in image captioning revolve primarily around the selection of the model’s
loss function. Typically, the cross-entropy loss iswidely employed [36] to optimize themodel,
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measuring the difference between the model’s predictions and the ground truth labels. In
image captioning tasks, the target labels are the textual descriptions of the images, and the
model generates captions as its output. The cross-entropy loss quantifies the accuracy and
semantic consistency of the generated captions by computing the cross-entropy between the
generated captions and the target descriptions.

In recent years, with advancements in computational power, data availability, and the
development of deep learning, reinforcement learning has made significant progress in image
understanding. Rennie et al. [2]. introduced reinforcement learning into image understanding
and proposed the Self-critical Sequence Training (SCST) method. SCST employs the CIDEr
metric as a reward measure, assigning scores to each generated sentence. In each training
iteration, the generated sentences are compared against a baseline, and themodel’s parameters
are adjusted using gradient-based optimization methods. SCST directly optimizes the quality
of the generated captions, making them closer to human reference descriptions compared to
traditional cross-entropy training. Thus, adopting SCST in image captioning tasks can lead to
improved caption generation performance. Additionally, other training strategies have been
explored in recent years, such as the Camel method proposed by Barraco et al. [18].

3 Method

In this section, we present the architectural diagram of the self-enhancing attention mech-
anism in the initial segment. Subsequently, a comprehensive exposition of the underlying
principles governing the self-enhancing attention mechanism is provided. The subsequent
segment delves into an in-depth exploration of both the encoding and decoding components
of the Transformer model, elucidating the seamless integration of the self-enhancing atten-
tion mechanism into the decoding phase. Lastly, we expound upon the dual training phases
intrinsic to image captioning, encompassing the interplay between cross-entropy training and
reinforcement learning. This narrative culminates in a delineation of the intricate orchestra-
tion between these two training paradigms.

3.1 Self-Enhanced Attention

As depicted in Fig. 1b, our approach incorporates a self-enhanced attention mechanism as
an extension of the self-attention mechanism. This mechanism introduces a unique step in
the utilization of attention weights (att i ). In our self-enhanced attention mechanism, we
apply an additional self-enhancement process to the att i , resulting in the generation of
reconstructed features Ii using these modified aug_att i . The internal workings of the self-
enhanced attention mechanism can be summarized as follows:

Firstly, we obtain the feature information of each attention matrix and then develop
enhancement strategies tailored to each attention matrix.

qi � Q ∗ Wq
i , ki � K ∗ Wk

i , vi � V ∗ W v
i (1)

In Eq. (1) Wq
i ∈ Rdm×dq , Wk

i ∈ Rdm×dk , W v
i ∈ Rdm×dv are the parameter matrices of the

input linear layers in Fig. 1a, where dq , dk , and dv are the dimensions of the query (Q), key
(K), and value (V) respectively, and dm is the dimension of the attention mechanism model.
The i ∈ [1, h], where h represents the number of attention heads in the multi-head attention
mechanism. By adjusting the mapping of the matrices, we obtain the inputs qi , ki , vi for our
self-enhanced attention mechanism.
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Fig. 1 A illustration of Multi-Head Enhanced Attention Mechanism (a) and Self-enhanced attention model (b)

att i � so f tmax(
qi kTi√
dk

) (2)

In Eq. (2), we compute the similarity between qi and ki using the dot product operation
and obtain an attention vector that represents the weight distribution by applying so f tmax
normalization.

augi � 1 − max(att i ) + min(att i ) (3)

In normal attention mechanisms, we directly use att i to reconstructvi , However, in our
self-enhanced attention mechanism, we further process att i . We cannot blindly amplify the
att matrix as it would decrease the stability of the model. Instead, we determine the degree
of amplification, referred to as augi based on the distribution characteristics of the att i
parameters. In Eq. (3) we use the maximum and minimum values as adjustment factors. If
the maximum value in the att i matrix is already large, it indicates that the att i has already
selected themost important features. If themaximum value is small while theminimum value
is relatively large, it suggests that the att i has not effectively identified important features,
thus requiring forced intervention.

aug_att i � ((
eaugi + 1

) ∗ a
) ∗ att i (4)

Ii � aug_att i ∗ vi (5)
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We substitute augi into Eq. (4), resulting in aug_att i . Here, a represents the suppression
factor introduced to prevent excessive enhancement. Excessive enhancement can lead to sig-
nificant variations in training results, causing instability and extremely slow training progress.
We utilize aug_att i to reconstruct the vi and obtain the output Ii of the self-enhanced atten-
tion mechanism.

MH_EH(Q, K , V ) � Concat(I1, · · · , Ih)∗W I (6)

In Eq. (6),W I ∈ Rhdv×dm is the parameter matrix of the final output linear layer in Fig. 1a.
The Multi-Head Enhanced Attention Mechanism (MH_EH ) itself is composed of multiple
self-enhanced attention mechanisms, we concatenate the [I1, I1, …, Ih] together to obtain
the final output.

3.2 Image Captioning Encoder

Initially, we utilize a pre-trained CLIP model to extract visual features F � [ f1, · · · , fk],
where fi ∈ R1×d and d represents the dimension of the input vectors, from an image I. The
visual features F are then processed through an encoder. The encoder consists of multiple
identical Encoder Layers, each composed of a multi-head attention mechanism and a feed-
forward network (FFN).

The multi-head attention mechanism enhances the representation capacity by using mul-
tiple independent attention heads in parallel. Each attention head has its own query matrix
(Wq

i ), key matrix (Wk
i ), and value matrix (W v

i ). This allows the model to learn different types
of feature representations by combining different attention weights. Compared to a single
attention mechanism, the multi-head attention mechanism is more expressive as it can cap-
ture different aspects of the input simultaneously, the multi-head attention is a combination
of multiple self-attention mechanisms.

In the self-attention mechanism, the queries (Q), keys (K), and values (V) are identical
and derived from the input visual features (Q � K � V � F). We utilize self-attention
mechanism to reconstruct the input visual features F and establish long-term dependencies
among different features. The outputs ofmultiple self-attentionmechanisms are concatenated
to obtain the result of the multi-head attention mechanism. Subsequently, the obtained result
is fed into the FFN layer for non-linear transformation and mapping:

FFN (x) � max(0, xW1 + b1)W2 + b2 (7)

where W1 ∈ Rdm×d f f , W2 ∈ Rd f f ×dm , b1 ∈ Rd f f , and b2 ∈ Rdm are learnable parameter
matrices. FFN applies independent transformations to each position of the input x using
two fully connected layers. This allows for better capturing of local features within the F.
This constitutes the complete algorithm for an Encoder Layer. By processing the F through
multiple identical Encoder Layers, the final output ECF is generated.

3.3 Image Captioning Decoder

During the training stage, it is necessary to input the authentic textual descriptions of the
image to aid the decoder in extracting context information from the ECF.

As shown in Fig. 2, the structure of the decoder is similar to that of the encoder, as it
is also composed of multiple Decoder Layers stacked together. In the decoder, we employ
two attention mechanisms to extract important information from ECF. These two attention
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Fig. 2 The overall structure of the image captioning

mechanisms are the self-attention mechanism and the self-enhanced attention mechanism.
The self-attention mechanism is responsible for encoding the generated context information
by capturing long-term dependencies among the information. It encodes context information
through self-encoding. On the other hand, the self-enhanced attention mechanism utilizes
context information to extract crucial features from the ECF, helping the decoder better
understand the input image’s features and generate semantically correct descriptions related
to the image. Similarly, the decoder also includes an FFN layer to perform non-linear trans-
formations and mappings on the outputs of the multi-head attention mechanism. Finally, we
employ a learned linear transformation and a softmax function to transform the output from
the decoder into a pair of predicted probabilities, denoted as

prob
(
wτ |wk<τ , F , θ

)
(8)

In Eq. (8), {wτ }τ is the sequence of words comprising the generated
description,τ indicatestime, θ indicates the set of parameters of the model.

3.4 Training Strategies

The entire training procedure comprises two stages. In the first training stage, we optimize
the model by minimizing the joint cross-entropy (XE) loss, computed as follows:

Lxe(θ) � −∑
τ logprob(wτ |wk<τ , F , θ ) (9)

At the second training stage, we jointly finetune the model using self-critical sequence
training(SCST) approach. In SCST, the choice of a specific evaluation metric as the reward
for fine-tuning the model is available. The CIDEr metric is commonly selected as the reward.
CIDEr considers factors such as the theme and information richness of the sentence, making
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it a more interpretable and accurate reflection of the quality of generated sentences compared
to other metrics. During the cross-entropy training phase, the results with the highest CIDEr
score are saved as the baseline for SCST. The core concept of the SCST approach is to uti-
lize the reward obtained by the current model to serve as a baseline for the REINFORCE
algorithm. In contrast to traditional cross-entropy training, SCST enables a more direct opti-
mization of the quality of the generated descriptions, making them closer to the reference
descriptions provided by humans.

Lscst (θ) � − 1
k

∑k
i�1

((
r
(
wi

) − b
)∇θ logprob

(
wi

))
(10)

In Eq. (10), where wi is the i-th sentence in the beam, which refers to a parameter in the
beam search algorithm [7] r(•) is the reward function, and b � (∑

i r
(
wi

))
/k is the baseline,

computed as the mean of the rewards obtained by the sampled sequences.
Train with Camel In addition to the commonly used training strategies mentioned above,

we have introduced the "Camel" training strategy. Camel can be applied in both the cross-
entropy training phase and the SCST training phase. In the Camel training strategy, the
language model is divided into two networks: the online network and a target network.
The online network functions as the student network, while the target network serves as
the teacher network. Throughout the training process, the target model remains fixed, and
knowledge transfer from the target network to the online network is achieved through a
specific knowledge distillation technique. In this experiment, we utilize mean squared error
minimization, as expressed by the following formula:

min
θo

∑
τ

(
probt , τ − probo, τ

)2
(11)

where θo indicates the set of parameters of the online network. Therefore, after employing
the Camel training strategy, the cross-entropy training phase is enhanced.

Lxe(θo)
′ �

(
min
θo

∑
τ

(
probt , τ − probo, τ

)2
)

∗ dlw + Lxeo(θo) (12)

Lscst_o(θo)′ � Lscst_o(θo) +

(
min
θo

∑
τ

(
probt , τ − probo, τ

)2
)

∗ dlw (13)

where dlw is a hyperparameter used to adjust the distillation weight, thereby controlling the
relative weighting between the two loss terms, striking a balance between them. A larger
distillation weight places more emphasis on the knowledge from the teacher model, whereas
a smaller distillation weight prioritizes the self-training loss of the student model. Finally,
the target network’s parameters are updated according to the following formula:

θt ← βθ t + (1 − β)θo (14)

where θt indicates the set of parameters of the target network and β ∈ [0, 1] is a target decay
rate.

4 Experiments

4.1 Datasets andMetrics

In this work, we used the COCO dataset [44], which is a publicly image dataset developed
under the lead of Microsoft Corp. The dataset consists of over 100,000 images and 250,000
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image annotations. These images were sourced from various internet sources and encompass
a wide range of scenes and objects. The dataset covers 90 different categories of objects,
including people, animals, vehicles, furniture, food, and more. Each image in the dataset is
associated with a minimum of 5 manually annotated descriptions, each consisting of 5 to 40
words. For our experiments, we followed the Karpathy splits [45], where 113,287 images
were used for training, 5,000 images for validation, and another 5,000 images for testing.

To assess the quality of the generated captions,we employed the standard evaluation script,
which computes widely used automatic evaluation metrics. These metrics include Bilingual
Evaluation Understudy(BLEU-1/4) [11], Metric for Evaluation of Translation with Explicit
Ordering (METEOR) [14], Recall-Oriented Understudy for Gisting Evaluation (ROUGE)
[12], Specific Image Caption Evaluation (SPICE) [17], and Consensus-based Image Descrip-
tionEvaluation (CIDEr)[15], denoted asB-1/4,M,R, S, andC, respectively, for brevity. These
metrics provide quantitative measures to assess the quality and similarity of the generated
captions against the ground truth annotations.

4.2 Implementation Details

Data Processing For preprocessing the COCO image dataset used as input to the visual
model, all images were uniformly resized to a resolution of 384× 384 pixels. Image caption-
ing can be viewed as a form ofmachine translationwhere the input is an image. Consequently,
when generating captions, there is a challenge of dealing with unknown or rare vocabulary
words. Therefore, we employ the BPE (Byte-Pair Encoding) algorithm to address this issue.
technique [46]. BPE is a subword tokenization method that segments words into subword
units based on their frequency within the training corpus. By breaking words into smaller
subword units, BPE facilitates handling out-of-vocabulary words and reduces the overall
vocabulary size.

Parameters in image captioning modelWe set the number of layers in the encoder and
decoder of the Transformer to 3, denoted asN� 3. During the training process, we introduced
the Mesh-memory Transformer, for which the number of layers for Self-Enhanced Attention
in each decoder is also set to 3. For the multi-head attention mechanism in the Transformer,
we utilized 8 attention heads (h � 8). The dimension of the input features, denoted as dm ,
was set to 512, allowing for a comprehensive representation of information. To capture more
intricate details, we set the dimension of the feed-forward layer, denoted as d f f , to 2048.

During the training phase, we employed the Adam optimizer to optimize our model. We
utilized a beam size of 5 for decoding during inference. The training was conducted on
an RTX 3090 device, where the GPU memory usage was notably higher during the SCST
fine-tuning phase compared to the cross-entropy learning phase. Therefore, we set the batch
size to 100 for the cross-entropy learning phase and 30 for the SCST phase. Additionally,
we employed the Mean Teacher training strategy from Camel and designed the distillation
weight parameter. For the cross-entropy phase, the dlw is set to 0.1, and for the SCST phase,
the distillation weight is set to 0.01. We referenced the Camel [18] for guidance in designing
the remaining parameters used in our study.
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Table 1 Results on theCOCOKarpathy-test split with the replacement of different attentionmechanisms in var-
ious parts of the Transformer using SEA. The “Base” experiment serves as the baseline, with our visual model
being CLIP-RN50×16. Enc(+ SEA) denotes the substitution of self-attention in the Transformer’s Encoder
section with self-enhanced attention, while Dec(+SEA) signifies the replacement of attention mechanisms in
the Transformer’s Decoder section with self-enhanced attention

Model B-1 B-4 M R C S

Base 77.5 37.6 29.0 58.0 122.6 21.9

Enc(+ SEA) 78.0 38.7 29.3 58.5 125.2 22.2

Dec(+ SEA) 78.7 39.3 29.6 58.9 126.8 22.5

4.3 Ablation Study

4.3.1 Effect of Self-Enhanced Attention in Different Parts

We replaced the attention mechanisms in different sections of the Transformer with the SEA,
as illustrated in Table 1. Subsequent to the replacement, the final results exhibited varying
degrees of enhancement. In the case of Enc(+ SEA), the CIDEr score increased from 122.6
to 125.2, while in the case of Dec(+ SEA), the CIDEr score increased from 122.6 to 126.8.
From the results, it is evident that replacing the attention mechanism in the Decoder section
led to improved model performance. This can be attributed to the distinct Q and K employed
in the attention mechanism of the Decoder, introducing a certain level of diversity among
features. In contrast, the Encoder utilizes self-attention mechanisms where the input Q and
K are identical, resulting in less divergence among features. Therefore, we can preliminarily
conclude that the SEA is more suitable for handling diverse input features to a certain extent.

4.3.2 Effect of Different Visual Models

We utilized the multi-modal CLIP model to extract image features. The CLIP model is a
deep learning model based on the Transformer architecture, which comprises a multi-layer
Transformer encoder and a text embedding module. The visual encoders in CLIP can be
either ViT-like or CNN-like architectures. Therefore, in our experiments, we employedCLIP-
ViT-B16, CLIP-ViT-B32, CLIP-RN50 × 4, and CLIP-RN50 × 16. Due to the significantly
improved performance of CLIP-based models in the image captioning domain compared
to Faster-RCNN, we did not include Faster-RCNN in our experiments. We evaluated the
performance of these models both with SEA and using the Camel training strategy. It’s worth
noting that CLIP-ViT-B32 in the table signifies the use of the CLIP-ViT-B32 visual model
only, with the language model part being the basic Transformer.

The results from Table 2 indicate that CLIP-ViT-B32(+ SEA) achieved a Cider score of
118.7, CLIP-ViT-B16(+ SEA) scored 124.7, CLIP-RN50 × 4(+ SEA) scored 123.9, and
CLIP-RN50 × 16(+ SEA) scored 126.8. This suggests that the performance of these mod-
els improved when SEA was applied. After incorporating the Camel training strategy, the
enhancement in performance for CLIP-ViT-B32(+ SEA), CLIP-ViT-B16(+ SEA, + Camel),
and CLIP-RN50 × 4(+ SEA, + Camel) was not particularly noticeable. However, for CLIP-
RN50 × 16(+ SEA) using the Camel training strategy, there was a significant improvement,
with the score increasing from 126.8 to 129.6.
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Table 2 Results on theCOCOKarpathy-test split with different visualmodelswhen trainingwith cross-entropy
loss, the notation + SEA indicates the use of self-enhanced attention mechanism, and + Camel signifies the
utilization of the Camel training strategy during the training process

Model B-1 B-4 M R C S

CLIP-ViT-B32 76.1 36.4 28.3 57.0 118.0 21.0

CLIP-ViT-B32(+ SEA) 76.6 37.0 28.3 57.2 118.7 21.3

CLIP-ViT-B32(+ SEA, + Camel) 76.5 36.6 28.4 57.1 118.8 21.3

CLIP-ViT-B16 77.7 38.4 29.3 58.2 124.0 22.0

CLIP-ViT-B16(+ SEA) 78.2 38.5 29.2 58.3 124.7 22.1

CLIP-ViT-B16(+ SEA, + Camel) 78.5 38.8 28.9 58.5 124.8 21.8

CLIP-RN50 × 4 77.3 37.7 28.6 57.7 121.1 21.4

CLIP-RN50 × 4(+ SEA) 77.5 38.0 28.9 58.0 122.9 21.7

CLIP-RN50 × 4(+ SEA, + Camel) 77.3 37.9 28.9 57.9 121.9 21.7

CLIP-RN50 × 16 77.5 37.6 29.0 58.0 122.6 21.9

CLIP-RN50 × 16(+ SEA) 78.7 39.3 29.6 58.9 126.8 22.5

CLIP-RN50 × 16(+ SEA, + Camel) 79.6 39.9 29.7 59.2 129.6 22.9

Table 3 Performance on the COCO Karpathy-test split and CLIP-RN50 × 16 (+ SEA, + Camel) when trained
with cross-entropy loss at different a values

a B-1 B-4 M R C S

0.6 78.8 39.3 29.5 58.9 126.9 22.4

0.8 78.7 39.3 29.7 58.9 127.1 22.6

1.0 79.6 39.9 29.7 59.2 129.4 22.9

1.2 78.7 38.7 29.4 58.7 125.7 22.4

1.4 78.4 38.9 29.2 58.6 125.4 22.2

4.3.3 Effect of Fusion FunctionWith Different a

The parameter a is a hyperparameter in our study, with the aim of improving experimental
results by fine-tuning its value. In our experiments, we conducted tests using five different
settings for the group sizes, denoted as a ∈ {0.6,0.8,1.0,1.2,1.4}. By examining the data in
Table 3, we observed that when a � 0.8, the CIDEr score was 127.1, and when a � 1.4, the
CIDEr score decreased to 125.4. The highest CIDEr score of 129.4 was obtained when a �
1. Based on these findings, we can conclude that the experimental results are optimal when
a is close to 1. Deviating too far from this value in either direction results in a decrease in
performance.

4.4 Comparison with the State of the Art

Performance on COCO. We conducted a comparison of Self-Enhanced Attention with
several recent image captioning models, including those based on RNNs such as LSTM,
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SCST, LSTM-A, AoANet, X-Lan as well as models based on Transformers like ETA, M2T,
X-Transformer, RFNet. Additionally, we considered visual models based on GCN, such as
GCN-LSTM and SGAE, and a training strategy utilizing Mean-Teacher called Camel.

As shown in Table 4, our SEAmodel consistently outperforms all the comparedmodels on
the COCO dataset, both in the cross-entropy stage and the SCST stage. In the cross-entropy
stage, our model achieves an impressive CIDEr score of 129.4, while in the SCST stage, the
CIDEr score further increases to 141.2. Furthermore, the generated captions from our model,
as illustrated in Fig. 3, demonstrate accurate capturing of the content depicted in the images.

Online evaluation. To further demonstrate the feasibility and effectiveness of our model,
we conducted additional evaluations on the official test split of the dataset where ground-truth
annotations are not publicly available. We utilized our model to generate image captions for
the Val and Test splits locally and then submitted the results to the online COCO test server
[45].

In Table 5, we present the performances of our model with respect to 5 reference captions
(c5) and 40 reference captions (c40), compared to the top-performing approaches on the
COCO leaderboard. Notably, our method outperforms the current state of the art across all
evaluation metrics. We achieved a significant advancement of 0.4 CIDEr points compared

Fig. 3 Examples of captions generated by our Self-Enhanced Attention
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to the best performing approach, demonstrating the superiority of our model in generating
high-quality image captions.

5 Conclusion

In this paper, we introduce a novel self-enhanced attention mechanism to replace the con-
ventional self-attention mechanism in the image Transformer decoder. The effectiveness of
our proposed model is validated through several experiments.

First, we evaluate the performance of our model with and without the self-enhanced atten-
tionmechanism using different CLIP visualmodels. The results consistently demonstrate that
the inclusion of the self-enhanced attention mechanism significantly improves the model’s
performance. Notably, the best performance is achieved when using the CLIP-RN50 × 16
model, attaining an impressive CIDEr score of 126.8. Furthermore, with the implementation
of the Camel training strategy, the CIDEr score saw a further improvement, increasing from
125.4 to 129.4. Finally, we evaluate the performance of our self-enhanced attention mecha-
nism under the SCST paradigm and submit the generated captions to the online test server.
Our model surpasses the current state-of-the-art method, showcasing its superiority in gener-
ating high-quality image captions. However, it’s worth mentioning that our approach, though
successful, may be considered somewhat simplistic and lacks a solid foundation in mathe-
matical theory. We intend to continue investigating this issue in our future work, seeking to
uncover the root causes of the problems and design more robust methodologies.
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