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Abstract
The mean square exponential stability of stochastic time-delay neural networks (STDNNs)
with random delayed impulses (RDIs) is addressed in this paper. Focusing on the variable
delays in impulses, the notion of average random delay is adopted to consider these delays as
a whole, and the stability criterion of STDNNs with RDIs is developed by using stochastic
analysis idea and the Lyapunovmethod. Taking into account the impulsive effect, interference
function and stabilization function of delayed impulses are explored independently. The
results demonstrate that delayed impulses with random properties take a crucial role in
dynamics of STDNNs, not onlymaking stable STDNNsunstable, but also stabilizing unstable
STDNNs. Our conclusions, specifically, allow for delays in both impulsive dynamics and
continuous subsystems that surpass length of impulsive interval, which alleviates certain
severe limitations, such as presence of upper bound for impulsive delays or requirement
that impulsive delays can only exist between two impulsive events. Finally, feasibility of the
theoretical results is verified through three simulation examples.

Keywords Stochastic neural network · Random delayed impulses · Delay interference ·
Delay control · Exponential stability

1 Introduction

Over the past decades, numerous scholars have been drawn to the dynamic behavior of
impulsive neural network (INN) as a result of broad application of INN in various associated
domains, such as associative memory [1], image processing [2], and so on. INN is a sort of
hybrid neural network that is distinguished by continuous-time dynamical systemwith abrupt
changes of state. The dynamical characteristics of INN have been fully studied. For example,
global exponential stability [3], distributed-delay-dependent exponential stability [4], finite-
time stability [5]. Additionally, stochastic interference is thought to be an inherent factor in
the emergence of unstable behavior and chaos [6], such as, literature [7] investigates finite-
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time control strategies for stochastic nonlinear systems. Literature [8] explores the output
feedback finite-time stability problem for a class of stochastic systems. Diverse qualitative
theories concerning impulsive stochastic neural network (ISNN) have been put forth, see
[9–11].

Time-delay is unavoidable due to signal transmission among neurons during the evolution
process ofmany actual neural networks [12].And time-delaymayhave a deleterious influence
on dynamics of neural network, resulting in oscillations, instability, and poor performance
[13, 14]. Therefore, it is crucial to analyze impulsive stochastic time-delay neural networks
(STDNNs). In a variety of cases of impulsive STDNNs, Razumikhin technique [15] and
Lyapunov functionals [9, 16] are typically used for analyzing stability of impulsive STDNNs.
For example, in [16], stability problem of impulsive STDNNs is explored by utilizing the
Lyapunov approach and average impulsive interval (AII). When Lyapunov functions that
meet specific conditions can be constructed, the stability of impulsive STDNNs can be proven
through Lyapunov stability conditions. Therefore, the Lyapunov functional provides stability
assurance for design and control of impulsive STDNNs, which contributes to improve the
reliability and security of system.

In a lot of practical networks, there might exist delays in the transmission of impulsive
signals, which is referred to as impulsive delays. For instance, there is delay in fisheries indus-
try and animal husbandry concerning impulses. Generally speaking, the impact of delayed
impulsive sequences is mainly determined by the size of delays [17, 18]. In reality, impul-
sive delays possess a dual influence, including destabilizing or stabilizing impacts. In this
respect, literature [17] completely illustrates that impulse delays have both negative and pos-
itive impacts on system dynamics, implying that delayed impulses may jeopardize stability
of system and lead to unanticipated performance. On the other hand, delayed impulses may
be able to stabilize unstable systems and improve performance. Recognizing the critical
significance of delayed impulses, scholars have been paying close attention to dynamics of
INN with delayed impulses in the past few years, see [18–20], with [18] on practical syn-
chronization, [19] on exponential synchronization, [20] on synchronization of chaotic neural
network. It can be seen that models of INN considered in these studies overlook random
interference factors. A significant theoretical and practical significance is highlighted in [21]
for investigation of stability of ISNN. In addition, there are strict limitations on impulsive
delays in these literatures, where impulsive delay is often a constant or limited between two
consecutive impulsive signals [22, 23]. Tragically, even when impulsive delay is permitted
to be flexible between two successive impulsive events, the findings remain closed. More
recently, more and more scholars have begun to focus on the unpredictability of impulses,
such as stochastic impulsive density [24] and stochastic impulsive intensity [25]. However,
to the best of our knowledge, dynamical behavior of stochastic time-delay neural networks
with random impulsive delays (RDIs) effects have not been fully studied. Therefore, it makes
sense to explore stability of STDNNs with RDIs. In practice, impulses with stochastic vari-
able delays are more realistic. Based on this consideration, a natural question arises: Can
delays in continuous systems and impulsive delays break through some limitations? That is
to say, can the delays in continuous systems and the delays in impulses exceed the length of
the impulsive interval? This forms the motivation of this paper. Additionally, the intercom-
munication between continuous behavior of STDNNs and delayed impulses will produce
dynamic phenomena that differ from single continuous or discrete delayed neural networks,
which will bring many hassles to stability analysis of neural networks.

On top of that, average impulsive interval (AII) [26] and mode-dependent AII (MDAII)
[27] are frequently employed for describing impulsive sequences. The AII approach has the
benefit of not requiring lower or upper boundaries of interval of impulses to be specified as
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long as AII matches specific requirement. The MDAII approach is advantageous in that it
allows each impulsive function to possess its own average impulsive interval. Considering the
randomness of impulsive delays, impulsive strategies still need to be developed. This ismostly
owing to the fact that actual circumstance is intricate; impulsive delays are not unalterable at
all times, and they will fluctuate with impulsive instant. As a result, if impulsive delays can be
portrayed as awhole,we canmore effectively copewith these delays.Currently, literature [28]
proposes an average impulsive delay (AID) strategy, which quantifies typical delay between
occurrence of an event and subsequent action. Generally speaking, analysis of impulsive
sequences with random delays is more complicated. But AID strategy cannot be used to
evaluate impulsive signals with uncertainty and randomness. It should be emphasized that
in this paper, these constraints are overcome using average random delay (ARD), Lyapunov
approach, and theoretical structure of impulses. With the help of ARD, we may reduce the
influence of delay fluctuations at distinct impulsive times from an overall viewpoint, and
explore the dual impacts of random delayed impulses on dynamic behavior of STDNNs,
namely destabilization and stabilization.

Inspired by the above discussions, this paper concentrates on the stability of STDNNs
with RDIs. Unlike typical delayed impulses, the impulsive delays in this paper have ran-
domness, which can harm or contribute to stability. The major contributions of this paper are
generalized:

(1) In comparison to previous relevant research [19, 20, 28], the impulsive delay explored in
this paper is random. Moreover, interference of stochastic factor are considered. Hence,
it is more realistic to study dynamical behavior (e.g., stability) of STDNNs with random
delayed impulses.

(2) The statistical methods of uniform distribution and discrete distribution are used in this
paper to handle impulsive sequences with random delays. Combining the ARD and
Lyapunov method, stability criteria for STDNNs with random delayed impulses are
obtained. The results show that random impulsive delay serves a crucial role on stability
of STDNNs, not only disturbing the stable STDNNs, but also stabilizing the unstable
STDNNs.

(3) In comparison to prior work [18–20, 22, 23, 29], this paper does not require that impul-
sive delay be restricted to impulsive interval. Delay in continuous systems and delay
in impulses are permitted to surpass the impulsive interval. As a result, the results for
STDNNs with RDIs produced in this paper are more flexible.

The rest of this paper is organized as follows. In Sect. 2, we provide fundamental defini-
tions, core lemmas, and the model of STDNNs with RDIs. In Sect. 3, sufficient conditions
for mean square exponential stability of impulsive STDNNs are developed. In Sect. 4, three
simulation examples are provided in order to confirm the efficacy and practicality of the
generated results.

Notations Let R stand for the set of real numbers. R
+ = (0,+∞). R

+
t0 = (t0,+∞).

N denotes a collection of natural integers that includes 0. N
+ = N\0. (�,F, {Ft }t≥t0 , P)

represents a complete probability space with a natural filtration {Ft }t≥t0 . Let ω(t) be a n-
dimensional Ft -adapted Brownian motion. || · || indicates Euclidean norm. ||x ||1 represents
the 1-norm of vector x . The superscript T means the transposition of a matrix or vector.
PC ([−τ̄ , 0]; R

n) is the setwhich contains piecewise continuous functions from [−τ̄ , 0] toR
n

and φ is defined on [−τ̄ , 0]with norm ||φ|| = sup−τ̄≤θ≤0 |φ(θ)|. ι = τ ∨ξ , where τ , ξ ∈ R
+.

For t ≥ t0, PLp
Ft

is the family of all Ft -measurable PC([−τ̄ , 0]; R
n)-valued processes

φ = {φ(θ) : −τ̄ ≤ φ ≤ 0} such that ||φ||L p = sup−τ̄≤θ≤0 E|φ(θ)|p < +∞, where
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operatorE aims to calculate themathematical expectation.The randomvariable X ∼ U (a, b),
a, b ∈ R

+ represents that the random variable X follows a uniform distribution.

2 Model Description and Preliminaries

In this paper, we take account of a kind of stochastic time-delay neural network (STDNN)
with RDIs described below:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dx(t) =[−Dx(t) + A f (x(t)) + B f (xt )]dt
+ g(t, x(t), xt )dω(t), t ≥ t0, t �= tk,

x(t) =Ik(t
−, x(t−), x(t − ξk)

−), t = tk, k ∈ N
+,

x(s) =ϕ(s), s ∈ [t0 − τ̄ , t0),

(1)

where x(t) ∈ R
n is state vector. xt = x(t − τ), where τ ∈ [0, τ̄ ] is transmission delay. tk

denotes impulsive instant. f serves as the activation function satisfying | f (x) − f (y)| ≤
L|x−y| and f (0) ≡ 0,where L isn×n-dimensional diagonalmatrix. D ∈ R

n×n is referred to
as n × n-dimensional matrix. A ∈ R

n×n and B ∈ R
n×n act as feedback matrix, respectively.

g(t, x(t), xt ) is noise disturbance from R
+
t0 × R

n × R
n to R

n satisfying g(0) ≡ 0 and
trace(gT (t, x(t), xt )g(t, x(t), xt )) ≤ xT (t)K1x(t) + xTt K2xt , where K1 and K2 are n × n-
dimensional real matrix, respectively. Ik : R

+
t0 × R

n × R
n → R

n satisfying Ik(t, 0, 0) ≡ 0.
Delay ξk is a Ftk -measurable random variable that occurs at impulsive instant, which takes
value in [0, ξ ], moreover, the sequence {ξk} is independent of ω(t) as well as mutually
independent. Thus, ξ0 = 0 when t = t0. ϕ ∈ PC p

Fto
([t0 − τ, t0]) is initial function.

Some definitions and lemmas for consequent demands are as follows.

Definition 1 ([26]) Assume that there exist positive constants N0 and Ta such that

t − t0
Ta

− N0 ≤ N (t, t0) ≤ t − t0
Ta

+ N0

holds for t0 ≤ t ≤ u, then N0 and Ta are respectively called the chatter bound and AII, where
N (t, t0) is referred to as the quantity of triggered impulses on (t0, t].

Definition 2 ([29]) Let N (t, t0) represents the amount of impulsive occurrence on (t0, t].
Assume that there exist positive number ξ∗ and ξ̄ such that

ξ̄N (t, t0) − ξ∗ ≤
N (t,t0)∑

j=1

Eξ j ≤ ξ̄N (t, t0) + ξ∗

holds for t ≥ t0, then ξ̄ and ξ∗ are called ARD and preset value, respectively.

Remark 1 It is clear that the notions of AII and ARD is developed to characterize impulsive
moments and impulsive input delays holistically. It isworth noting that the amount of impulses
serves as a link between these two ideas. Actually, Definitions 1 and 2 can yield that

ξ̄
t − t0
Ta

− ξ∗ ≤
N (t,t0)∑

j=1

Eξ j ≤ ξ̄
t − t0
Ta

+ ξ∗.
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Lemma 1 ([19]) Let x, y ∈ R
n, U is a diagonal positive definition matrix with appropriate

dimension, then

xT y + yT x ≤ xTUx + yTU−1y

holds.

Lemma 2 ([19]) If V ∈ R
n×n is a symmetric positive definite matrix and U ∈ R

n×n is
symmetric matrix, then

λmin
(
V−1U

)
xT V x ≤ xTUx ≤ λmax

(
V−1U

)
xT V x, x ∈ R

n

holds.

Lemma 3 ([29]) Assume that V (t, x) is continuously once differentiabla in t and twice in x.
There is a constant δ such that

E[V (tk − ξk)
−] ≤ E

[

V ((tk − ξk)
−) exp{−δξk}

]

exp{δEξk}

holds for tk ≤ t < tk+1.

Assumption 1 There exist positive definite matrices �1k and �2k satisfying for t = tk ,

I Tk (t−, x(t−), x(t − ξk)
−)Ik(t

−, x(t−), x(t − ξk)
−)

≤ xT (t−)�1k x(t
−) + xT (t − ξk)

−�2k x(t − ξk)
−.

Definition 3 The trivial solution of STDNN (1) with RDIs is said to be mean square expone-
tially stable (MSES), if there exists a pair of positive constants α and β such that for t ≥ t0,

E|x(t)|2 ≤ α exp{−β(t − t0)} sup
t0−τ≤u≤t0

E|ϕ(u)|2

holds.

We define a differential operator L for STDNN (1),

LV (t, x(t)) = Vt (t, x(t)) + Vx (t, x(t)) f (t, x(t − τ(t, x(t))))

+ 1

2
trace

[
gT (t, x(t − τ(t, x(t))))

× Vxx (t, x(t))g(t, x(t − τ(t, x(t))))].

3 Main Results

In this section, we consider positive definite function V (t) = V (t, x) = xT (t)Px(t), where
P is positive definite and symmetric matrix of appropriate dimension.

3.1 STDNNs with Destabilizing Delayed Impulses

Theorem 1 Suppose that there are positive constants γ > 1, κ > 0, μ > 0, −θ1 > θ2 =
λmax

(
P−1LTU2L

) + λmax(P−1K2) > 0, and n-dimensional symmetric positive definite
matrices U1, U2 such that

(℘1) P ≤ γ I ;
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(℘2)

⎡

⎣
� PA PB
∗ −U1 0
∗ ∗ −U2

⎤

⎦ < 0;

(℘3) N (t, t0)(0 ∨ ln λ) + ε0

N (t,t0)∑

l=0

Eξl − (ε0 − κ)(t − t0) ≤ μ;

where I stands for identity matrix, � = −PD − DT P + LTU1L + γ K1 − θ1P,

θ1 = λmax

[
−PD − DT P + PAU−1

1 AT P + LTU1L + PBU−1
2 BT P + γ K1

]
, ε0 ∈

(ε1 − ε1, ε1), ε1 is any small constant, ε1 is the root of the equation ε + θ1 + θ2 exp{ετ } = 0.
Then STDNN (1) with RDIs is MSES.

Proof For convenience, denote λ1 = γ λmax
(
P−1�1M

)
, λ2 = γ λmax

(
P−1�2M

)
, λ =

λ1 + λ2. The entire proof procedure will be fragmented into two phases.
Step 1: We first verify that, there is t∗ ∈ [tk−1, tk) such that ExT (t∗)Px(t∗) exp{ε0(t∗) −

t0} �= 0 and ExT (t)Px(t) exp{ε0(t − t0)} ≤ ExT (t∗)Px(t∗) exp{ε0(t∗ − t0)} are hold for
t0 − τ ≤ t < t∗, then one has

D+
E

[

xT (t)Px(t) exp{ε0(t − t0)}
]∣
∣
∣
∣
t=t∗

< 0. (2)

In accordance with the definition of L, we have

L[xT (t)Px(t)] = 2xT (t)P

[

−Dx(t) + A f (x(t)) + B f (xt )

]

+ trace

[

gT (t, x(t), xt )Pg(t, x(t), xt )

]

= −2xT (t)PDx(t) + 2xT (t)PA f (x(t)) + 2xT (t)PB f (xt )

+ trace

[

gT (t, x(t), xt )Pg(t, x(t), xt )

]

. (3)

Combining Lemma 1, Lemma 2 and condition (℘1), we can get

2xT (t)PA f (x(t))

≤ xT (t)PAU−1
1 AT Px(t) + f T (x(t))U1 f (x(t))

≤ xT (t)PAU−1
1 AT Px(t) + xT (t)LTU1Lx(t), (4)

2xT (t)PB f (xt )

≤ xT (t)PBU−1
2 BT Px(t) + f T (xt )U2 f (xt )

≤ xT (t)PBU−1
2 BT Px(t) + xTt LTU2Lxt

≤ xT (t)PBU−1
2 BT Px(t) + λmax(P

−1LTU2L)xTt Pxt , (5)

trace[gT (t, x(t), xt )Pg(t, x(t), xt )]
≤ γ trace[gT (t, x(t), xt )g(t, x(t), xt )]
≤ γ [xT (t)K1x(t) + xTt K2xt ]
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≤ γ [xT (t)K1x(t) + λmax(P
−1K2)x

T
t Pxt ]. (6)

On the basis of condition (℘2) and inequalities (3)–(6), we can infer that

LxT (t)Px(t) ≤ xT (t)

[

−PD − DT P + PAU−1
1 AT P + LTU1L

+ PBU−1
2 BT P + γ K1

]

x(t) +
[

λmax

(
P−1LTU2L

)

+ λmax
(
P−1K2

)
]

xTt Pxt

≤ θ1x
T (t)Px(t) + θ2x

T
t Pxt . (7)

According to Fubini’s theorem and (7), we can calculate that

D+
E

[

xT (t)Px(t) exp{ε0(t − t0)}
]∣
∣
∣
∣
t=t∗

= ε0E[xT (t∗)Px(t∗) exp{ε0(t∗ − t0)}]
+ exp{ε0(t − t0)}EL[xT (t)Px(t)]|t=t∗

≤ ε0E[xT (t∗)Px(t∗) exp{ε0(t∗ − t0)}]
+ exp{ε0(t − t0)}[θ1ExT (t)Px(t) + θ2Ex

T
t Pxt ]|t=t∗

≤ ε0E[xT (t∗)Px(t∗) exp{ε0(t∗ − t0)}]
+ θ1Ex

T (t)Px(t) exp{ε0(t − t0)}|t=t∗

+ θ2Ex
T
t Pxt exp{ε0(t − τ − t0)} exp{ε0τ }|t=t∗

≤ (ε0 + θ1 + θ2 exp{ε0τ })ExT (t∗)Px(t∗) exp{ε0(t∗ − t0)}
≤ 0. (8)

So (2) holds.
Step 2: Following that, we will clarify that

ExT (t)Px(t) ≤ �k exp{−ε0(t − t0)} (9)

holds for t0 ≤ t < tk , k ∈ N
+, where �k = exp{(k − 1)(0 ∨ ln λ) + ∑k−1

l=0 ε0Eξl}||ϕ̄||,
ϕ̄ = λmax(P) supt0−τ≤u≤t0 E||ϕ(u)||2.

Clearly, the demonstration of (9) can be turned into the confirmation of

ExT (t)Px(t) exp{ε0(t − t0)} ≤ �k, t ∈ [t0, tk), k ∈ Z
+. (10)

To begin with, we confirm that (10) holds for t ∈ [t0 − τ, t1). It is distinctly that
ExT (t)Px(t) exp{ε0(t − t0)} ≤ ExT (t)Px(t) ≤ ||ϕ̄|| = �1 for t ∈ [t0 − τ, t0], which
suggests that (10) is true for t ∈ [t0 − τ, t0]. Now, we need to demonstrate that (10)
is true for t ∈ (t0, t1). Assuming the above assertion is false, then there exist some
instants t such that ExT (t)Px(t) exp{ε0(t − t0)} > �1. Set t∗ = inf{t ∈ (t0, t1) :
ExT (t)Px(t) exp{ε0(t − t0)} > �1}. In the light of definition of t∗, we can obtain
ExT (t∗)Px(t∗) exp{ε0(t∗ − t0)} = �1 and ExT (t)Px(t) exp{ε0(t − t0)} < �1 for
t ∈ [t0 − τ, t∗), and for arbitrarily small constant �t , ExT (t)Px(t) exp{ε0(t − t0)} > �1

when t ∈ (t∗, t∗ + �t]. Therefore D+xT (t)Px(t) exp{ε0(t − t0)}|t=t∗ > 0, which is con-
tradictory to (2). So, (10) holds for t ∈ [t0 − τ, t1).
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Afterwards, using mathematical induction, we presuppose that (10) is valid on k =
1, 2, · · · , M , M ∈ N

+, which shows

ExT (t)Px(t) exp{ε0(t − t0)} ≤ �M , t = tM . (11)

The following will illustrate the validity of (10) for k = M + 1. It is worth noting that
sequence {�k} is monotonically non-decreasing on k ∈ Z

+. Futhermore, one can deduce
that ExT (t)Px(t) exp{ε0(t − t0)} ≤ �M ≤ �M+1 when t ∈ [t0 − τ, tM ). Then it will be
proven that ExT (t)Px(t) exp{ε0(t − t0)} ≤ �M+1 for t ∈ [tM , tM+1).

At t = tM , with the help of Assumption 1, λ ≤ exp{0 ∨ ln λ}, Lemma 2 and Lemma 3,
we derive that

ExT (tM )Px(tM ) exp{ε0(tM − t0)}
≤

[
γ

(
ExT (t−M )�1Mx(t−M ) + ExT (tM − ξM )−

×�2Mx(tM − ξM )−
)]
exp{ε0(tM − t0)}

≤ γ λmax
(
P−1�1M

)
ExT (t−M )Px(t−M ) exp{ε0(tM − t0)}

+ γ λmax
(
P−1�2M

)
ExT (tM − ξM )−Px(tM − ξM )−

× exp{ε0(tM − ξM − t0)} exp{ε0EξM }
≤ [

γ
(
λmax

(
P−1�1M

) + λmax
(
P−1�2M

))]
�M exp{ε0EξM }

= λ�M exp{ε0EξM }
≤ �M+1. (12)

Suppose that there is t̃ ∈ (tM , tM+1) such that ExT (t̃)Px(t̃) exp{ε0(t̃ − t0)} = �M+1,
ExT (t)Px(t) exp{ε0(t−t0)} < �M+1 for t ∈ [t0−τ, t̃), andExT (t)Px(t) exp{ε0(t−t0)} >

�M+1 for tM+1 > t > t̃ . Apparently, D+
ExT (t)Px(t) exp{ε0(t − t0)}|t=t̃ > 0, which is in

contradiction with (2).
Therefore, for t ≥ t0, it is straightforward to gain

ExT (t)Px(t) exp{ε0(t − t0)}

≤ exp{N (t, t0)(0 ∨ ln λ) +
N (t,t0)∑

l=0

ε0Eξl}||ϕ̄||. (13)

In addition,

ExT (t)Px(t) ≤ exp{N (t, t0)(0 ∨ ln λ)

N (t,t0)∑

l=0

ε0Eξl − ε0(t − t0)}||ϕ̄|| (14)

holds for t ≥ t0. �

Employing condition (℘3), one can procure that

ExT (t)Px(t) ≤ exp{μ − κ(t − t0)}||ϕ̄||, t ≥ t0. (15)

Then, one has

E||x(t)||2 ≤λmax(P) exp{μ}
λmin(P)

exp{−κ(t − t0)} sup
t0−τ≤u≤t0

E||ϕ(u)||2. (16)

Hence, STDNN (1) with RDIs is MSES.
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Corollary 1 Provided that Assumption 1, (℘1), and (℘2) are all fulfilled, there exists constant
ε1 satisfying

(℘′
3) ξ̄ + 0 ∨ ln λ

ε1
< Ta,

where ε1 is unique positive solution of equation ε + θ1 + θ2 exp{ετ } = 0, then STDNN (1)
with RDIs is MSES.

Proof Let ε̃ = ε1 − 0∨ln λ

Ta−ξ̄
and ε2 = ε1 ∧ ε̃. The condition (℘′

3) indicates that ε̃ > 0. We can

discover a constant ε0 ∈ (ε1 − ε2, ε1) satisfying

ξ̄ + 0 ∨ ln λ

ε0
< Ta . (17)

Combining Definitions 1 and 2, one has

N (t, t0)(0 ∨ ln λ) +
N (t,t0)∑

l=0

ε0Eξl − ε0(t − t0)

≤
(
t − t0
Ta

+ N0

)

(0 ∨ ln λ) + ε0[ξ̄N (t, t0) + ξ∗] − ε0(t − t0)

≤
(
t − t0
Ta

+ N0

)

(0 ∨ ln λ) + ε0

[

ξ̄
t − t0
Ta

+ ξ̄N0 + ξ∗
]

− ε0(t − t0)

≤ −
(

ε0 − (0 ∨ ln λ) + ε0ξ̄

Ta

)

(t − t0) + ε0ξ̄N0 + ε0ξ
∗ + N0(0 ∨ ln λ). (18)

According to (17),

ε0 − 0 ∨ ln λ + ε0ξ̄

Ta
> 0. (19)

Set that κ = ε0 − 0∨ln λ+ε0 ξ̄
Ta

and μ = ε0ξ̄N0 + ε0ξ
∗ + N0(0 ∨ ln λ). Furthermore, (℘3)

is satisfied. Through Theorem 1, STDNN (1) with RDIs is MSES. �

Remark 2 θ2 + θ1 < 0 implies that the initial STDNN is stable in the absence of impulse
action. Theorem 1 and Corollary 1 clearly demonstrate that STDNN (1) is able to remain
stable when affected by unstable delayed impulses under specific conditions. (℘′

3) displays a
correlation between ARD and AII, indicating that when ARD grows, so does AII. Given that
delayed impulses have a detrimental influence on STDNN (1), impulsive delays should not
be too lengthy; otherwise, the negative impact of delayed impulses on stability will increase.

Remark 3 In Theorem 1, (℘3) is a condition about impulsive delays, emphasizing that the
impulsive delays should not be excessively long, or else ε0 will not exist.

In addition, compare with literature [19], there are no restrictions on τ and ξl in this
paper, which means that τ and ξl may exceed the impulse interval when ξ is large enough.
Furthermore, stochastic factors are also taken account in this paper.

3.2 STDNNs with Stabilizing Delayed Impulses

Denote t0 − ι := t−1, ℵ(u) = θ1 − u + θ2
λ
exp{u(−τ + ξ)} and ε2 = 1

−τ+ξ
ln λ

θ2(−τ+ξ)
.
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Lemma 4 Take into consideration following function

M(t) =
{
V (t, x) exp{−ε0(t − tk)}, t ∈ [tk, tk+1),

V (t), t ∈ [t0 − τ, t0], (20)

where ε0 satisfies that

(S1) 0 < ε0 − ε̃0 � 1 when τ ≥ ξ , where ε̃0 = 0 ∨
(
θ1 + θ2

λ

)
;

(S2) 0 < ε̃0 − ε0 � 1 when τ < ξ and θ1 + θ2
λ

< 0, where ε̃0 meets ℵ(ε̃0) = 0;

(S3) 0 < ε0 − ε̃0 � 1 when τ < ξ , θ1 + θ2
λ

≥ 0, λ > θ2(−τ + ξ) and θ1(−τ + ξ) −
ln(λ)+ ln(−τ +ξ)+ ln θ2+1 < 0, where 0 < ε̃0 < ε2 andℵ(ε̃0) = 0. For any ť ∈ [tk, tk+1),
there is an integer −1 ≤ d ≤ k satisfies ť − τ ∈ [td , td+1), if EM(ť − τ) exp{ε0(tk − td)} ≤
EM(ť) exp{− ln λ + ε0EξN (ť,t0)} is true, then one can infer that

D+
EM(ť) < 0. (21)

Proof We define the auxiliary function shown below, for arbitrary π > 0 and k ∈ N,

Mπ (t) =

⎧
⎪⎨

⎪⎩

V (t, x) exp{−(ε0 + π)(t − tk)},
t ∈ [tk, tk+1),

V (t), t ∈ [t0 − τ, t0].
(22)

According to (20), one has for ť ∈ [tk, tk+1)

M(ť − τ) =

⎧
⎪⎨

⎪⎩

V (ť − τ) exp{−ε0(ť − τ − td)},
ť − τ ∈ [td , td+1),

V (ť − τ), ť − τ ∈ [t0 − τ, t0].
(23)

Combining (7) and (23) we can generate

exp{π(ť − tk)}D+
EMπ (t)|t=ť

= −(ε0 + π) exp{−ε0(ť − tk)}EV (ť) + exp{−ε0(ť − tk)}D+
EV (ť)

≤ (−ε0 − π + θ1) exp{−ε0(ť − tk)}ExT (t)Px(t) + θ2 exp{−ε0(ť − tk)}ExTť Pxť

= (−ε0 − π + θ1)EM(ť) + θ2 exp{−ε0(τ + td − tk)}EM(ť − τ)

≤ (−ε0 − π + θ1 + θ2 exp{−ε0τ } exp{− ln λ + ε0EξN (ť,t0)})EM(ť)

≤
(

−ε0 − π + θ1 + θ2

λ
exp{ε0(−τ + ξ)}

)

EM(ť). (24)

There are three situations to consider.
In terms of (S1), it leads to ℵ(ε̃0) = θ1 − ε̃0 + θ2

λ
≤ 0. Suppose that 0 < ε∗

0 − ε̃0 � 1,
then ℵ(ε∗

0 ) < 0.
In terms of (S2), it implies that ℵ(0) < 0, ℵ′(u) = −1+ (−τ + ξ) θ2

λ
exp{u(−τ + ξ)}, and

ℵ′(ε2) = 0. Apparently, if ε2 ≤ 0, then ℵ′(u) ≥ 0 on (0,+∞). If ε2 > 0, then ℵ′(u) < 0 on
(0, ε2) and ℵ′(u) > 0 on (ε2,+∞). Thus, there is unique constant ε̃0 such that ℵ(ε̃0) = 0.
Afterwards choose a constant ε∗

0 that is close enough ε̃0, i.e., 0 < ε̃0 − ε∗
0 � 1, which leads

to ℵ(ε∗
0 ) < 0.

In terms of (S3), we can deduce that ℵ(0) ≥ 0, ε2 > 0, ℵ′(ε2) = 0, and ℵ(ε2) < 0.
Therefore, there is a constant ε̃0 ∈ (0, ε2) such that ℵ(ε̃0) = 0. Select a proper constant ε∗

0
to achieve 0 < ε∗

0 − ε̃0 � 1, then ℵ(ε∗
0 ) < 0 still holds up.
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In conclusion, for all the above situations, ℵ(ε0) < 0 is the truth if ε0 = ε∗
0 . As a result,

(24) can be modified as exp{π(ť − tk)}D+
EMπ (t)|t=ť ≤ −πEM(ť). According to (22),

one has

D+
EM(t)|t=ť

= exp{π(ť − tk)}D+
EMπ (ť) + πEMπ (ť) exp{π(ť − tk)}

< −πEM(ť) + πEM(ť)

= 0. (25)

Proof of inequality (22) is completed. �

Theorem 2 Under (℘1) and (℘2), let λ1 = 0, λ2 ∈ (0, 1), if there are constants σ , κ > 0,
and μ ≥ 0 such that for t ≥ t0,

(℘4)when τ > ξ,

σN (t, t − ι) + ε0

N (t,t0)−1∑

l=N (t−ι,t0)+1

Eξl ≤ − ln λ;

when τ ≤ ξ,

σ (N (t, t − ι) + 1) + ε0

⎛

⎝
N (t,t0)−1∑

l=N (t−ι,t0)+1

Eξl + sup
l∈R+

Eξl

⎞

⎠ ≤ − ln λ;

(℘5) − σN (t, t0) − ε0

N (t,t0)∑

l=0

Eξl + (ε0 + μ)(t − t0) ≤ κ,

where λ1 and λ2 are defined in Theorem 1. Then STDNN (1) with RDI is MSES.

Proof We shell to prove the following inequality

ExT (t)Px(t) ≤ ϒk exp{ε0(t − t0)} (26)

for t ∈ [tk, tk+1), where ϒk = ||ϕ̄|| exp{ε0ς} exp{−kσ − ε0
∑k

i=0 Eξi } and k ∈ N. Combin-
ing (26) and (20), it is equal to verify

EM(t) ≤ ϒk exp{ε0(tk − t0)}, (27)

for t ∈ [tk, tk+1), k ∈ N.
Notice that EM(t0) = EV (t0) ≤ ||ϕ̄|| ≤ ϒ0. Assume that EM(t) ≤ ϒ0 is not true for

any t0 ≤ t < t1, then there exists t0 ≤ t̂ < t1 such that

EM(t̂) = ϒ0,

EM(t) ≤ ϒ0, t ∈ [t0, t̂],
D+

EM(t̂) ≥ 0. (28)

We analysis EM(t̂ − τ) as follow:

(I) When t0 ≤ t̂ − τ ≤ t̂ , from (28), one has EM(t̂ − τ) ≤ ϒ0 = EM(t̂) ≤ 1
λ
EM(t̂),

which is consistent with Lemma 4.
(II) When t̂ − τ ∈ [t0 − σ, t0), then EM(t̂ − τ) = EV (t̂ − τ) ≤ ||ϕ̄|| ≤ ϒ0 = EM(t̂) ≤

1
λ
EM(t̂), which also satisfies Lemma 4.
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Providing (27) is valid for k ≤ L , L ∈ N. We will have

EM(t) ≤ ϒL+1 exp{ε0(tL+1 − t0)}, (29)

for t ∈ [tL+1, tL+2).
Set Rm = [tL+1 − tm+1, tN+1 − tm), wherem ∈ [−1, L]. Hence, tm ≤ (tL+1 − ξL+1)

− <

tm+1 when ξL+1 ∈ Rm . According to total probability formula and (26), one has

E

(
xT (tL+1 − ξL+1)

−Px(tL+1 − ξL+1)
−)

=
L∑

m=−1

E

[
xT (tL+1 − ξL+1)

−Px(tL+1 − ξL+1)
−

×|ξL+1 ∈ Rm
]
P(ξL+1 ∈ Rm)

≤ max−1≤m≤L
{ϒmE[exp{ε0((tL+1 − ξL+1)

− − t0)}

× |ξL+1 ∈ Rm]}
L∑

m=−1

P(ξN+1 ∈ Rm)

= max−1≤m≤L
{ϒmE[exp{ε0((tL+1 − ξL+1)

− − t0)}|ξL+1 ∈ Rm]}. (30)

There exists an integer s ∈ [−1, L] such that

ϒsE[exp{ε0((tL+1 − ξL+1)
− − t0)}|ξL+1 ∈ Rs]

= max−1≤m≤L
{ϒmE[exp{ε0((tL+1 − ξL+1)

− − t0)}|ξL+1 ∈ Rm]}. (31)

At t = tL+1, from (7), (20), (30) and (31), one gets

EM(tL+1) = ExT (tL+1)Px(tL+1)

≤ λϒsE[exp{ε0((tL+1 − ξL+1)
− − t0)}|ξL+1 ∈ Rs]

≤ λϒsE[exp{ε0(tL+1 − ξL+1 − t0)} exp{ε0ξL+1}
× exp{−ε0EξL+1}|ξL+1 ∈ Rs]

≤ λϒsE[exp{ε0(tL+1 − t0)} exp{−ε0EξL+1}|ξL+1 ∈ Rs]
= λϒs exp{ε0(tL+1 − t0)} exp{−ε0EξL+1}

= λϒL+1 exp{ε0(tL+1 − t0)} exp{σ(L + 1 − s) + ε0

N∑

l=s+1

Eξl}. (32)

Owing to ξL+1 ∈ Rs , we can get that ts < tL+1 − ξL+1 ≤ ts+1. Therefore, when τ > ξ ,
namely, tL+1 − ι < tL+1 − ξL+1 ≤ ts+1, one can infer that L + 1 − s = N (tL+1, ts) ≤
N (tL+1, tL+1 − ι) and s + 1 = N (ts+1, t0) ≥ N (tL+1 − ι, t0) + 1, which generate that

σ(L + 1 − s) + ε0

N∑

l=s+1

Eξl

≤ σN (tL+1, tL+1 − ι) + ε0

N (tL1 ,t0)−1
∑

l=N (tL+1−ι,t0)+1

Eξl . (33)
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When τ ≤ ξ , one can ascertain that L + 1 − s = N (tL+1, ts) ≤ N (tL+1, tL+1 − ι) + 1 and
s + 1 = N (ts+1, t0) ≥ N (tL+1 − ι, t0), which mean that

σ(L + 1 − s) + ε0

N∑

l=s+1

Eξl

≤ σ(N (tL+1, tL+1 − ι) + 1) + ε0

⎛

⎝
N (tL+1,t0)−1∑

l=N (tL+1−ι,t0)+1

Eξl + EξN (tL+1−ι,t0)

⎞

⎠

≤ σ(N (tL+1, tL+1 − ι) + 1) + ε0

⎛

⎝
N (tL+1,t0)−1∑

l=N (tL+1−ι,t0)+1

Eξl + sup
l∈R+

Eξl

⎞

⎠ . (34)

Notice that if N (tL+1, t0) − 1 < N (tL+1 − ι, t0) + 1, then
∑N (tL+1,t0)−1

l=N (tL+1−ι,t0)+1 Eξl = 0.
Integrating (℘4), (32), (33) and (34), we can deduce that EM(tL+1) ≤ ϒL+1 exp{ε0(tN+1 −
t0)}, i.e., (29) holds for t = tN+1.

Assume that there exists t̂ ∈ [tL+1, tL+2) such that

EM(t̂) = ϒL+1 exp{ε0(tL+1) − t0},
EM(t) ≤ EM(t̂), tN+1 ≤ t ≤ t̂,

D+
EM(t̂) ≥ 0. (35)

Now we discuss the position of t̂ − τ . It is divided into three cases to consider.
(�1) When tN+1 ≤ t̂ − τ ≤ t̂ , d = k = L + 1 is met. It yields that

EM(t̂ − τ) exp{ε0(tk − td)}
≤ EM(t̂)

≤ EM(t̂) exp{− ln λ + ε0EξN (t̂,t0)}, (36)

which means condition of Lemma 4 is satisfied.
(�2) When td ≤ t̂ − τ < td+1, where d is defined in Lemma 4 and d ∈ [0, L], one has

EM(t̂ − τ) exp{ε0(tL+1 − td)}
≤ ϒd exp{ε0(td − t0) + ε0(tL+1 − td)}

= ϒL+1 exp{ε0(tL+1 − t0)} exp
{

σ(L + 1 − d) + ε0

L+1∑

l=d+1

Eξl

}

. (37)

Through td ≤ t̂ − τ < td+1 ≤ tL+1 ≤ t̂ < tL+2, it is generated that L + 1 − d =
N (tL+1, td) = N (t̂, t̂ − τ) ≤ N (t̂, t̂ − ι). According to (℘4), one can obtain

σ(L + 1 − d) + ε0

L+1∑

l=d+1

Eξl

≤ σN (t̂, t̂ − τ) + ε0

N (t̂,t)∑

l=N (t̂−ι,t)+1

Eξl

≤ − ln λ + ε0EξN (t̂,t0). (38)

Integrating (37) and (38), we have EM(t̂ − τ) exp{ε0(tL+1 − td)} ≤ EM(t̂) exp{− ln λ +
ε0EξN (t̂,t)}, which admits condition of Lemma 4.
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(�3) When td ≤ t̂ − τ < td+1, where d = −1,

EM(t̂ − τ) exp{ε0(tL+1 − td)}
= ExT (t̂ − τ)Px(t̂ − τ) exp{ε0(tL+1 − t−1)}
≤ ||ϕ̄|| exp{ε0ι} exp{ε0(tL+1 − t0)}

= ϒL+1 exp{ε0(tL+1 − t0)} exp{σ(L + 1) + ε0

L+1∑

l=0

Eξl}

= EM(t̂) exp{σN (t̂, t̂ − τ) + ε0

N (t̂,t0)∑

l=N (t̂−ι,t0)+1

Eξl}

≤ EM(t̂) exp{− ln λ + σEξN (t̂,t0)}, (39)

where N (t̂ − ι, t0) is zero.
To sum up, applying Lemma 4, we can conclude that D+

M(t̂) < 0, which is in conflict
with (35). Consequently, (29) holds for t ∈ [tL+1, tL+2). We infer through mathematical
induction that (27) holds for any tk ≤ t < tk+1, k ∈ N. That is,

ExT (t)Px(t) ≤||ϕ̄|| exp{ε0ι} exp{−σN (t, t0) − ε0

N (t,t0)∑

l=0

Eξl + ε0(t − t0)}. (40)

Futhermore, utilizing (℘5),

E||x(t)||2 ≤λmax(P)

λmin(P)
exp{ε0ι + κ − η(t − t0)} sup

u∈[t0−ι,t0]
E||ϕ(u)||2. (41)

�

Corollary 2 Set λ = λ1 + λ2 and λ1 = 0, λ2 ∈ (0, 1), ε0 > 0 is given in Lemma 4. Provided
that there exists constant σ > 0 such that (℘4) and following inequality

(℘′
5)

σ

ε0
+ ξ̄ > Ta

hold, then ISTDNN (1) with RDIs is MSES.

Proof Using Definitions 1 and 2, one has

− σN (t, t0) − ε0

N (t,t0)∑

l=0

Eξl + ε0(t − t0)

≤ −σ

(
t − t0
Ta

− N0

)

− ε0(ξ̄N (t, t0) − ξ∗) + ε0(t − t0)

≤
(−σ − ε0ξ̄ + ε0Ta

Ta

)

(t − t0) + σN0 + εξ̄N0 + ε0ξ
∗. (42)

It implies that (℘5) is satisfied under condition (℘′
5) with η = σ+ε0 ξ̄−ε0Ta

Ta
and κ = σN0 +

εξ̄N0 + ε0ξ
∗. So, we infer from Theorem 2 that STDNNs (1) with RDIs are MSES. �


Remark 4 In Theorem 2, θ1 > 0, which means that in the absence of impulsive behavior,
the original STDNNs (1) may be unstable. Theorem 2 and Corollary 2 show that, while
the continuous subsystems of STDNNs (1) may be unstable, dynamics behavior of hybrid
STDNNs (1) remain stable, indicating that stabilization function of delayed impulses.
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Table 1 Distribution of delay in
impulses Delay ξk 0 1.6 11.95

Probability P 0.1 0.1 0.8

Remark 5 Condition (℘′
5) exhibits not just relationship between ξ̄ and Ta , but also that Ta has

an upper bound. We can obtain ε0(t−t0)
σ+ε0ξ

− N0 < t−t0
Ta

− N0 ≤ N (t, t0) through incorporating

Definition 1 and condition (℘′
5). Inequality

t−t0
Ta

− N0 ≤ N (t, t0) contributes to stability of

STDNN (1). Inequality ε0(t−t0)
σ+ε0ξ

− N0 ≤ N (t, t0) aids in the speedier stabilization of STDNN
(1).

4 Numerical Examples

Three numerical examples are offered in this part to show the efficacy and practicality of our
theoretical conclusions.

Example 1 Take into account a two-dimensional STDNN with random delayed impulses
{
dx(t) = [−Dx(t) + B f (xt )]dt + g(t, x(t), xt )dω(t),

x(tk) = Skx(t
−
k ) + Hkx((tk − ξk)

−),
(43)

where

D =
[

4 −0.5
−0.4 5

]

, B =
[
0.4 0.6
1.2 0.5

]

,

Sk =
[
0.6 0.1
0.3 0.4

]

, Hk =
[
1.3 0.3
0.2 1.5

]

,

for simulation, take f (xt ) = tanh x(t − τ), matrix P = I , i.e., P is identity matrix and

V (t, x(t)) = xT (t)x(t), g(t, x(t), xt ) =
[
0.2x1(t − τ) 0

0 0.3x2(t)

]

.

By counting,

LxT (t)x(t) = 2xT (t)(−Dx(t) + B f (xt ))

+ trace(gT (t, x(t), xt )g(t, x(t), xt ))

≤ (2λmax(−D) + 1 + 0.09)xT (t)x(t)

+ (λmax(B
T B) + 0.04)xT (t − τ)x(t − τ),

ExT (tk)x(tk) ≤ 2λmax(S
T
k Sk)x

T (t−k )x(t−k )

+ 2λmax(H
T
k Hk)x

T ((tk − ξk)
−)x((tk − ξk)

−),

where λmax(−D) = −3.8292, λmax(BT B) = 2.08. Thus, ELxT (t)x(t) ≤ θ1ExT (t)x(t) +
θ2ExT (t − τ)x(t − τ) with θ1 = −6.5684 and θ2 = 3.12, which demonstrates that STDNN
(43) is stable in the absence of impulses, see Fig. 1. Figure 1 shows that state trajectory of
STDNN (43) without impulsive action.

Furthermore, set ξk complies with discrete distribution depicted in Table 1, tk = 6k,
and τ = 3. The destabilizing traits of delay in impulses is clearly displayed in Fig. 2 via
comparison of state trajectories of (43) with RDIs and with non-delayed impulses. Through
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Fig. 1 Dynamic behavior of SNN (43) without impulses

Corollary 1, it can be determined that STDNN (43) is MSES if ξk = 0, see red line in Fig. 2.
The red line in Fig. 2 indicates that when (43) is only subjected to non-delayed impulses,
it remains stable. However, if every delay ξk in impulse obeys the distribution presented in
Table 1, stability of STDNN (43) is jeopardized. Besides, ξ̄ = 9.72 and ξ̄ + ln λ

ε1
> Ta , ε1 =

0.2360, which fails to meet condition (℘′
3), see blue line in Fig. 2. Blue line in Fig. 2 shows

that when (43) is subjected to delayed impulses, its stability is disrupted. This demonstrates
that impulsive delay has a detrimental influence on stability of STDNN, which can make
stable STDNN unstable. This implies that, despite the fact that the impulsive strength is
unvarying, delayed impulses maybe degrade dynamics behavior.

Assume that randomdelay ξ2k obeys the uniformdistributionU (1, 4), ξ2k+1 obeysU (2, 6)
and tk = 6k, τ = 3. Under Collaroy 1, (℘1), (℘2), and (℘′

3) are valid for STDNN (43). Fig-
ure 3 further demonstrates that STDNN (43) is MSES. Compared to Fig. 1, the convergence
speed of STDNN (43) may slow down, which signifies that conclusion of this paper is more
comprehensive than previous research. To put it simply, with this in mind that the continuous
dynamics is stable, though impulsive delays act as interference that impacts the dynamic
behavior of network, STDNN (43) remains stable when faced with small input impulsive
delay.

Particularly, if ξ7 = ξ8 = ξ9 = 12, the remaining ξk , k �= 7, 8, 9 obey uniform distribution
U (0, 9), tk = 6k, τ = 3. According Corollary 1, STDNN (43) is also MSES as shown in
Fig. 4.

In addition, set every ξk obeys uniform distribution U (0, 1.6), tk = 9.9k and τ = 10.
Base on Corollary 1, STDNN (43) is MSES as shown in Fig. 5.

Figures 4 and 5 respectively indicate that stability performance of (43) remains unchanged
when delay in impulses and delay in the continuous systems exceed the impulsive interval,
which is not supported by literatures [18, 20, 22], etc.
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Fig. 2 Dynamic behavior of SNN (43) with ξk = 0 and ξk in Table 1
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Fig. 3 Dynamic behavior of SNN (43) with τ = 3, tk = 6k, and ξ2k ∼ U (1, 4), ξ2k+1 ∼ U (2, 6)

Example 2 Take into account a two-dimensional STDNN with impulsive control

⎧
⎪⎨

⎪⎩

dx(t) =[−Ax(t) + B f (t) + C f (x(t − τ))]dt
+ g(x(t), x(t − τ))dω(t),

�x(tk) = u(tk),

(44)
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0 5 10 15 20 25 30

Time t

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Fig. 4 Dynamic behavior of SNN (43) with τ = 3, tk = 6k, and ξ7 = ξ8 = ξ9 = 12, ξk ∼ U (0, 9),
k �= 7, 8, 9
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Fig. 5 Dynamic behavior of SNN (43) with τ = 10, tk = 9.9k, and ξk ∼ U (0, 1.6)

where�x(tk) = x(tk)−x(t−k ), takeu(tk) = Hx((tk−ξk)
−)−x(t−k ),V (t, x(t)) = xT (t)x(t),

then,

LV (t, x(t), x(t − τ))

≤ 2xT (t)(−Ax(t) + B f (x(t)) + C f (x(t − τ)))

+ trace(gT (x(t), x(t − τ))g(x(t), x(t − τ))).

Following that, two scenarios will be analyzed.
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Table 2 Distribution of delay in
impulses

Delay ξk Y1 Y2

Probability P 0.35 0.65

(�1) For emulation, we set f (x(t)) = tanh( x(t)2 )

A =
[
2 0
0 2

]

, B =
[
1.2 −0.2

−1.1 1.2

]

,

C =
[−0.4 1.1
1.2 −0.4

]

, H =
[
0.4 0
0 0.4

]

,

g(x(t), x(t − τ)) =
[
0.2x1(t − τ) 0.3x1(t)
0.3x2(t) 0.2x2(t − τ)

]

.

By calculation,

LV (t, x(t), x(t − τ))

≤
(

λmax

(

−A − A′ + I + B ′B
4

+ C ′C
)

+ 0.09

)

xT (t)x(t)

+ 0.29xT (t − τ)x(t − τ),

where I = [1, 0; 0, 1], λmax

(
−A − A′ + I + B′B

4 + C ′C
)

= 0.337. Thus, θ1 = 0.427,

θ2 = 0.29, and λ = 0.16. Moreover, assume that tk = 0.2k, τ = 0.4, ξk ∼ U (0, 0.6), which
implies that Ta = 0.2, ξ̄ = 0.3, ι = ξ = 0.6, ξ∗ = N0 = 0, and N (t, t − ι) ≤ 2. In the light
of (S3), based on ℵ(ε̃0) = 0, one can obtain ε̃0 = 1.5184. It is straightforward to calculate
ℵ(ε0) = −0.0013 < 0 by taking ε0 = 1.52. Afterwards opt for σ = 0.0001, (℘4) and (℘′

5)

are generated. From Corollary 2, STDNN (44) is MSES, see Fig. 6.
It is worth mentioning that in (�1), 0 < ξk < 0.6, τ = 0.4, and Ta = 0.2 illustrate that

time-delays in impulses or continuous dynamics can be concurrently adaptable. Figure 6
shows that in this paper, the delay in continuous systems and the delay in impulses can
simultaneously exceed impulsive interval.

(�2) Make A, B, C , and g(x(t), x(t − τ)) the same as that in (�1), f (x(t)) = tanh( x(t)4 ),
and

H =
[
0.6 0
0 0.6

]

.

Then θ1 = 0.0659, θ2 = 0.3529, and λ = 0.36. We suppose ξk follows the distribution
indicated in Table 2, where Y1 ∼ U (0.3, 0.6), Y2 ∼ U (0.2, 0.3).

In addition, τ = 0.8, tk = 0.6k, one has that ξ = 0.6, ξ̄ = 0.32, Ta = 0.6, ι = 0.8, and
N (t, t − ι) ≤ 1. From (S1), ε0 = 1.0462. Choose that ε0 = 1.05, σ = 1.0217, (℘4) and
(℘′

5) are hold. From Corollary 2, it can be concluded that STDNN (44) is MSES, as shown
Fig. 7.

In Fig. 7, we can notice that the initial unstable STDNNs (44) (red line in Fig. 7) remains
unstable when subjected to impulsive control without time-delay. However, as observed by
blue line in Fig. 7, it becomes stable when subjected to impulsive control with random delay
characteristics. This result implies that delayed impulses have a stabilizing effect on the
system and contribute to its stability.
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Fig. 6 Dynamic behavior for STDNNs (44) in (�1)
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Fig. 7 Dynamic behavior of ||x(t)||1 for STDNNs (44) in (�2)

Example 3 The efficiency of stated strategy is demonstrated in this example by using the
time-delay Chua’s circuit as master system

⎧
⎪⎨

⎪⎩

ẋ1(t) = a(x2(t) − m1x1(t) + g1(x1(t))) − c1x1(t − τ)

ẋ2(t) = x1(t) − x2(t) + x3(t) − cx3(t)

ẋ3(t) = −bx2(t) + c(2x1(t − τ) − x3(t − τ))

with nonlinear characteristics g(x1(t)) = 1
2 (m1−m0)(|x1(t)+1|−|x1(t)−1|) andparameters

m0 = −1/7, m1 = 2/7, a = 9, b = 14.28, c = 0.1, and time-delay τ = 0.4. The delayed
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Fig. 8 Dynamic behavior for system (45)

Chua’s circuit can be rewrittrn

ẋ(t) = Ax(t) + A1x(t − τ) + Df (x), (45)

where

A =
⎡

⎣
−18/7 9 0

1 −1 1
0 −14.28 0

⎤

⎦ , A1 =
⎡

⎣
−0.1 0 0
−0.1 0 0
0.2 0 −0.1

⎤

⎦ ,

D =
⎡

⎣
27/7 0 0
0 0 0
0 0 0

⎤

⎦ ,

and f (x) = (0.5|x1(t)+1|−|x1(t)−1|, 0, 0)T . From Fig. 8, it can be observed that dynamic
behavior of (45) exhibits chaos. The corresponding response system is designed by following
the same structure as the drive system but considering stochastic perturbation and delayed
impulsive controllers

⎧
⎪⎨

⎪⎩

dy(t) =[Ay(t) + A1y(t − τ) + Df (y)]dt
+ σ(t, y(t) − x(t), y(t − τ) − x(t − τ))dω(t),

�x(tk) = u(tk),

(46)

where �x(tk) = x(tk) − x(t−k ), take u(tk) = Hx((tk − ξk)
−) − x(t−k ). Defining the syn-

chronization error as e(t) = y(t) − x(t), we can get the error dynamics
⎧
⎪⎨

⎪⎩

de(t) =[Ae(t) + A1e(t − τ) + D f̄ (e)]dt
+ σ(t, e(t), e(t − τ))dω(t),

e(tk) =�e(tk − ξk), k ∈ N
+,

(47)
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Fig. 9 Dynamic behavior of system (47) under non-delayed impulses
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Fig. 10 Dynamic behavior of system (47) under random delayed impulses

where f̄ (e(t)) = f (y(t)) − f (x(t)) and f̄ T (e(t)) f̄ (e(t)) ≤ eT (t)e(t),

� =
⎡

⎣
0.7 0 0
0 0.7 0
0 0 0.7

⎤

⎦ . (48)

It should be emphasized that stochastic perturbation might arise as a result of internal
errors when simulation circuits are built, such as inadequate design of coupling strength and
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other significant variables. Choose V (t, e(t)) = eT (t)e(t), by calculation, it yields

LV (t) = 2eT (t)[Ae(t) + A1e(t − τ) + D f̄ (e)] + |σ(t, e(t), e(t − τ))|2
≤ 32.8081V (t) + 3V (t − τ), t �= tk, (49)

Thus, θ1 = 32.8081, θ2 = 3, and λ = 0.49. Moreover, assume that tk = 0.5k, τ = 0.5,
ξk = 0, k ∈ N, i.e., no delay on impulses. From (S1), we can calculate that ε̃0 = 38.9305.
Choose that ε0 = 38.9, σ = 12.8275. Under non-delayed impulsive control, it is noted in
Fig. 9 that the error system remains unstable. In actually, we can compute σ

ε0
≯ Ta in this

scenario. However, for ∀k ∈ N, if random delay ξk ∼ U (0, 0.4), which implies that Ta = 0.5,
ξ̄ = 0.2, ι = ξ = 0.5, ξ∗ = N0 = 0, and N (t, t − ι) ≤ 1, from (S1), it can be obtained
that ε̃0 = 38.9305. Choose that ε0 = 38.9, σ = 12.8275, (℘4) and (℘′

5) are hold. From
Corollary 2, error system (47) is MSES. Furthermore, as seen in Fig. 10, error system (47)
becomes stable in the presence of delayed impulses. This result implies that delayed impulses
have a stabilizing function on the system and contribute to its stability. In this situation, (℘′

5)

corresponds to inequality (21) in literature [20] and inequality (3.18) in literature [28].

Remark 6 Despite the fact that literatures [24] and [25] have researched random impulsive
systems, results on the time-delay in impulses have not yet been revealed. The unstable or
stable properties of delay in impulses are described in literatures [18, 20, 22, 28], and so on,
however this paper also analyzes random interference causes and random delay impulse.

5 Conclusion

In this paper, stability issue of STDNNs with RDIs is studied. Firstly, we derive a novel
inequality for impulsive delay with random properties. Thereafter, integrating this inequality
with ideas of AII andARD, stability criteria for STDNNs are established by utilizing stochas-
tic analytic techniques and linear matrix inequalities. In particular, double impact of delays
on impulses is taken into account. Furthermore, we loosen stringent limitations on impul-
sive delays. The results obtained illustrate that impulsive delays may destabilize impulsive
STDNNs, and that when subjected to tiny input impulsive delays, stability performance of
STDNNs becomes sluggish. On the contrary, under delayed impulsive control, convergence
rate of STDNNs improves as impulsive delays get longer. The majority of future effort will
be devoted to synchronization performance of uncertain STDNNs under RDIs.
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