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Abstract
The text-to-image (T2I) model based on a single-stage generative adversarial network (GAN)
has significantly succeeded in recent years. However, the generation model based on GAN
has two disadvantages: the generator does not introduce any image featuremanifold structure,
which makes it challenging to align the image and text features. Another is the image’s diver-
sity; the text’s abstraction will prevent the model from learning the actual image distribution.
This paper proposes a reversed image interaction generative adversarial network (RII-GAN),
which consists of four components: text encoder, reversed image interaction network (RIIN),
adaptive affine-based generator, and dual-channel feature alignment discriminator (DFAD).
RIIN indirectly introduces the actual image distribution into the generation network, thus
overcoming the problem that the network lacks the learning of the actual image feature man-
ifold structure and generating the distribution of text-matching images. Each adaptive affine
block (AAB) in the proposed affine-based generator can adaptively enhance text information,
establishing an updated relation between original independent fusion blocks and the image
feature. Moreover, this study designs a DFAD to capture important feature information of
images and text in two channels. Such a dual-channel backbone improves semantic consis-
tency by utilizing a particular synchronized bi-modal information extraction structure. We
have performed experiments on publicly available datasets to prove the effectiveness of our
model.
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1 Introduction

Text-to-image (T2I) synthesis is an essential task involving natural language processing
and computer vision, which aims to generate semantic consistent images from given text
descriptions. Most existing T2I frameworks utilize generative adversarial network (GAN)
[5] to synthesize images. Although it has been widely recognized for generating visually
realistic images, the T2I model based on GAN still faces some challenges.
Firstly, the training instability of GAN leads to the mode collapse and the lack of diversity
of generated images. To address the issues above, recent approaches have developed stacked
GANs to generate multi-scale images in a low-to-high resolution manner to supervise image
synthesis, such as AttnGAN [32], DM-GAN [41], and SD-GAN [35], etc. These methods
have been proven effective in synthesizing high-resolution images and preventing model
collapse. However, based on a multi-stage structure, each generator refines the previous
stage’s results by improving the image resolution and enriching more details. Hence, the
final output depends heavily on the image generated in the initial step. To this end, Tao et al.
[29] explored a simplified single-stage end-to-end generative model to optimize the training
trajectory of GANs.

However, efficiently aligning features between image and text presents a significant chal-
lenge. Some methods, such as MirrorGAN [19], SuperGAN [3], etc., utilize the extra inverse
inference model to caption generated images. This architecture enhances the generator’s
capacity to generate semantically consistent images by effectively capturing visual-textual
consistency information throughout training. Although this strategy is straightforward, it has
certain drawbacks. Notably, it necessitates the pre-training of the image-to-text (I2T) model
due to its significant size and complexity, making it challenging to train compared to some
end-to-end models.
Another challenge is effectively implementing cross-model transformation in the case of a
large semantic gap between text and image domains. Recently, some researchers have con-
sidered two strategies, cross-model attention [32] and affine transformation [29], to alleviate
this problem. For the former, cross-modal attention calculation usually occurs between the
word embedding and the current layer feature map. Therefore, expensive computing costs
hinder themodel from generating higher-resolution images and performingmulti-scale depth
fusion. For the latter, the affine transformation is a conditional batch normalization (CBN)
[30] layer, which was first introduced in the T2I task of SD-GAN [35]. However, it did not
perform multi-scale deep fusion due to the limitations of the stacked network architecture.
Based on their work, Tao et al. [29] used affine transformation from sentence embedding to
image to achieve multi-scale depth fusion, in which each fusion module is merged indepen-
dently at different scales. As we know, too many independent modules will inevitably lead
to training conflicts. In addition, the fusion module may cause the problem of overlapping
or missing input text information because it does not accept the forward calculated features
from the generator and lacks self-adaptability when selecting input text information.
The last challenge is that if the T2I model lacks an understanding of the image feature
manifold structure, and only relies on the game between the generator and the discriminator
to learn the real image distribution, the T2I model may converge slowly.
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Fig. 1 Comparison between a convention GAN-based T2I (up) and the proposed RII-GAN (bottom)

This paper proposes a novel end-to-endGAN-basedT2Imodel called reversed image inter-
action GAN (RII-GAN), which has a single-stage generation structure. RII-GAN indirectly
introduces the authentic image feature manifold structure into the generator using feature
alignment techniques in the proposed reversed image interaction network (RIIN). Specifi-
cally, the architecture of this RIIN is equivalent to the reversed feature transformation of the
generator, and the feature alignment constraint conducts in the multi-scale. Figure 1 shows
the framework of the conventional GAN-based T2I network and the proposed RII-GAN
with the reversed network. RIIN is a symmetrical counterpart to the generator’s low-to-high
resolution hierarchical structure, which is both lightweight and adaptable. Discarding the
consuming strategy of feature alignment within the individual text or image domains, it
operates within the intermediate domains between text and image throughout the generation
process. This unique reversed interaction mechanism reduces the reliance of the generator
on text descriptions and provides it with a supplement pathway to access features of images
during training.Meanwhile, themutual optimization of the generator and RIIN, which begins
with a weaker capacity and progressively strengthens alongside the improvement of the gen-
erator and discriminator, adapts to the intermediate mixed domain and dynamically evolves
throughout the adversarial training process. Moreover, we propose a novel adaptive affine-
based generator composed of various adaptive affine blocks (AAB) at different resolutions
as text-image fusion blocks. AAB will enhance text information before the affine trans-
formation. It includes an adaptive block to adapt the input text embedding by driving the
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information exchange between the text feature information and the feature maps from the
current generator forward computation process to avoid overlapping and missing text infor-
mation. AAB further alleviates the problem of the semantic gap between text and image
domains by rebuilding the text embeddings. Finally, we correspondingly enhance the dis-
criminator structure to facilitate adversarial training for the generator that has strengthened
generation capability with the introduced reversed interactive scheme. Therefore, this study
proposes the dual-channel feature alignment discriminator (DFAD). It achieves simultaneous
refinement of text and image features through bi-modal feature extractions in two channels. It
guides the discriminator to extract semantically consistent bi-modal features through feature
alignment operations. Distinct from mainstream conditional discriminators that concatenate
features, our proposed DFAD significantly enhances the processing capability of bimodal
features. Consequently, it better aligns images and text features, substantially improving
semantic consistency.
The main contributions of this work are summarized as follows.

• Wepropose a reversed image interaction network to help the generator learn the authentic
image featuremanifold structure throughmulti-scaled feature alignment constraints. This
alleviates the reliance of the generator on input text description and provides an alternative
generation scheme for GAN-based multimodal generation tasks.

• We explore an adaptive affine-based (AAB) generator which designs an adaptive block
and establishes an adaptive updating scheme for text-image fusion.

• We propose a dual-channel feature alignment discriminator, which allows simultaneous
extraction of textual and visual features in each modality and implements an advanced
feature alignment strategy to improve semantic consistency.

2 RelatedWorks

2.1 GAN-Based Text-to-Image Synthesis

Reed et al. [22] first demonstrated that conditional GAN (cGAN) [15] can synthesize credible
images from text descriptions. To generate the 256 × 256 resolution images, Zhang et al.
[36] developed a stacked structure GAN (StackGAN) by several generator-discriminator
pairs. Xu et al. [32] extended it and introduced cross-modal spatial attention to calculating
the attention matrix for text-to-image fusion. Zhu et al. [41] explored a dynamic memory
scheme for improving T2I fusion process. Li et al. [10] introduced channel attention to
exploring the relationship between the image feature channel and word context vector. To
improve the semantic consistency between the generated images and text, Yin et al. [35], and
Tan et al. [27] utilized Siamese structures with contrastive learning loss to enhance semantic
consistency. MirrorGAN [19] leverages an additional inverse inference model to caption the
generated images, enhancing the generator’s ability to create semantically consistent images
by capturing visual-textual consistency. However, it requires pre-training of the I2T model.
Due to its substantial size and complexity, the method is relatively challenging in training and
potentially less efficient than end-to-end models. To improve the generation quality, Yang
et al. [33] explored the semantic common between different sentences describing the same
image by utilizing multiple single-sentence generation and multi-sentence discrimination
(SGMD) modules. Considering the properties of image complexity and text generality, Tan
et al. [28] designed a regularized GAN framework to distinguish the critical and unimportant
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information of generated images, making the networkmore inclined to focus on the necessary
semantic parts of the feature map.

Recently, some works have simplified the stack structure into a single generator-
discriminator pair. For example, Zhang et al. [38] chose the one-stage generative structure
as the backbone for XCM-GAN through five contrastive learning pairs between image, sen-
tence, and word embeddings. Tao et al. [29] also chose a single-stage GAN-based T2I model
to achieve text-image fusion. They employed sentence embedding as conditional input, mak-
ing fusion more effective. For making the model pay more attention to semantic focus areas,
inspired by [29], Liao et al. [12] introduced a weakly-supervised mask prediction for the
fusion module. In [11], Li et al. provided the image feature manifold structure directly to
the generator by a memory bank, which previously stores the authentic image feature maps.
Unlike them, the proposed RII-GAN improves the quality of generated images by exploit-
ing a combination of a simple single-stage generation structure and a new reversed image
interaction mechanism.

2.2 Text-to-Image Fusion

The early T2I model achieved text-to-image fusion by directly concatenating text and image
feature maps. Subsequently, some works such as AttnGAN [32] and StackGAN++ [37] used
the cross-modal attention mechanism to improve the fusion effect. However, the introduction
of an attention module inevitably increases computational consumption. To solve this prob-
lem, Yin et al. [35] introduced condition batch normalization (CBN) into text-image fusion.
It fuses text and image features by disentangling text embedding and performing the affine
transformation. Afterward, Tao et al. [29] proposed a deep fusion module, which achieves
an excellent result by adopting sentence embedding to achieve multi-scale fusion. Liao et
al. [12] used masks to pay more attention to the generation of crucial feature regions, thus
improving the fusion effect. Ye et al. [34] found that mutually independent fusion modules
conflict with each other during training. To address this issue, they use a bidirectional long
short-termmemory network (BiLSTM) [25] to establish a long-term dependency on the inde-
pendent fusion blocks, which helps to reduce the difficulty of model training. Our framework
introduces an adaptive affine transformation, which also provides a solution to achieve long-
term dependency of fusion blocks while implementing textual information augmentation by
adaptively considering the feature maps computed forward by the current generator.

2.3 Feature Alignment in Text and Image

Image-text and image-image feature alignment schemes are the research focus of T2I genera-
tion tasks. Xu et al. [32] utilized BiLSTM [25] and Inception-v3 model [26] to build the deep
attentional multimodal similarity model (DAMSM), which is applied to vary text embedding
and image features to the same dimension and perform feature alignment to improve the
image-text consistency. To reduce the randomness of the generated images, Li et al. [10]
developed perceptual loss to align the features of the generated and authentic images. Yin
et al. [35] found that the T2I model based on GAN is challenging to distinguish the subtle
differences between each representation of the same image. Therefore, they use Siamese
structure to align different generated images with corresponding text descriptions but the
same reference object. Zhang et al. [38] improved their work using five pairs of contrastive
learning. Afterward, Tan et al. [28] argued that the crucial to generating high-quality images
is whether the generator can identify critical features in the forward calculation process.
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Fig. 2 The framework of the proposed RII-GAN consists of four modules: text encoder, adaptive affine-based
generator, reversed image interaction network and dual-channel feature alignment discriminator

Therefore, they used the semantic disentangling module (SDM) to disentangle the generated
foreground image features to perform feature alignment with real image features.We propose
a novel RIIN for multi-scale image feature alignment with the generator. It can provide rich
image distribution information to the generator while enhancing semantic consistency and
mitigating mode collapse.

3 Methodology

The proposed reverse interaction scheme with RIIN mutual constraints and optimiza-
tion with the generator greatly enhance the generation ability of this network. To facilitate
adversarial training of the enhanced generator, we correspondingly design a more powerful
discriminator. This study adopts a single-stage generative structure as the basic framework
illustrated in Fig. 2, which contains a text encoder, an adaptive affine-based generator, a
dual-channel feature alignment discriminator, and a reversed image interaction network.
Text encoder is a pre-trained BiLSTM [25] for text representation learning, which is respon-
sible for extracting sentence vectors. The text encoder is a pre-trained BiLSTM [25] for text
representation learning, responsible for extracting sentence vectors. It is trained with the help
of DAMSM [32]. The DAMSM module maps images and sentences to a shared semantic
space, measuring image-text similarity at an identical dimension. This method enhances the
precision of the alignment process between the BiLSTM and the generated image features
during training. As for the generator, we select six UP Blocks and 1 UP Block0 for obtaining
256×256 images. Each UP Block contains two AABs, which will be introduced in Sect. 3.2.
The UP Block0 accepts the noise vector sampled from the normal distribution. The proposed
RIIN contains five Down Blocks. It reversely transmits the feature information of the actual
image to the generator through feature alignment of the inverse transformed feature map,
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thus avoiding model collapse. The proposed DFAD conducted adversarial training with the
generator and RIIN.

3.1 Reversed Image Interaction Network: RIIN

The optimization goal of GAN is to achieve the Nash equilibrium of the generator and
discriminator, which usually leads to mode collapse due to unstable training. Although some
methods [1, 2, 20] attempt to improve the stability of GAN training, few reports focus on
modifying network architecture. To maximize the prior knowledge of text-image training
pairs and let T2I models eliminate the dilemma that lacks the learning opportunities of
image feature manifold structure, we propose the reversed image interaction network in
this work. This study has changed the basic structure of the generator-discriminator pair in
traditional GAN by embedding the proposed RIIN so that the RIIN can indirectly provide
actual image prior knowledge. RIIN incorporates a custom-designed convolutional network,
which synchronously shapes with the generator’s output during the forward computation
process. This unique feature allows modification of the output value of the intermediate
featuremap via affine transformation. The alignment feature in ourmodel is domain-agnostic,
focusing instead on the intermediate domains between text and image throughout the image
generation process. RIINwill update the generator by reversed transformation for cooperation
with theGANmechanism. Thus, during the training process, RIIN can provide a stable image
manifold structure based on the capabilities of the improved generator and discriminator. If
the effect of RIIN is only to provide image feature manifolds, pre-training models with
fixed parameters migrated from some large datasets, such as ResNet-101 [6], ViT-L/16 [4],
can improve the ability to extract image feature manifolds at the early stage of training.
However, the large pre-trained model is built on a single image modality. If the generation
network features are forced to align with those of the pre-trained model, the results may not
be satisfactory. Since the T2I model generator involves cross-modal transformation, there
must be an intermediate domain in the transformation process from the text domain to the
image domain. The intermediate domain is a potential spatial domain with text and image
manifolds but does not favor either side. In the training stage, the intermediate domain cannot
be controlled through external supervision. The intermediate domain of T2I generation is
part of the latent space learned by GAN. This is the main reason many works use the GAN
mechanism for implicit learning of image distributions. Monitoring the learning results of
the intermediate domain is challenging because we need valid labels and metrics. Therefore,
traditional GANs are prone to mode collapse, gradient disappearance, etc. Fortunately, in
the training phase, we can easily access three information sources related to the intermediate
domain: random noise distribution, text distribution, and actual image distribution. With the
help of theGANmechanism,we can obtainweakly-supervised labels from the proposedRIIN
for intermediate domain learning by effectively using these three information sources. We
develop the CBNs-basedAffine Block in RIIN as shown in Fig. 2. It aims tomake the network
adaptively close to the intermediate domain representation and provide image information
of feature maps from large to small. Moreover, this is a cross-mode task, the information
contained in the generator’s feature map at different resolutions should be different. A larger
feature map (128×128) carries more image information. Correspondingly, a smaller feature
map (8 × 8) takes more text information and noise distribution. The generator and RIIN are
mutually constrained and optimized for each other.

In the proposed RIIN, the actual image Î(256 × 256) is sent to a convolution layer to
obtain a 256×256 feature map h0 = conv( Î ). h0 will then be conveyed to five Down Blocks
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in turn. To quickly approach the intermediate domain features in the generator and make
better use of the real image prior, as shown in the lower right corner of Fig. 2, each Down
Block has four inputs: the output feature hr from the upper Down Block, the real image

ˆIM×M , the sentence vector s, and the noise distribution z. Because we want to approach
the implicit space with text feature, image feature, and input random noise distribution, this
study considers incorporating all these three information source feature components and one
upper-level feature into Down Block. The affine layer is a CBN framework inspired by [29],
which takes the sentence vector s as input and fuses the textual information into the feature
map. Several parameters of CBN are defined as follows.

γr = MLP1(s, z), βr = MLP2(s, z), ĥr = γr × h′
r + βr , (1)

where γr ∈ R
N×Cin is the channel-wise scaling parameter, βr ∈ R

N×Cin is the shifting
parameter. h′

r ∈ R
N×Cin×H×W and ĥr ∈ R

N×Cin×H×W are the input and output of the
affine layer. ĥr will be used to concatenate with the real image feature map to obtain the final
DownBlock output feature hr ∈ R

N×Cout×H×W . The dimensions of RIIN output features are
respectively 8×8, 32×32 and 128×128, and these features will alignwith generator features
of the same size. The feature alignment loss computes themean square error between features
for shortening the feature distance. This loss is used to establish a bi-directional constraint
between the generator and RIIN, which is defined by

LG f = ‖h8×8
r − h8×8

g ‖2 + λ1‖h32×32
r − h32×32

g ‖2 + λ2‖h128×128
r − h128×128

g ‖2, (2)

where hM×M
r and hM×M

g represent the M × M feature map of the RIIN and the generator,
respectively. ‖ · ‖2 represents the mean square error loss. Later experiments will discuss the
impact of two hyper-parameters λ1 and λ2.

3.2 Adaptive Affine-Based Generator

According to [34], the isolated fusionmodules conflictwith each other, increasing the training
difficulty. Therefore, this study designs an adaptive affine-based generator consisting of six
UP Blocks and one UP Block0. We developed two AABs for each UP Block. When the
proposed adaptive affine-based generator performs forward computation, the text embedding
will be updated by the Adaptive Block in the UP Block (Fig. 2), and input into the subsequent
affine layers. Figure 3 shows the architecture of Adaptive Block. This adaptive structure links
isolated affine layers to the network backbone. It provides the affine transformation with the
path to obtain the current layer feature and establishes long-termdependence on other network
modules to reduce the training difficulty. The information enhancement of the AAB is mainly
completed in the Adaptive Block. As shown in Fig. 3, the Adaptive Block has two inputs:
the current layer feature map h

′M×M
g and the sentence vector s. The convolution kernel size

is the same as the dimension of the feature map. h
′1
g ∈ R

N×100 is the depth-wise convolution

transformation output. The semantic condition scon ∈ R
N×356 is the result of concatenation

between h
′1
g and s, which will convey into the multilayer perceptron (MLP). We use Tanh as

the final activation function to compute an attention map within values in (-1, 1). Finally, we
adopt a residual structure to acquire the adaptive information-enhancing sentence vector s′
using

s′ = s × sattn + s. (3)
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g through depth-
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g , the attention map sattn of sentence

vector s is obtained. The block utilizes sattn to acquire information-enhancing sentence vector s′

s′ then is used to conduct the affine transformation. The channel-wise scaling parameter
γg ∈ R

N×Cin and the shifting parameter βg ∈ R
N×Cin are defined as follows

γg = MLP1(s′, z), βg = MLP2(s′, z), ĥg = γg × h′
g + βg (4)

where h′
g ∈ R

N×Cin×H×W and ĥg ∈ R
N×Cin×H×W are the input and output of affine layer,

respectively.

3.3 Dual-Channel Feature Alignment Discriminator: DFAD

This study proposes a dual-channel feature alignment discriminator to enhance the semantic
consistency between generated images and text descriptions. Since the major role of the
discriminator in theT2I task is to capture the featurematching degree between the information
of text and image feature map, the model should perform internal unwrapping and alignment
operations on image and text features. The problem of extracting the matching information
of two modes should be related. For example, extracting matched text information with
fixed image features inevitably introduces the independent semantic part (redundant data) of
image features. And extracting image-related features in the case of fixed text embedding
will also have similar problems. Therefore, the extraction of matching information of the two
modes should be carried out jointly to consider each other. Yin et al. [35] utilized Siamese
structure and contrastive loss to forcibly improve the matching degree of image feature and
text embedding features. Their strategy consumed enormous computing resources. Therefore,
this study designs a new discriminator framework to improve the disentangling capabilities
of the bi-modal information embedding of image and text. In the proposed discriminator,
we need image and text feature information that can match each other. Different objects
need to match different key information, which leads to the discriminator in the feature
disentangling obtain some unmatched features if without feature selecting performance. So,
feature alignment is required to guide feature extraction. Each channel of the dual-channel
consists of the disentangling feature of one mode (text/image) and the original feature of the
other (image/text). To improve the ability of the model to select correctly matched text and
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Fig. 4 The architecture of the proposed DFAD. h8×8
d_text is the concatenation of raw expanded sentence embed-

ding S8×8 and disentangling image feature ĥ8×8
d_image . h

8×8
d_image is the concatenation of raw image feature P

and disentangling expanded sentence embedding ĥ8×8
d_text . h

8×8
d_image and h

8×8
d_text are delivered to the Residual

Down block to align the dual-channel features behind

image features, we perform feature alignment constraint operations on the final disentangling
fused features in two channels, as shown in Fig. 4.

The structure of the proposed DFAD is shown in Fig. 4. Firstly, one obtains the initial
image feature map P through a series of Residual Down blocks. The P and the extended
sentence embedding S8×8 are concatenated and sent respectively to themultilayer perceptron
of two different channels (MPL1 andMPL2) to obtain the upper channel’s sentence attention
map MS and the lower channel’s image spatial attention map MI . We utilize MS and MI to
obtain two disentangling feature maps ĥ8×8

d_image and ĥ8×8
d_text using

MS = MLP1(h8×8
d_in), MI = MLP2(h8×8

d_in)

ĥ8×8
d_image = MS × S8×8, ĥ8×8

d_text = MI × P
(5)

Then, we respectively send the concatenation between ĥ8×8
d_image and S8×8, ĥ8×8

d_text and P to

two different residual blocks to obtain the feature map h4×4
d_ f1

and h4×4
d_ f2

. These feature maps
are used to align features. This study uses the mean square error loss LD f to represent the
feature distance.

LD f =
∥
∥
∥h4×4

d_ f1
− h4×4

d_ f2

∥
∥
∥
2

(6)

Since the discriminator adopts a dual-channel structure, the result of the forward computation
is the average of the dual-channel output, as shown in Fig. 4. This study uses the adversarial
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hinge loss LDadv
[13] and MA-GP loss LDMA−GP [29] for the proposed discriminator.

LDadv
= − E Î∼Pr

[min(0,−1 + D(G( Î , s)))] − EG(z)∼Pg [min(0,−1 − D(G(z), s))]
− E Î∼Pmis

[min(0,−1 − D( Î , s))] (7)

LDMA−GP = E Î∼Pr
[(||∇ Î D( Î , s)||2 + ||∇s D( Î , s)||2)p] (8)

Generator adversarial loss LGadv
is the cross-entropy loss defined by

LGadv
= −EG(z)∼Pg [D(G(z), s)] (9)

Finally, we obtain the loss functions of discriminator, generator, and RIIN as follows:

LD = LDadv
+ LDMA−GP + LD f (10)

LG = LGadv
+ LG f , LRI I N = LG . (11)

To better understand the training process, we present the implementation details of the pro-
posed RII-GAN framework with the following pseudo-code.

Algorithm 1 Implementation details of RII-GAN.

1: Input: Text-image pairs {(t(1), Î (1)), (t(2), Î (2)), ..., (t(m), Î (m))};
2: Input: Noise prior: {z(1), z(2), ..., z(n)};
3: Initialize: Affine-based generator G(·), dual-channel feature alignment discriminator D(·), and reversed

image interaction network RIIN(·);
4: Prepare pre-trained text encoder BiLSTM;
5: repeat
6: Load one batch: z, t and Î ;
7: Obtain sentence vectors: s = BiLSTM(t);
8: Determine attention map: sattn = MLP(s);
9: Adaptive sentence vectors: s′ = s × sattn + s;
10: Get scaling and shifting parameters: γg =MLP1(s′, z), βg =MLP2(s′, z);
11: Intermediate generator feature map: ĥg = γg × h′

g + βg ;
12: Generate fake images and resolution-specific feature maps:

I , h8×8
g , h32×32

g , h128×128
g = G(ĥg);

13: Propagate through RIIN for feature maps:

h8×8
r , h32×32

r , h128×128
r = RIIN(z, Î , s);

14: Generate bimodal feature maps: h8×8
d_image , h

8×8
d_text using (5);

15: Determine alignment loss: LD f =
∥
∥
∥h4×4

d_ f1
− h4×4

d_ f2

∥
∥
∥
2
;

16: Compute discriminator loss using (7), (8): LD = LDadv
+ LDMA−GP + LD f ;

17: Optimize D(·) with gradients from LD ;
18: Compute feature alignment loss:

LG f = ‖h8×8
r − h8×8

g ‖2 + λ1‖h32×32
r − h32×32

g ‖2 + λ2‖h128×128
r − h128×128

g ‖2;

19: Compute generator loss using (9): LG = LGadv
+ LG f ;

20: Update G(·), RIIN(·) with gradients from LG .
21: until iter times
22: Return updated weights: D(·), G(·), RIIN(·).
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4 Experimental Results

In this section, we first introduce two benchmark datasets, evaluation metrics, and imple-
mentation details. Then, we conducted some experiments to compare the proposed RII-GAN
with some SOTA GAN-based T2I algorithms, including PCCM-GAN [18], DF-GAN [29],
DM-GAN [41],DTGAN [39], SAM-GAN [16],MirrorGAN [19],DR-GAN [28],DiverGAN
[40], KD-GAN [17], SSA-GAN [12], DAE-GAN [23], AttnGAN [32], and StackGAN++
[37]. Section4.4 and Sect. 4.9 discuss the parameter selection and a series of ablation studies.

4.1 Datasets

We conduct all experiments on two standard T2I datasets: CUB-Bird [31] and MS-COCO
[14]. The former has 2,933 test birds (50 categories) and 8,855 training birds (150 categories).
Each bird has ten English sentences to describe the fine-grained visual scenes. The latter
consists of 82,783 training images and 40,504 test images. Each image has five sentence
annotations. Comparedwith CUB-Bird dataset, images inMS-COCOpresent complex visual
scenes, which make the T2I generation tasks more challenging.

4.2 EvaluationMetrics

We use three broadly utilized metrics CLIPScore (CS) [7], Inception Score (IS) [24], and
Fréchet Inception Distance (FID) [8] to quantify the performance of all approaches in terms
of image-text alignment and image quality.

Image-text alignment: CS adopts a pre-trained CLIP model [21] to map image and text
into the same feature space and calculates the cosine similarity between the text feature and
image feature. A larger CS indicates that the generated image has a more significant semantic
similarity to the text.

Image quality: IS evaluates image quality by calculating KL divergence betweenmarginal
distribution (authentic image) and conditional distribution (generated image). The larger IS
represents that the generated image is high quality in authenticity and diversity. FID is a
metric used to measure the distribution consistency between generated and authentic images.
A lower FID means the generated image is close to the authentic image.

4.3 Implementation Details

Our proposedmodelRII-GAN is implemented using the PyTorch toolbox. Themodel training
consists of two distinct phases. In the initial phase, the two independent BiLSTMs [21]
are trained as text encoders, leveraging the DAMSM approach for computing image-text
similarity [2]. Specifically, we employDAMSM to train a pair of text and image encoders that
can alignwith each other, thereby obtaining an efficient text encoder. Each BiLSTM is trained
using CUB-Bird and MS-COCO datasets on a single RTX 3090 GPU. The BiLSTM outputs
global sentence vectors with 256 dimensions used as text embeddings for the subsequent
generator, RIIN, and the discriminator. In the second phase, we freeze the text encoder and
train the GAN. We assign a batch size of 32 for both CUB-Bird and MS-COCO datasets.
The generator and RIIN in our framework are simultaneously trained using Adam optimizer
[9], with parameters β1 and β2 set to 0.5 and 0.999, respectively. The optimizer is initiated
with a learning rate 2e − 4, which starts to linearly decays over the final one-third of the
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Fig. 5 FID metrics of our RII-GAN under different λ1 and λ2 on CUB-Bird dataset in the last 200 training
epochs (total of 600 training epochs). The horizontal axis denotes the training epochs. The first row evaluates
the effect of λ1 when λ2 is fixed as 3, and the second row investigates the impact of λ2 when λ1 is fixed as 2;
i FID for λ1 = 2, λ2 = 3; j the best and average FID (λ2 = 3); k the best and average FID (λ1 = 2)

training epochs approaching 5e − 5. In parallel, the discriminator also employs the Adam
optimizer with β1 and β2 set to 0.5 and 0.999, respectively and a fixed learning rate of 4e−4.
Throughout the second phase, RIIN training status is synchronized with the generator and
alternately trained with the discriminator. The hyperparameters λ1 and λ2 are respectively
set to 2 and 3. The subsequent experimental sections present a comprehensive discussion
of the choice of these parameters. The model undergoes training for 600 epochs on CUB-
Bird dataset and 200 on MS-COCO dataset. The image generation process only retains the
generator component during the testing phase.

4.4 Parametric Sensitivity Analysis

In this study, λ1 and λ2 are two important hyper-parameters in the feature alignment loss
LG f of the generator and RIIN. According to (2), these parameters will guide the generator
and RIIN to pay more attention to the feature corresponding to the larger parameter. Figure 5
shows the FID scores in the last 200 training epochs on CUB-Bird dataset with different
λ1 and λ2. The first row evaluates the effect of λ1 when λ2 is fixed as 3, and the second
row investigates the impact of λ2 when λ1 is fixed as 2. The best FID score with different
parameters is marked with red numerals. Empirically, we found from the first and the second
rows of Fig. 5 that when λ1 = 1, 1.5, 2.5, 3(λ2 = 3) or λ2 = 2, 2.5, 3.5, 4(λ1 = 2), the
FID scores are unstable and fluctuates obviously with the increase of epochs. Figure 5j and
k summarize the optimal and average FID scores obtained in the last 200 training epochs
when λ1 and λ2 take different values. We observe that when λ1 = 2, λ2 = 3, our model’s
average, and optimal FID scores reach the bottom, indicating that the network reaches a local
minimum. As shown in Fig. 5i, taking λ1 = 2, λ2 = 3, the model obtains the minimum FID
score under relative stability, especially in the last 100 epochs. Therefore, parameters λ1 and
λ2 are set to 2 and 3 in all experiments.

123



11 Page 14 of 24 H. Yuan et al.

Table 1 Quantitative comparison of different models on CUB-Bird and MS-COCO datasets

Methods CUB-Bird MS-COCO

FID↓ IS↑ CS↑ FID↓ CS↑
AttnGAN (CVPR’18) 23.98 4.26±.03 70.83 35.49 52.58

StackGAN++ (TPAMI’18) 15.30 4.04±.06 – 81.59 –

MirrorGAN (CVPR’19) 18.34 4.56±.05 – 34.71 –

DM-GAN (CVPR’19) 16.09 4.75±.07 71.91 32.64 53.23

PCCM-GAN (Neuro’21) 22.15 4.65±.20 – 33.59 –

SAM-GAN (Neural Network’21) 20.49 4.61±.03 – 33.41 –

DTGAN (IJCNN’21) 16.35 4.88±.03 – 23.61 –

DAE-GAN (ICCV’21) 15.29 4.42±.04 71.8 28.12 54.04

KD-GAN (TMM’21) 13.89 4.90±.06 – 23.92 –

SSA-GAN (CVPR’22) 15.61 5.17±.08 – 19.37 –

DR-GAN (TNNLS’22) 14.96 4.90±.05 – 27.8 –

DF-GAN (CVPR’22) 14.81 5.10±. – 70.63 19.32 61.91

DiverGAN (Neuro’22) 15.63 4.98±.06 – 20.52 –

RII-GAN (Ours) 12.94 5.41±.02 70.85 19.01 60.28

The italic values denotes the best result

4.5 Quantitative Results

Table 1 shows the quantitative results of our RII-GAN and several advanced T2I models on
CUB-Bird and MS-COCO datasets. The results of these T2I models on two datasets come
from their publicly available codes on the web. This table shows that our RII-GAN obtains
the third-highest CS, lower than the baseline DM-GAN. The DM-GAN achieves the best CS
(71.91), indicating better text-image consistencymaintenance onCUB-Bird dataset. Our RII-
GAN on CUB-Bird dataset achieves the lowest FID scores (12.94) and the highest IS (5.41).
These results show that the images generated by our RII-GAN are closer to the actual image
distribution in terms of maintaining image quality. On the large-scale MS-COCO dataset,
our RII-GAN also achieves competitive results. The statistics in the second last column in
Table 1 show that our RII-GAN achieves the lowest FID score of 19.01 among current state-
of-art methods, which indicates the ability to generate more realistic images. The CS of our
RII-GAN is much higher than that of AttnGAN, DM-GAN, and DAE-GAN and is almost on
the same level as the state-of-the-art DF-GAN. The score is relatively much better than the
CS scores in CUB-Bird dataset. It illustrates that our RII-GAN ismuch superior to AttnGAN,
DM-GAN, and DAE-GAN in terms of semantic consistency on large datasets with the help
of RIIN, AAB, and DFAD. Three metrics on both datasets demonstrate that our RII-GAN
can generate higher-quality images.

4.6 Qualitative Results

In this section, we visualized some synthesized images by our RII-GAN and three other
advanced models: AttnGAN [32], DM-GAN [41], and DF-GAN [29] on CUB-Bird and
MS-COCO datasets shown in Fig. 6. AttnGAN and DM-GAN are two classical multi-stage
generation methods, and DF-GAN and our RII-GAN are one-stage generation methods. The
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This bird has wings 

that are red and has 

a red body

The bird has long 

pointed beak, with 

white throat, black 

crown and black and 

white wingbars.

This bird is a beautiful 

green color with 

yellow on its tips of 

its wings.

The bird here has a 

white belly, white 

throat, but blue 

crown, blue throat 

and blue wings.

A brick building with 

many windows and a 

clock tower in the 

middle of the building.

A group of bulls 

walking down a road 

in a field.

A close up of several 

zebras grazing in a 

field.

A group of people that 

are wearing snow skis 

and holding poles.

Fig. 6 Visual comparisons on CUB-Bird (the first four column) andMS-COCO (the last four column) datasets

images in each column are generated by different approaches based on the scene’s text at the
top of each column. These text descriptions are randomly selected from datasets. According
to semantic consistency, our method captures more text detail descriptions. As shown in
Fig. 6, in the first column, our RII-GAN captures the “yellow on its tips of its wings” detail in
“green color with yellow on the tips of its wings” and reflects it in the generated image, which
fails in the other methods. In the third column, the generated images of AttnGAN, DMGAN,
and DF-GAN show a lot of overlap between the water scene and the bird body. By contrast,
the images generated by our RII-GAN method can reflect the details and colors of birds on
the lake. For a more challenging MS-COCO dataset, it can be observed that our RII-GAN
can still generate images of the complex scene, e.g., RII-GAN successfully focuses on the
“clock tower” keyword information. In contrast, AttnGAN, DMGAN, and DF-GAN only
generated objects with inaccurate shapes through the keyword “tower” (the fifth column). In
columns 6 and 7, the “bulls” and “zebras” are visible in our method but hard to recognize
in others. As shown in the 8th column, the proposed model better reflects the meaning of
the text, such as “a group of people”. Generally, these subjective visual comparison results
confirm the effectiveness of the proposed RII-GAN.

4.7 User Evaluation

Since there is no adequate convincing criterion to judge the consistency of image-text seman-
tics of the generated image, we conducted a human test shown in Fig. 7. The experiment
randomly selected 100 text descriptions from CUB-Bird dataset and then invited 30 volun-
teers to compare the results of our RII-GAN and two popular baselines AttnGAN [32] and
DF-GAN [29]. In this test, the user receives three images generated from three models and
a corresponding text description. Each user sorts these images according to realism and text
alignment. As summarized in Fig. 7, our RII-GAN achieved the highest ranking of 50.46%
and 63.08%, respectively, regarding text alignment and realism. The conclusion also shows
that our RII-GAN has obtained better approval in human perception.
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Fig. 7 Human evaluation on CUB-Bird dataset for text alignment and realism

Fig. 8 Visualization of feature alignment between generator (blue triangles) and our RIIN (orange circles) for
intermediate features during forward computation onCUB-Bird dataset, a 2Ddistribution of noise z ∼ N (0, 1)
and real images; b, c, and d are feature distributions with the scale of 128×128, 32×32, and 8×8, respectively

4.8 Performance Analysis

Visualization by t-SNE analysis. To investigate the feature distribution between the RIIN and
the proposed adaptive affine-based generator, we utilize the t-SNE algorithm to visualize the
feature alignment between the generator (blue triangles) and our RIIN (orange circles) on
CUB-Bird dataset. Figure 8a shows the two-dimensional distribution of noise z ∼ N (0, 1)
and real images before forward computing. Figures 8b, c, d show feature distributions of
different scales. We found that the feature distance between the generator and RIIN is large
in the initial stage. However, as the forward computing of RIIN gets deep into the reversed
image interaction process (from 128×128 to 8×8). The feature distributions of bothmodules
successfully converge on the same intermediate domain (see Figs. 8c, d).

Image diversity The randomness of the noise z controls the diversity of the generated
images. z is sampled from a Gaussian distribution N (0, 1). To explore the influence of z
on the generated images, we conducted control-variable experiments on the text input and
random noise z of our RII-GAN, as shown in Fig. 9. The random noise z is fixed at the same
level. The sentence embedding of the input model varies by changing the specific words in
the text description. From the generation images shown in Fig. 9, we found when the color
attribute in the description changes, the images generated by RII-GAN can keep other ele-
ments except for the color unchanged (such as the bird’s pose and background information).
This result demonstrates the high controllability of our method for generating images. If the
text embedding is fixed under the same vertical line, changing the random sampling noise z,
we found that different z significantly impacts the object pose and background of the gen-
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Fig. 9 Generated samples using our RII-GAN by controlling different text inputs and randomly sampled noise
z

erated image. By varying the input z, the generator synthesizes bird images with different
angles and backgrounds. Therefore, the results of Fig. 9 demonstrate that our RII-GAN can
effectively disentangle the attribute of the input text description and control the modeling of
the sample relevant regions while not affecting the generation of non-relevant regions during
the disentanglement process. Figure 10 presents more examples of images synthesized by
the proposed RII-GAN on CUB-Bird dataset.

4.9 Ablation Study

Impact of RIIN, DFAD and AAB. The proposed framework comprises three main modules:
AAB, RIIN, and DFAD. We carried out ablation experiments to validate the impact of each
module in our RII-GAN onCUB-Bird dataset. The baseline model is a one-stage GAN-based
T2I network. The evaluation metrics are FID and IS summarized in Table 2. The role of AAB
is to use the current feature layer to adaptively provide a basis for updating text embedding.
Without (w/o) AAB, the FID and IS scores are 13.25 and 5.37±0.03 on CUB-Bird dataset
while the FID value on MS-COCO dataset is 21.23. It verifies that adding AAB into the
framework helps generate more realistic images. We also investigate our model with (w/)
AAB and RIIN, and without DFAD, we find the FID increases from 12.94 to 14.03, and IS
decays from 5.41 to 5.39 on CUB-Bird dataset and the FID increases from 19.01 to 20.03 on
MS-COCO dataset. It can be concluded from the table that the use of the dual-channel feature
alignment structure is beneficial for semantic extraction and matching of the discriminator.
Finally, we also evaluate the effect of the RIIN module. When RIIN is removed from our
model, the FID has significantly increased by 9.89%, and IS has decreased by 2.96% on
CUB-Bird dataset. On the other hand, the FID increased substantially by 11.68% on MS-
COCO dataset. The results in Table 2 reflect that the proposed RIIN has a more significant
impact on the performance of our framework than AAB and DFAD.
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Fig. 10 Images synthesized by the proposedRII-GANonCUB-Bird dataset by controlling different text inputs
and randomly sampled noise z

Table 2 The performance of
different components of our
model on CUB-Bird and
MS-COCO datasets, in which
“AAB” means adaptive affine
block, “DFAD” represents
dual-channel feature alignment
discriminator, and “RIIN” stands
for reversed image interaction
network

Components CUB-Bird MS-COCO
RIIN DFAD AAB FID↓ IS↑ FID↓
w/o w/o w/o 15.89 5.12±0.01 23.47

w/ w/ w/o 13.25 5.37±0.03 21.23

w/ w/o w/ 14.03 5.39±0.03 20.03

w/o w/ w/ 14.22 5.25±0.02 19.84

w/ w/ w/ 12.94 5.41±0.02 19.01

The best results are highlighted in italic

In Fig. 11, we show the generated images of the Baseline (Base.), RII-GAN w/o RIIN,
RII-GAN w/o DFAD, RII-GAN w/o AAB, and RII-GAN on CUB-Bird dataset ((a)-(e)) and
MS-COCO dataset((f)-(j)). As shown in Fig. 11, our RII-GAN performs the best in image
generation quality and semantic consistency, which is more evident on CUB-Bird dataset. By
ablating each module of AAB, DFAD, and RIIN, it can be observed that model w/o RIIN has
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Fig. 11 The figure provides a comparative study of image generation from identical text descriptions across
different models: the Baseline (Base.), RII-GAN without (w/o) RIIN, RII-GAN w/o DFAD, RII-GAN w/o
AAB, and the RII-GAN. Each column of images corresponds to a single text description, forming ten groups
labeled (a)–(j). Text descriptions displayed on the left (a-e) are from CUB-Bird dataset, and text descriptions
on the right (f-j) are from MS-COCO dataset

the greatest effect on the quality of the generated images (eg. (b), (c), (j) of Fig. 11). This is
because RIIN directly interacts with the generator to learn the real image feature manifold. In
detail, it reversely encodes the features of the real image, and they are alignedwith the features
forward encoded by the generator. Besides, AAB and DFAD also significantly contribute to
the model’s ability to generate images that are more realistic and richer in semantic detail
(“tomatoes, egg” in (g), “forks” in (i), and “lot” in (j) of Fig. 11) and object layout (“water
tower” in (h) of Fig. 11). Specifically, AAB is used to adaptively update the text embedding,
which facilitates the affine module to capture the text information acquired by the generator,
thereby enriching the semantic detail of themodel. Additionally, the dual-channel structure of
DFAD enhances the robustness of the discrimination process as it more effectively identifies
the critical matched semantics of text and image and dismisses redundant information.

The dual-channel feature selection scheme of DFAD. To further explore the impact of
dual-channel feature selection and feature alignment of DFAD on the generated images, we
conducted the experiments shown in Table 3.When the alignment structure of the discrimina-
tor is removed, the FID score increases from 12.94 to 15.92 with no change in IS. This result
demonstrates that the feature alignment process significantly affects the quality of generated
images. We also found that removing different modal feature channels (image channel/text
channel) has a significant impact on the model’s performance. As indicated in Table 3, the
FID score increases by 0.63, and the IS decreases by 0.11 (compared to our DFAD in the
first row) if only the image channel is removed. The FID score increases by 3.97, but the IS
increases by 0.06 after removing the text channel. The experimental results demonstrate that
the joint action of the dual-channel structure and feature alignment work together to achieve
better results.
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Table 3 Evaluate the
dual-channel feature selection
scheme in DFAD

Architectures FID ↓ IS ↑
DFAD 12.94 5.41±0.02

DFAD w/o Aligning 15.92 5.41±0.01

DFAD w/o Image Channel 13.57 5.30±0.03

DFAD w/o Text Channel 16.91 5.47±0.05

The best results are highlighted in italic

Table 4 Evaluation of
multi-scale feature alignment
mechanism in RIIN

Architecture FID ↓ IS ↑
RIIN 12.94 5.41±0.02

RIIN w/o 8 × 8 branch 13.12 5.37±0.04

RIIN w/o 32 × 32 branch 13.45 5.32±0.01

RIIN w/o 128 × 128 branch 14.10 5.27±0.01

The best results are highlighted in italic

Table 5 Evaluation of how the
performance is affected by
different numbers of AABs used
in the RII-GAN. The stages
indicate the number of UP Blocks
that contain AABs in the
proposed RII-GAN

Architecture Stages FID ↓ IS ↑
AAB 1 13.33 5.32±0.04

2 13.43 5.36±0.03

3 13.02 5.29±0.01

4 13.15 5.39±0.04

5 13.01 5.38±0.02

6 12.94 5.41±0.02

The best results are highlighted in italic

Multi-scale feature alignment mechanism of RIIN. In addition, we investigated the effect
of the multi-scale feature alignment scheme in RIIN. We carried out different combinations
of feature alignment and summarized the results in Table 4. Row 2-4 represents the absence
of a branch in RIIN. According to comparison results, we found that the effect of feature
alignment in terms of optimization capability can increase sequentiallywith increasing spatial
resolutions. This phenomenon demonstrates that the reversed interaction process in large
resolutions helps the network to generate more realistic images.

The configuration and quantities of AAB in UP Blocks. Then, as presented in Table 5,
we evaluate the impact of different numbers of AABs in RII-GAN on CUB-Bird dataset.
Column ‘stages’ in Table 5 corresponds to the number of UP Blocks with AABs, where in
this experiment, we comprise two AABs in each UP Block as shown in Fig. 2. UP Blocks
are accumulated in ascending resolution order and so does the AABs in each UP Block. The
generator needs 6 UP Blocks as images would need to be generated from 4×4 to 256×256.
Hence, we conduct experiments for stages 1 to 6. For example, the sub-experiment for stage 5
has only the first 5 UP Blocks containing AABs. It can be observed that as the quantity of UP
Blocks that contain AABs increases, there is a consequent decrease in the model’s FID and
an increase in the IS. This trend indicates a continuous enhancement in model performance
by an increased number of AABs up to the maximum, which proves its effectiveness.

Another experiment is conducted to evaluate the number of AABs in each UP Block of the
generator, as presented in Table 6. Controlling the total number of affine blocks as 4 in each
UP Block, which already ensures a sufficient text-to-image fusion [34] [29], we change the
number of AABs while appropriately allocating base affine blocks to figure out the optimal
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Table 6 Evaluation of how the
performance is affected by
different numbers of AABs used
in each UP Block

Architecture Numbers FID ↓ IS ↑
AAB 1 14.10 5.12±0.03

2 12.94 5.41±0.02

3 13.13 5.22±0.04

4 13.72 5.19±0.01

The best results are highlighted in italic

configuration. The experimentalmodels are i) oneAABwithin eachUPBlock,which consists
of four base affine blocks; ii) two AABs within each UP Block which consists of two base
affine blocks; iii) three AABs within each UP Block, where the first two AABs incorporate
single base affine block and the last AAB consists of two base affine blocks; iv) four AABs
within each UP Block, each incorporating one base affine. From the experimental results, we
observed that combining two AABs in each UP Block gives the optimal quantitative results
for both FID and IS. FID of the optimal configuration reaches 12.94, slightly lower than the
second-best 13.13 of three AABs, IS scores of the other three models are approximately at a
similar level, while the chosenmodel is relatively high, reaching 5.41. This is mainly because
this architecture potentially establishes a balance capable of preserving model depth while
avoiding excessive complexity in the network.

5 Limitation and Discussion

Our RII-GAN presents notable advantages over existing methods, but there are a few limi-
tations that may lead to bad cases. To reduce computational overhead, our approach favors
using global sentence embeddings by BiLSTM [21] over word embeddings for text-to-image
fusion. This, however, may hinder semantic disentangling during the generation of images
corresponding to complex scene text. Specifically, in generation tasks involving complex
scene text, there are several main causes of bad cases. Firstly, complex scene text descrip-
tions may consist of multiple discrete objects, actions, or concepts interacting in varied ways.
In this case, global embedding might not preserve the unique semantics of each component,
leading to images generated that are blurred or lacking precise representation. In addition,
despite theoretically mitigating the vanishing gradient problem, BiLSTM can also exhibit
a diminished capacity for capturing long-range dependencies in practice. Critical semantic
connections between words or phrases situated far apart in the text might not be sufficiently
integrated into the global sentence embedding. As shown in Fig. 12, we can see that for com-
plicated sentences, there may be some issues, such as the omitted words “orange beak” and
“table” (columns 1 and 4), blurred background (column 2), and artifacts (column 3). These
issues more often occur on MS-COCO, where sentences describe more complex scenes.
For further improvement, alternative strategies such as incorporating attention mechanisms
or transformer models that can more effectively handle complex semantics and long-range
dependencies could be applied.

The proposed auxiliary network module RIIN enhances the generator training path by
processing actual image distributions. It is designedwith a relatively basic architecture taking
into consideration computational resources. Amplifying RIIN would more precisely capture
and encode real image features at various resolutions. Thus, the network could better align
these features with the intermediate layer features of the generator, further integrating true
image feature information into the optimization process of the generator. Later studies would
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Fig. 12 Failure examples generated by our methods on CUB-Bird (the first two columns) and MS-COCO
datasets (the last two columns)

like to improve feature alignment and overall model performance and may focus on this
structure while it also requires increasing computational resources.

6 Conclusion

In this work, we propose a novel T2I framework to synthesize realistic images semantically
consistent with the given text description. The proposed RII-GAN is different from the pre-
vious method. It uses RIIN to optimize the training path of the generator and provides the
generator with a reverse image feature manifold structure so that the generator has more
opportunities to learn the actual image distribution. AAB modules in the proposed adaptive
affine-based generator establish a compelling connection between independent affine mod-
ules and improve the existing T2I affine transformation methods, which lack interaction with
the feature information of the generator. Moreover, we developed a DFAD to capture the
key-matching semantics of text embeddings and image features. The qualitative and quan-
titative analyses of two standard datasets demonstrate that our RII-GAN can generate more
semantic-related and diversified images. Future work may include two directions: (i) synthe-
size objects with complex scenes; (ii) cross-linguistic T2I synthesis based on the reversed
image interaction process.
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