
Neural Processing Letters (2024) 56:94
https://doi.org/10.1007/s11063-024-11499-y

New Insights on Bidirectional Associative Memory Neural
Networks with Leakage Delay Components and Time-Varying
Delays Using Sampled-Data Control

S. Ravi Chandra1,2 · S. Padmanabhan3 · V. Umesha4 ·M. Syed Ali5 ·
Grienggrai Rajchakit6 · Anuwat Jirawattanpanit7

Accepted: 18 November 2023 / Published online: 7 March 2024
© The Author(s) 2024

Abstract
The sampling data control of bidirectional associative memory (BAM) neural network with
leakage delay is considered in this article. The BAM model is viewed as a mixed delay
that combines a distributed delay, a discrete delay that varies over time, and a delay in the
leaking period. The sampling system is then converted to a continuous time-delay system
using an input delay method. In order to get adequate conditions in the form of linear matrix
inequalities(LMIs), we build a new Lyapunov-Krasovskii Functional (LKF) in conjunction
with the free weight matrix approach. Finally, a simulation results are given to show the
efficiency of the theoretical approach.

Keywords BAM neural networks · Leakage delay · Linear matrix inequality · Lyapunov
method · Sampled-data control

1 Introduction

A neural network is a processing device, whose design was inspired by the design and
functioning of human brain and their components. There is no idle memory containing
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data and programmed, but each neuron is programmed and continuously active. Neural
network has many applications. The most likely applications for the neural networks are (i)
Classification (ii) Association and (iii) Reasoning. One of the applications of neural networks
with time delays are unavoidable in many practical systems such as biology systems and
artificial neural networks [4–6]. Recently, the stability analysis of dynamical systems are
greatly focused and has become an emerging area of research due to the fact that it has most
successful applications such as image processing, optimization, pattern recognition and other
areas [7–9]. Various types of time-delay systems and delay dynamical networks have been
investigated, andmany significant results have been reported [10–15]. From the point of view
of nonlinear dynamics, the study of neural networks with delays is useful and important to
solve problems both theoretically and practically.

An extension of the unidirectional auto associator of Hopfield neural network is called
bidirectional associative memory (BAM) neural networks, which was first introduced by
kosko [16]. Then, BAM neural networks with delays have attracted considerable attention
and have been widely investigated. It is composed of neurons arranged in two layers: the
X-layer and the Y-layer. The neurons in one layer are fully interconnected to the neurons in
the other layer, while there are no interconnection among neurons in the same layer. Through
iterations of forward and backward propagation information flows between the two layers,
it performs a two-way associative search for stored bipolar vector pairs and generalize the
single-layer auto-associative Hebbian correlation to a two-layer pattern-matched hetero asso-
ciative circuits. Therefore, it possesses good applications in the field of pattern recognition
and artificial intelligence [17–21]. In addition, the addressable memories or patterns of BAM
neural networks can be stored with a two-way associative search. Accordingly, the BAM
neural network has been widely studied both in theory and applications. In practical appli-
cations, the BAM neural network has been successfully applied to image processing, pattern
recognition, automatic control, associative memory, parallel computation, and optimization
problems. Therefore, it is interesting and important to study the stability of BAM neural
network, which has been widely investigated [22–30].

Recently, Gopalsamy [31] initially introduced the delays in the ”forgetting” or leakage
terms, and some results have been obtained, (see for example [32–36] and the references cited
therein). Unfortunately, the delays in the leakage terms of neural networks in most literatures
listed above are constants, and few authors have considered the dynamics of BAM neural
networks with time-varying delays in the leakage terms [31]. Therefore, it is important and
interesting to further investigate the dynamical behaviors of the BAM neural networks with
time-varying leakage delays.

Up to now, various control approaches have been adopted to stabilize those instable sys-
tems. Controls such as dynamic feedback control, fuzzy logical control, impulsive control,
H∞ control, sliding mode control and sampled-data control are adopted by many authors
[37–42]. The sampled-data control deals with continuous system by sampling the data at
discrete time based on the computer, sensors, filters and network communication. Hence
it is more preferable to use digital controllers instead of analogue circuits. This drastically
reduces the amount of the transmitted information and improve the control efficiency. Com-
pared with continuous control, the sampled-data control is more efficient, secure and useful
[43–49]. In [50], the author considered the synchronization problem of coupled chaotic neu-
ral networks with time delay in the leakage term using sampled-data control. R. Sakthivel et
al. [36] established a state estimator for BAM neural networks with leakage delays with the
help of Lyapunov technique and LMI framework.
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Table 1 Comparison with existing results on BAM neural networks (BAMNNs)

BAMNNs [5] [17, 19] [18, 20, 21] [26, 27] [28] [38] This paper

Leakage delay × × × × × × √
Distributed delay × √ × × √ √ √
Sampled-data control

√ × × × × × √
LMIs approch

√ × × √ √ × √
Stabilization × × × × × √ √

However to the best of our knowledge, the sampled-data control design of BAM neu-
ral network with time delay in the leakage term has not been investigated until now. This
motivates our work.

The main contribution of this paper lies in three aspects:

(i). It is the first attempt to study the sampled-data control of delayedBAMneural networks.
An efficient approach is presented to deal with it.

(ii). Based on the Lyapunov-Krasovskii theory and LMI framework, a new set of sufficient
conditions is obtained to ensure that the dynamical system is globally asymptotically
stable.

(iii). It is worth pointing that a novel Lyapunov–Krasovskii functional (LKF) is constructed
with augmented terms

1∑

i=0

τ(3−i)

∫ 0

−τ(3−i)

∫ t

t+θ

[
x(s)

ẋ(s)

]T [
X(3−2i) Y(3−2i)

� Z(3−2i)

][
x(s)

ẋ(s)

]
dsdθ,

2∑

i=1

τ(2i−1)

∫ 0

−τ(2i−1)

∫ t

t+θ

[
y(s)

ẏ(s)

]T [
X(2i) Y(2i)

� Z(2i)

][
y(s)

ẏ(s)

]
dsdθ.

The main objective of this paper is to study the sampled-data control for bidirectional
associate memory neural networks with leakage delay components. By constructing suitable
triple integral LKF, by utilizing the free-weighting matrix method and reciprocal convex
method, a unified linear matrix inequality (LMI) approach is developed to establish sufficient
conditions for leakage BAM neural network is globally stable. Finally a numerical example
is given to illustrate the usefulness and effectiveness of the proposed method (Table 1).

Notations: Throughout the paper, we have used the standard notations in [36].

2 Problem description and Introductory

We investigated the sampled-data stabilization of a BAM neural networks with leaky delays.
The following BAM neural network with leaking delay components is considered:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ (1)
i (t) = −ai x

(1)
i (t − δ1) +

n∑
j=1

w
(1)
i j f̃ (1)

j (y(1)
j (t − τ1(t)))

+
n∑
j=1

w
(2)
i j

∫ t
t−τ1

f̃ (2)
j (y(1)

j (s))ds + J (1)
i ,

ẏ(1)
j (t) = −b j y

(1)
j (t − δ2) +

n∑
i=1

v
(1)
i j g̃(1)

i (x (1)
i (t − τ2(t)))

+
n∑

i=1
v

(2)
i j

∫ t
t−τ2

g̃(2)
i (x (1)

i (s))ds + J (2)
j .

(1)

Here x (1)
i (t) and y(1)

j (t) are the state variables representing the neuron’s of state at time t ,
respectively. ai > 0 and b j > 0 are constants, and signify the time scales for the relevant

network layers. w
(1)
i j , w

(2)
i j , v

(1)
i j and v

(2)
i j are the synaptic connection weights. The external

inputs are represented by J (1)
i and J (2)

j ; δ1 and δ2 are leakage delays; Time-varying delay

components are τ1(t) > 0 and τ2(t) > 0;Neuron activation functions f̃ (1)
j (·), f̃ (2)

j (·), g̃(1)
i (·)

and g̃(2)
i (·), τ1(t) > 0 and τ2(t) > 0 are differentiable, bounded and satisfies

0 ≤ τ1(t) ≤ τ1, τ̇1(t) ≤ μ1, 0 ≤ τ2(t) ≤ τ2, τ̇2(t) ≤ μ2, (2)

where τ1, τ2, δ1, δ2, μ1 and μ2 are positive constants.
Let (x (1)∗ , y(1)∗)T be an equilibrium point of equation (1). Then, (x (1)∗ , y(1)∗)T satisfies

the following equations:

⎧
⎪⎪⎨

⎪⎪⎩

0 = −ai x
(1)∗
i +

n∑
j=1

w
(1)
i j f̃ (1)

j (y(1)(1)
∗

j ) +
n∑
j=1

w
(2)
i j f̃ (2)

j y(1)∗
j + J (1)

i ,

0 = −b j y
(1)∗
j +

n∑
i=1

v
(1)
i j g̃(1)

i (x (1)∗
i ) +

n∑
i=1

v
(2)
i j g̃(2)

i x (1)∗
i + J (2)

j .

(3)

By shifting the equilibrium point (x (1)∗ , y(1)∗)T to the origin using transformation xi (t) =
x (1)
i (t) − x (1)∗

i , yi (t) = y(1)
i (t) − y(1)∗

i the system (1) can be written as:

{
ẋ(t) = −Ax(t − δ1) + W1 f1(y(t − τ1(t))) + W2

∫ t
t−τ1

f2(y(s))ds,

ẏ(t) = −By(t − δ2) + V1g1(x(t − τ2(t))) + V2
∫ t
t−τ2

g2(x(s))ds,
(4)

where A = diag{a1, ..., an} > 0, B = diag{b1, ..., bn} > 0, W1 = (w
(1)
i j )n×n ∈

Rn×n, W2 = (w
(2)
i j )n×n ∈ Rn×n, V1 = (v

(1)
i j )n×n ∈ Rn×n, V2 = (v

(2)
i j )n×n ∈

Rn×n, f1(y(t)) = f̃1(y(t) − y(1)∗), f2(y(t)) = f̃2(y(t) − y(1)∗), g1(x(t)) = g̃1(x(t) −
x (1)∗) and g2(x(t)) = g̃2(x(t) − x (1)∗) with f1(0) = f2(0) = g1(0) = g2(0) = 0.

Assumption (A). The neuron activation functions fki (·), gkj (·) in (4) are non-decreasing,
limited, and there exist constants F−

ki , F+
ki , G−

k j , G+
k j such that

F−
ki ≤ fki (α) − fki (β)

α − β
≤ F+

ki , i = 1, 2, ..,m,

G−
k j ≤ gkj (α) − gkj (β)

α − β
≤ G+

k j , j = 1, 2, .., n. (5)
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Here k = 1, 2 and α, β ∈ R are both equal to β. We define the following matrices for
ease of notation:

Fk1 = diag
{
F−
k1F

+
k1, F

−
k2F

+
k2, ..., F

−
km F

+
km

}
,

Fk2 = diag

{
F−
k1 + F+

k1

2
,
F−
k2 + F+

k2

2
, ...,

F−
km + F+

km

2

}
,

Gk1 = diag
{
G−

k1G
+
k1,G

−
k2G

+
k2, ...,G

−
knG

+
kn

}
,

Gk2 = diag

{
G−

k1 + G+
k1

2
,
G−

k2 + G+
k2

2
, ...,

G−
kn + G+

kn

2

}
.

The system (4) with control is given by
{

ẋ(t) = −Ax(t − δ1) + W1 f1(y(t − τ1(t))) + W2
∫ t
t−τ1

f2(y(s))ds + u(t),

ẏ(t) = −By(t − δ2) + V1g1(x(t − τ2(t))) + V2
∫ t
t−τ2

g2(x(s))ds + v(t),
(6)

where the output measurements are u(t) and v(t). We define the sampled-data control as:

u(t) = Kx(tk), v(t) = My(tk), (7)

where the sampled-data gain matrices are K,M ∈ Rn×n . The sample time point, tk , meets
the conditions 0 = t0 < t1, ..., < tk < ..., and lim

k→∞ tk = +∞. Additionally, there is a

positive constant τ3 such that tk+1 − tk ≤ τ3, ∀k ∈ N,. If τ3(t) = t − tk, for t ∈ [tk, tk+1),

then tk = t − τ3(t) with 0 ≤ τ3(t) ≤ τ3. The delayed BAM networks with leakage delay (6)
may be rebuilt as follows in accordance with the control law:
{

ẋ(t) = −Ax(t − δ1) + W1 f1(y(t − τ1(t))) + W2
∫ t
t−τ1

f2(y(s))ds + Kx(t − τ3(t)),

ẏ(t) = −By(t − δ2) + V1g1(x(t − τ2(t))) + V2
∫ t
t−τ2

g2(x(s))ds + My(t − τ3(t)).

(8)

We present the following lemmas, which will be employed in the main theorems.

Lemma 2.1 [51] If the following integrations are defined well, for every positive definite
matrix N > 0 and scalars β > α > 0, we have

− (α − β)

∫ α

β

eT (s)Ne(s)ds ≤ −
∫ α

β

eT (s)ds N
∫ α

β

e(s)ds,

− β2

2!
∫ 0

−β

∫ t

t+δ

eT (s)Ne(s)dsdδ ≤ −
( ∫ 0

β

∫ t

t+δ

e(s)dsdδ
)T

N
( ∫ 0

β

∫ t

t+δ

eT (s)dsdδ
)
.

Lemma 2.2 [52] For every constant matrix R ∈ Rn×n, R = RT > 0,, and ė : [−τM , 0] →
Rn, respectively. The integrations listed below are satisfy

− τM

∫ t

t−τM

ėT (s)Nė(s)dsdθ ≤
[

e(t)

e(t − τM )

]T [−R R

R −R

] [
e(t)

e(t − τM )

]
.

Lemma 2.3 [53] Let an open subset D of Rm have positive values for f1, f2, ..., fN : Rm 	→
R. When fi over D is reciprocally convex, it is satisfied that,

min
{αi |αi>0,

∑
i αi=1}

∑

i

1

αi
fi (t) =

∑

i

fi (t) + max
gi j (t)

∑

i 
= j

gi, j (t)
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subject to
{
gi, j (t) : Rm 	→ R, gi, j (t) � gi, j (t),

[
fi (t) gi, j (t)

gi, j (t) f j (t)

]
≥ 0

}
.

3 Main results

This section examines the system stability (8) and derives the necessary requirements while
maintaining system stability.

Theorem 3.1 Under Assumption (A), for given gain matrices K, M and scalars τ1, τ2, τ3,
δ1, δ2, μ1, and μ2, the equilibrium point of system (8) is stable if there exist matrices P > 0,

Q > 0, Pi > 0, (i = 1, 2, ..., 8), Q j > 0, R j > 0,

[
X j Y j

� Z j

]
> 0, positive-definite

diagonal matrices U j , J j , and any matrices

[
Mj N j

Hj Tj

]
, ( j = 1, 2, ..., 4), R̃1, R̃2, S1 and

S2 such that the following LMIs hold:
⎡

⎢⎢⎢⎢⎣

[
Xk Yk

� Zk

] [
Mk Nk

Hk Tk

]

�
[
Xk Yk

� Zk

]

⎤

⎥⎥⎥⎥⎦
> 0,

[
Rl R̃l

� Rl

]
> 0, k = 1, ..., 4, l = 1, 2, (9)

� =

⎡

⎢⎢⎢⎢⎣

[
�11 [0]11n×11n

� �22

]
[0]24n×24n

�
[

�33 [0]11n×11n

� �44

]

⎤

⎥⎥⎥⎥⎦
< 0, (10)

where

�11 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(1, 1) (1, 2) −S1A Q1 0 Q3 + S1K 0 G12 J1 S1W1 G22 J2 0 S1W2
� (2, 2) −S1A 0 0 S1K 0 0 S1W1 0 0 S1W2
� � −δ1P1 0 0 0 0 0 0 0 0 0
� � � (4, 4) Q1 0 0 0 G32 J3 0 0 0
� � � � (5, 5) 0 0 0 0 0 0 0
� � � � � −2Q3 Q3 0 0 0 0 0
� � � � � � (7, 7) 0 0 0 0 0
� � � � � � � −J1 0 0 0 0
� � � � � � � � −J3 0 0 0
� � � � � � � � � (10, 10) 0 0
� � � � � � � � � � −J4 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

�22 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−R4 0 0 0 0 0 0 0 0 0 0
� −X1 −Y1 −M1 −N1 0 0 0 0 0 0
� � −Z1 −H1 −T1 0 0 0 0 0 0
� � � −X1 −Y1 0 0 0 0 0 0
� � � � −Z1 0 0 0 0 0 0
� � � � � −R1 −R̃1 0 0 0 0
� � � � � � −R1 0 0 0 0
� � � � � � � −X3 −Y3 −M3 −N3
� � � � � � � � −Z3 −H3 −T3
� � � � � � � � � −X3 −Y3
� � � � � � � � � � −Z3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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�33 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(1, 1)∗ (1, 2)∗ −S2B Q2 0 Q4 + S2M 0 F12U1 S2V1 F22U2 0 S2V2
� (2, 2)∗ −S2B 0 0 S2M 0 0 S2V1 0 0 S2V2
� � −δ2P2 0 0 0 0 0 0 0 0 0
� � � (4, 4)∗ Q2 0 0 0 F32U3 0 0 0
� � � � (5, 5)∗ 0 0 0 0 0 0 0
� � � � � −2Q4 Q4 0 0 0 0 0
� � � � � � (7, 7)∗ 0 0 0 0 0
� � � � � � � −U1 0 0 0 0
� � � � � � � � −U3 0 0 0
� � � � � � � � � (10, 10)∗ 0 0
� � � � � � � � � � −U4 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

�44 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−R3 0 0 0 0 0 0 0 0 0 0
� −X2 −Y2 −M2 −N2 0 0 0 0 0 0
� � −Z2 −H2 −T2 0 0 0 0 0 0
� � � −X2 −Y2 0 0 0 0 0 0
� � � � −Z2 0 0 0 0 0 0
� � � � � −R2 −R̃2 0 0 0 0
� � � � � � −R2 0 0 0 0
� � � � � � � −X4 −Y4 −M4 −N4
� � � � � � � � −Z4 −H4 −T3
� � � � � � � � � −X4 −Y4
� � � � � � � � � � −Z4

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(1, 1) = δ1P1 + P3 + P5 + P7 − Q1 − Q3 + τ 22 X1 + τ 23 X3 − G11 J1 − G21 J2,

(1, 1)∗ = δ2P2 + P4 + P5 + P8 − Q2 − Q3 + τ 21 X2 + τ 23 X4 − F11U1 − F21U2,

(1, 2) = P + τ 22 Y1 + τ 23 Y3 − S1, (1, 2)∗ = Q + τ 21 Y2 + τ 23 Y4 − S2,

(2, 2) = τ 22 Q1 + τ 23 Q3 + τ 22 Z1 + τ 23 Z3 +
(

τ 22

2!
)2

R1 − S1 − ST1 ,

(2, 2)∗ = τ 21 Q2 + τ 23 Q4 + τ 21 Z2 + τ 23 Z4 +
(

τ 21

2!
)2

R2 − S2 − ST2 ,

(4, 4) = −(1 − μ2)P3 − 2Q1 − G31 J3 − G41 J4,

(4, 4)∗ = −(1 − μ1)P4 − 2Q2 − F31U3 − F41U4,

(5, 5) = −P5 − Q1, (7, 7) = −Q3 − P7, (10, 10) = −J2 + τ 22 R4,

(5, 5)∗ = −P6 − Q2, (7, 7)∗ = −Q4 − P8, (10, 10)∗ = −U2 + τ 21 R3,

Proof We construct the Lyapunov Krasovskii functional as:

V (xt , yt , t) =
7∑

i=1

Vi (xt , yt , t), (11)

where

V1(xt , yt , t) =xT (t)Px(t) + yT (t)Qy(t),

V2(xt , yt , t) =δ1

∫ t

t−δ1

xT (s)P1x(s)ds + δ2

∫ t

t−δ2

yT (s)P2y(s)ds,

V3(xt , yt , t) =
∫ t

t−τ2(t)
xT (s)P3x(s)ds +

∫ t

t−τ1(t)
yT (s)P4y(s)ds +

∫ t

t−τ2

xT (s)P5x(s)ds
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+
∫ t

t−τ1

yT (s)P6y(s)ds +
∫ t

t−τ3

xT (s)P7x(s)ds +
∫ t

t−τ3

yT (s)P8y(s)ds,

V4(xt , yt , t) =τ2

∫ 0

−τ2

∫ t

t+θ

ẋ T (s)Q1 ẋ(s)dsdθ + τ1

∫ 0

−τ1

∫ t

t+θ

ẏT (s)Q2 ẏ(s)dsdθ

+ τ3

∫ 0

−τ3

∫ t

t+θ

ẋ T (s)Q3 ẋ(s)dsdθ + τ3

∫ 0

−τ3

∫ t

t+θ

ẏT (s)Q4 ẏ(s)dsdθ,

V5(xt , yt , t) =
1∑

i=0

τ(3−i)

∫ 0

−τ(3−i)

∫ t

t+θ

[
x(s)

ẋ(s)

]T [
X(3−2i) Y(3−2i)

� Z(3−2i)

][
x(s)

ẋ(s)

]
dsdθ

+
2∑

i=1

τ(2i−1)

∫ 0

−τ(2i−1)

∫ t

t+θ

[
y(s)

ẏ(s)

]T [
X(2i) Y(2i)

� Z(2i)

][
y(s)

ẏ(s)

]
dsdθ,

V6(xt , yt , t) =τ 22

2!
∫ 0

−τ2

∫ 0

θ

∫ t

t+ϑ

ẋ T (s)R1 ẋ(s)dsdϑdθ

+ τ 21

2!
∫ 0

−τ1

∫ 0

θ

∫ t

t+ϑ

ẏT (s)R2 ẏ(s)dsdϑdθ,

V7(xt , yt , t) =τ1

∫ 0

−τ1

∫ t

t+θ

f T2 (y(s))R3 f2(y(s))dsdθ

+ τ2

∫ 0

−τ2

∫ t

t+θ

gT2 (x(s))R4g2(x(s))dsdθ.

We calculate the derivatives V̇i (xt , yt , t), i = 1, 2, ..., 7 along the trajectories of the system
(8) gives,

V̇1(xt , yt , t) =2xT (t)P ẋ(t) + 2yT (t)Qẏ(t), (12)
V̇2(xt , yt , t) =δ1[xT (t)P1x(t) − xT (t − δ1)P1x(t − δ1)] + δ2[yT (t)P2y(t) − yT (t − δ2)P2 y(t − δ2)], (13)
V̇3(xt , yt , t) ≤xT (t)[P3 + P5 + P7]x(t) + yT (t)[P4 + P6 + P8]y(t) − (1 − μ2)x

T (t − τ2(t))P3x(t − τ2(t))

− (1 − μ1)y
T (t − τ1(t))P4y(t − τ1(t)) − xT (t − τ2)P5x(t − τ2) − yT (t − τ1)P6y(t − τ1)

− xT (t − τ3)P7x(t − τ3) − yT (t − τ3)P8y(t − τ3), (14)

V̇4(xt , yt , t) =ẋ T (t)[τ 22 Q1 + τ 23 Q3]ẋ(t) + ẏT (t)[τ 21 Q2 + τ 23 Q4]ẏ(t) − τ2

∫ t

t−τ2

ẋ T (s)Q1 ẋ(s)ds

− τ1

∫ t

t−τ1

ẏT (s)Q2 ẏ(s)ds − τ3

∫ t

t−τ3

ẋ T (s)Q3 ẋ(s)ds − τ3

∫ t

t−τ3

ẏT (s)Q4 ẏ(s)ds, (15)

V̇5(xt , yt , t) =
1∑

i=0

τ 2(3−i)

⎡

⎣
x(t)

ẋ(t)

⎤

⎦
T ⎡

⎣
X(3−2i) Y(3−2i)

� Z(3−2i)

⎤

⎦

⎡

⎣
x(t)

ẋ(t)

⎤

⎦

+
2∑

i=1

τ 2(2i−1)

⎡

⎣
y(t)

ẏ(t)

⎤

⎦
T ⎡

⎣
X(2i) Y(2i)

� Z(2i)

⎤

⎦

⎡

⎣
y(t)

ẏ(t)

⎤

⎦

−
1∑

i=0

τ(3−i)

∫ t

t−τ(3−i)

⎡

⎣
x(s)

ẋ(s)

⎤

⎦
T ⎡

⎣
X(3−2i) Y(3−2i)

� Z(3−2i)

⎤

⎦

⎡

⎣
x(s)

ẋ(s)

⎤

⎦ ds
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−
2∑

i=1

τ(2i−1)

∫ t

t−τ(2i−1)

⎡

⎣
y(s)

ẏ(s)

⎤

⎦
T ⎡

⎣
X(2i) Y(2i)

� Z(2i)

⎤

⎦

⎡

⎣
y(s)

ẏ(s),

⎤

⎦ ds (16)

V̇6(xt , yt , t) =
(

τ 22

2!
)2

ẋ T (t)R1 ẋ(t) +
(

τ 21

2!
)2

ẏT (t)R2 ẏ(t) − τ 22

2!
∫ 0

−τ1

∫ t

t+θ

ẋ T (s)R1 ẋ(s)dsdθ

− τ 21

2!
∫ 0

−τ1

∫ t

t+θ

ẏT (s)R2 ẏ(s)dsdθ, (17)

V̇7(xt , yt , t) = f T2 (y(t))τ 21 R3 f2(y(t)) + gT2 (x(t))τ 22 R4g2(x(t))

− τ1

∫ t

t−τ1

f T2 (y(s))R3 f2(y(s))ds − τ2

∫ t

t−τ2

gT2 (x(s))R4g2(x(s))ds, (18)

The integral terms in (15) can be expressed as following

−τ2

∫ t

t−τ2

ẋ T (s)Q1 ẋ(s)ds = − τ2

∫ t−τ2(t)

t−τ2

ẋ T (s)Q1 ẋ(s)ds − τ2

∫ t

t−τ2(t)
ẋ T (s)Q1 ẋ(s)ds,

−τ1

∫ t

t−τ1

ẏT (s)Q2 ẏ(s)ds = − τ1

∫ t−τ1(t)

t−τ1

ẏT (s)Q2 ẏ(s)ds − τ1

∫ t

t−τ1(t)
ẏT (s)Q2 ẏ(s)ds,

−τ3

∫ t

t−τ3

ẋ T (s)Q3 ẋ(s)ds = − τ3

∫ t−τ3(t)

t−τ3

ẋ T (s)Q3 ẋ(s)ds − τ3

∫ t

t−τ3(t)
ẋ T (s)Q3 ẋ(s)ds,

−τ3

∫ t

t−τ3

ẏT (s)Q4 ẏ(s)ds = − τ3

∫ t−τ3(t)

t−τ2

ẏT (s)Q4 ẏ(s)ds − τ3

∫ t

t−τ3(t)
ẏT (s)Q4 ẏ(s)ds.

By applying Lemma 2.2, we obtain

− τ2

∫ t−τ2(t)

t−τ2

ẋ T (s)Q1 ẋ(s)ds ≤
[
x(t − τ2(t))

x(t − τ2)

]T [−Q1 Q1

� −Q1

][
x(t − τ2(t))

x(t − τ2)

]
,

(19)

− τ2

∫ t

t−τ2(t)
ẋ T (s)Q1 ẋ(s)ds ≤

[
x(t)

x(t − τ2(t))

]T [−Q1 Q1

� −Q1

][
x(t)

x(t − τ2(t))

]
,

(20)

− τ1

∫ t−τ1(t)

t−τ1

ẏT (s)Q2 ẏ(s)ds ≤
[
y(t − τ1(t))

y(t − τ1)

]T [−Q2 Q2

� −Q2

][
y(t − τ1(t))

y(t − τ1)

]
,

(21)

− τ1

∫ t

t−τ1(t)
ẏT (s)Q2 ẏ(s)ds ≤

[
y(t)

y(t − τ1(t))

]T [−Q2 Q2

� −Q2

][
y(t)

y(t − τ1(t))

]
,

(22)

− τ3

∫ t−τ3(t)

t−τ3

ẋ T (s)Q3 ẋ(s)ds ≤
[
x(t − τ3(t))

x(t − τ3)

]T [−Q3 Q3

� −Q3

][
x(t − τ3(t))

x(t − τ3)

]
,

(23)
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− τ3

∫ t

t−τ3(t)
ẋ T (s)Q3 ẋ(s)ds ≤

[
x(t)

x(t − τ3(t))

]T [−Q3 Q3

� −Q3

][
x(t)

x(t − τ3(t))

]
,

(24)

− τ3

∫ t−τ3(t)

t−τ3

ẏT (s)Q4 ẏ(s)ds ≤
[
y(t − τ3(t))

y(t − τ3)

]T [−Q4 Q4

� −Q4

][
y(t − τ3(t))

y(t − τ3)

]
,

(25)

− τ3

∫ t

t−τ3(t)
ẏT (s)Q4 ẏ(s)ds ≤

[
y(t)

y(t − τ3(t))

]T [−Q4 Q4

� −Q4

][
y(t)

y(t − τ3(t))

]
.

(26)

By applying the Lemmas 2.1 and 2.3 in V̇5(xt , yt , t), we obtain the following results

−
1∑

i=0

τ(3−i)

∫ t

t−τ(3−i)

[
x(s)

ẋ(s)

]T [
X(3−2i) Y(3−2i)

� Z(3−2i)

][
x(s)

ẋ(s)

]
ds

= −
1∑

i=0

τ(3−i)

[ ∫ t

t−τ(3−i)(t)
+

∫ t−τ(3−i)(t)

t−τ(3−i)

][
x(s)

ẋ(s)

]T [
X(3−2i) Y(3−2i)

� Z(3−2i)

][
x(s)

ẋ(s)

]
ds,

= −
1∑

i=0

τ(3−i)

[
−τ(3−i)

∫ t

t−τ(3−i)(t)

[
x(s)

ẋ(s)

]T [
X(3−2i) Y(3−2i)

� Z(3−2i)

][
x(s)

ẋ(s)

]
ds

− τ(3−i)

∫ t−τ(3−i)(t)

t−τ(3−i)

[
x(s)

ẋ(s)

]T [
X(3−2i) Y(3−2i)

� Z(3−2i)

][
x(s)

ẋ(s)

]
ds

]
,

= −
1∑

i=0

τ(3−i)

[
τ(3−i)

τ(3−i)(t)
× τ(3−i)(t)

∫ t

t−τ(3−i)(t)

[
x(s)

ẋ(s)

]T [
X(3−2i) Y(3−2i)

� Z(3−2i)

][
x(s)

ẋ(s)

]
ds

− τ(3−i)(τ(3−i) − τ(3−i)(t))

(τ(3−i) − τ(3−i)(t))
×

∫ t−τ(3−i)(t)

t−τ(3−i)

[
x(s)

ẋ(s)

]T [
X(3−2i) Y(3−2i)

� Z(3−2i)

][
x(s)

ẋ(s)

]
ds

]
,

≤ −
1∑

i=0

τ(3−i)

[
τ(3−i)

τ(3−i)(t)

∫ t

t−τ(3−i)(t)

[
x(s)

ẋ(s)

]T

ds

[
X(3−2i) Y(3−2i)

� Z(3−2i)

]∫ t

t−τ(3−i)(t)

[
x(s)

ẋ(s)

]
ds

− τ(3−i)

(τ1 − τ(3−i)(t))

∫ t−τ(3−i)(t)

t−τ(3−i)

[
x(s)

ẋ(s)

]T

ds

[
X(3−2i) Y(3−2i)

� Z(3−2i)

]∫ t−τ(3−i)(t)

t−τ(3−i)

[
x(s)

ẋ(s)

]
ds

]
,

≤ −
1∑

i=0

τ(3−i)

[∫ t

t−τ(3−i)(t)

[
x(s)

ẋ(s)

]T

ds

[
X(3−2i) Y(3−2i)

� Z(3−2i)

]∫ t

t−τ(3−i)(t)

[
x(s)

ẋ(s)

]
ds

− 2
∫ t

t−τ(3−i)(t)

[
x(s)

ẋ(s)

]T

ds

[
M(3−2i) N(3−2i)

H(3−2i) T(3−2i)

]∫ t−τ(3−i)(t)

t−τ(3−i)

[
x(s)

ẋ(s)

]
ds

−
∫ t−τ(3−i)(t)

t−τ(3−i)

[
x(s)

ẋ(s)

]T

ds

[
X(3−2i) Y(3−2i)

� Z(3−2i)

]∫ t−τ(3−i)(t)

t−τ(3−i)

[
x(s)

ẋ(s)

]
ds

]
,
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= −
1∑

i=0

τ(3−i)

⎡

⎢⎢⎢⎢⎣

∫ t
t−τ(3−i)(t)

[
x(s)

ẋ(s)

]
ds

− ∫ t−τ(3−i)(t)
t−τ(3−i)

[
x(s)

ẋ(s)

]
ds

⎤

⎥⎥⎥⎥⎦

T ⎡

⎢⎢⎢⎢⎣

[
X(3−2i) Y(3−2i)

� Z(3−2i)

] [
M(3−2i) N(3−2i)

H(3−2i) T(3−2i)

]

�
[
X(3−2i) Y(3−2i)

� Z(3−2i)

]

⎤

⎥⎥⎥⎥⎦

×

⎡

⎢⎢⎢⎢⎣

∫ t
t−τ(3−i)(t)

[
x(s)

ẋ(s)

]
ds

− ∫ t−τ(3−i)(t)
t−τ(3−i)

[
x(s)

ẋ(s)

]
ds

⎤

⎥⎥⎥⎥⎦
. (27)

We can estimate the three terms in inequality (16) in a similar way to (27) as

−
2∑

i=1

τ(2i−1)

∫ t

t−τ(2i−1)

[
y(s)

ẏ(s)

]T [
X2i Y2i

� Z2i

][
y(s)

ẏ(s)

]
ds

≤ −
2∑

i=1

τ(2i−1)

⎡

⎢⎢⎢⎢⎣

∫ t
t−τ(2i−1)(t)

[
y(s)

ẏ(s)

]
ds

∫ t−τ(2i−1)(t)
t−τ(2i−1)

[
y(s)

ẏ(s)

]
ds

⎤

⎥⎥⎥⎥⎦

T ⎡

⎢⎢⎢⎢⎣

[
X(2i) Y(2i)

� Z(2i)

] [
M(2i) N(2i)

H(2i) T(2i)

]

�
[
X(2i) Y(2i)

� Z(2i)

]

⎤

⎥⎥⎥⎥⎦

×

⎡

⎢⎢⎢⎢⎣

∫ t
t−τ(2i−1)(t)

[
y(s)

ẏ(s)

]
ds

∫ t−τ(2i−1)(t)
t−τ(2i−1)

[
y(s)

ẏ(s)

]
ds

⎤

⎥⎥⎥⎥⎦
. (28)

The upper bound of the reciprocally convex combination in V̇6(xt , yt , t) can be obtained
as

− τ 22

2!
∫ 0

−τ2

∫ t

t+θ

ẋ T (s)R1 ẋ(s)dsdθ

≤
⎡

⎣
∫ 0
−τ2(t)

∫ t
t+θ

ẋ T (s)ds
∫ −τ2(t)
−τ2

∫ t
t+θ

ẋ T (s)ds

⎤

⎦
T [−R1 −R̃1

� −R1

]⎡

⎣
∫ 0
−τ2(t)

∫ t
t+θ

ẋ T (s)ds
∫ −τ2(t)
−τ2

∫ t
t+θ

ẋ T (s)ds

⎤

⎦ , (29)

− τ 21

2!
∫ 0

−τ1

∫ t

t+θ

ẏT (s)R2 ẏ(s)dsdθ

≤
⎡

⎣
∫ 0
−τ1(t)

∫ t
t+θ

ẏT (s)ds
∫ −τ1(t)
−τ1

∫ t
t+θ

ẏT (s)ds

⎤

⎦
T [−R2 −R̃2

� −R2

]⎡

⎣
∫ 0
−τ1(t)

∫ t
t+θ

ẏT (s)ds
∫ −τ1(t)
−τ1

∫ t
t+θ

ẏT (s)ds

⎤

⎦ . (30)

According to Lemma 2.1 the following inequality’s are hold:

− τ1

∫ t

t−τ1

f T2 (y(s))R3 f2(y(s))ds ≤ −
(∫ t

t−τ1

f2(y(s))ds

)T

R3

(∫ t

t−τ1

f2(y(s))ds

)
,

(31)

− τ2

∫ t

t−τ2

gT2 (x(s))R4g2(x(s))ds ≤ −
(∫ t

t−τ2

g2(x(s))ds

)T

R4

(∫ t

t−τ2

g2(x(s))ds

)
.

(32)
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On the other hand, for any matrices S1 and S2 with appropriate dimensions the following
equations holds:

0 = [x(t) + ẋ(t)]S1[−ẋ(t) + ẋ(t)],

0 = [x(t) + ẋ(t)]S1[−ẋ(t) − Ax(t − δ1) + W1 f1(y(t − τ1(t))) + W2

∫ t

t−τ1

f2(y(s))ds + Kx(t − τ3(t))],
(33)

0 = [y(t) + ẏ(t)]S2[−ẏ(t) + ẏ(t)],

0 = [y(t) + ẏ(t)]S2[−ẏ(t) − By(t − δ2) + V1g1(x(t − τ2(t))) + V2

∫ t

t−τ2

g2(x(s))ds + My(t − τ3(t))].
(34)

Furthermore, based on Assumption (A), we have
[
fki (yi (t)) − F−

ki yi (t)
]T [

fki (yi (t)) − F+
ki yi (t)

]
≤ 0, i = 1, 2, ..., n,

[
gkj (x j (t)) − G−

k j x j (t)
]T [

gkj (xi (t)) − G+
k j x j (t)

]
≤ 0, j = 1, 2, ..., n,

where k = 1, 2,
which is equivalent to

[
y(t)

fk(y(t))

]T
⎡

⎣
F−
ki F

+
ki yi y

T
i − F−

ki +F+
ki

2 yi yTi

− F−
ki +F+

ki
2 yi yTi yi yTi

⎤

⎦
[

y(t)

fk(y(t))

]
≤ 0,

[
x(t)

gk(x(t))

]T
⎡

⎢⎣
G−

k jG
+
k j x j x

T
j −G−

k j+G+
k j

2 x j xTj

−G−
k j+G+

k j
2 x j xTj x j xTj

⎤

⎥⎦

[
x(t)

gk(x(t))

]
≤ 0.

where xi and y j denotes the units column vector having element 1 on its i th row, j th row, and

zeros elsewhere. Let Uk = diag{uk11, uk12, ..., uk1n} > 0, Jk = diag{ j k11, j k12, ..., j k1n} > 0,.
Here xi and y j stand for the units columnvector,whichhas zeros on theother rows and element
1 on the i th row, j th rows. It is simple to observe that if Uk = diag{uk11, uk12, ..., uk1n} > 0,

Jk = diag{ j k11, j k12, ..., j k1n} > 0,

n∑

i=1

uk1i

[
y(t)

fk(y(t))

]T
⎡

⎣
F−
ki F

+
ki yi y

T
i − F−

ki +F+
ki

2 yi yTi

− F−
ki +F+

ki
2 yi yTi yi yTi

⎤

⎦
[

y(t)

fk(y(t))

]
≤ 0,

n∑

j=1

j
k
1 j

[
x(t)

gk(x(t))

]T
⎡

⎢⎣
G−

k jG
+
k j x j x

T
j −G−

k j+G+
k j

2 x j xTj

−G−
k j+G+

k j
2 x j xTj x j xTj

⎤

⎥⎦

[
x(t)

gk(x(t))

]
≤ 0,

That is,
[

y(t)

fk(y(t))

]T [−Fk1Uk Fk2Uk

Fk2Uk −Uk

][
y(t)

fk(y(t))

]
≥ 0, (35)

[
x(t)

gk(x(t))

]T [−Gk1 Jk Gk2 Jk

Gk2 Jk −Jk

][
x(t)

gk(x(t))

]
≥ 0. (36)
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Similar to above, forUk+2 = diag{uk+2
11 , uk+2

12 , ..., uk+2
1n } > 0, Jk+2 = diag{ j k+2

11 , j
k+2
12 , ...,

j
k+2
1n } > 0, we can obtain the following inequalities:

[
y(t − τ1(t))

fk(y(t − τ1(t)))

]T [−Fk1Uk+2 Fk2Uk+2

Fk2Uk+2 −Uk+2

][
y(t − τ1(t))

fk(y(t − τ1(t)))

]
≥ 0, (37)

[
x(t − τ2(t))

gk(x(t − τ2(t)))

]T [−Gk1 Jk+2 Gk2 Jk+2

Gk2 Jk+2 −Jk+2

][
x(t − τ2(t))

gk(x(t − τ2(t)))

]
≥ 0. (38)

Now, combining (12)–(38), we have

V̇ (xt , yt , t) ≤ −ζ T (t)�ζ(t), (39)

where

ζ T (t) =[ζ T
1 (t) ζ T

2 (t)],
ζ T
1 (t) =

[
xT (t) ẋ T (t)

xT (t − δ1) xT (t − τ2(t)) xT (t − τ2) xT (t − τ3(t)) xT (t − τ3) gT1 (x(t)

gT1 (x(t − τ2(t)) gT2 (x(t) gT2 (x(t − τ2(t))
∫ t

t−τ2

gT2 (x(s)ds
∫ t

t−τ2(t)
xT (s)ds

∫ t

t−τ2(t)
ẋ T (s)ds

∫ t−τ2(t)

t−τ2

xT (s)ds
∫ t−τ2(t)

t−τ2

ẋ T (s)ds
∫ 0

−τ2(t)

∫ t

t+θ

ẋ T (s)ds

∫ −τ2(t)

−τ2

∫ t

t+θ

ẋ T (s)ds
∫ t

t−τ3(t)
xT (s)ds

∫ t

t−τ3(t)
ẋ T (s)ds

∫ t−τ3(t)

t−τ3

xT (s)ds
∫ t−τ3(t)

t−τ3

ẋ T (s)ds

]
,

ζ T
2 (t) =

[
yT (t) ẏT (t)

yT (t − δ2) y
T (t − τ1(t)) y

T (t − τ1) yT (t − τ3(t)) yT (t − τ3) f T1 (y(t)

f T1 (y(t − τ1(t))

f T2 (y(t) f T2 (y(t − τ1(t))
∫ t

t−τ1

f T2 (y(s)ds
∫ t

t−τ1(t)
yT (s)ds

∫ t

t−τ1(t)
ẏT (s)ds

∫ t−τ1(t)

t−τ1

yT (s)ds
∫ t−τ1(t)

t−τ1

ẏT (s)ds
∫ 0

−τ1(t)

∫ t

t+θ

ẏT (s)ds
∫ −τ1(t)

−τ1

∫ t

t+θ

ẏT (s)ds

∫ t

t−τ3(t)
yT (s)ds

∫ t

t−τ3(t)
ẏT (s)ds

∫ t−τ3(t)

t−τ3

yT (s)ds
∫ t−τ3(t)

t−τ3

ẏT (s)ds

]
,

and � is defined as in (10).
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Thus, the equilibrium point of (8) is globally asymptotically stable. It may be inferred
from the inequality (39) that,

V (xt , yt , t) +
∫ t

0
ζ T (s)�ζ(s)ds ≤ V (0) < ∞, (40)

where

V (0) ≤ [
λmax (P) + δ1λmax (P1) + τ2λmax (P3) + τ2λmax (P5) + τ3λmax (P7) + τ 22

2! λmax (Q1)

+ τ 23

2! λmax (Q3) +
1∑

i=0

τ 2(3−i)

2! λmax

[
X(2i+1) Y(2i+1)

� Z(2i+1)

]
+ τ 32

3! λmax (R1) + τ 22

2! λmax (R3)
]
�2

xt

+[
λmax (Q) + δ2λmax (P2) + τ1λmax (P4) + τ1λmax (P6) + τ3λmax (P8) + τ 21

2! λmax (Q2)

+ τ 23

2! λmax (Q4) +
2∑

i=1

τ 2(2i−1)

2! λmax

[
X(2i) Y(2i)

� Z(2i)

]
+ τ 31

3! λmax (R2) + τ 21

2! λmax (R4)
]
�2

yt ,

= Σ1�
2
xt + Σ2�

2
yt , (41)

where

�xt = max{ sup
θ∈[−υxt ,0]

‖ψxt (θ)‖, sup
θ∈[−υ2,0]

‖Pψxt (θ)‖},

�yt = max{ sup
θ∈[−υyt ,0]

‖ψyt (θ)‖, sup
θ∈[−υ2,0]

‖Pψyt (θ)‖}.

On the other hand, by the definition of V (xt , yt , t), we get

V (xt , yt , t) ≥xT (t)Px(t) + yT (t)Qy(t),

≥λminPxT (t)x(t) + λminQyT (t)y(t),

=λminP‖x(t)‖2 + λminQ‖y(t)‖2,
=min{λminP, λminQ}(‖x(t)‖2 + ‖y(t)‖2), (42)

Then, combining (41) and (42), we obtain

‖x(t)‖2 + ‖y(t)‖2 ≤ V (0)

min{λminP, λminQ} . (43)

It is clear that the system (8) is globally asymptotic stable for � < 0, by Lyapunov stability
theory. This completes the proof. �

4 Sampled-Data Stabilization

Theorem 4.1 Under Assumption (A), for given scalars τ1, τ2, τ3, δ1, δ2, μ1, and μ2, the
equilibrium point of system (8) is stable if there exist matrices P > 0, Q > 0, Pi > 0, (i =
1, 2, ..., 8), Q j > 0, R j > 0,

[
X j Y j

� Z j

]
> 0, positive-definite diagonal matrices U j , J j

and any matrices

[
Mj N j

Hj Tj

]
, ( j = 1, 2, ..., 4), R̃1, R̃2, L1, L2 such that the following
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LMIs hold:

⎡

⎢⎢⎢⎢⎣

[
Xk Yk

� Zk

] [
Mk Nk

Hk Tk

]

�
[
Xk Yk

� Zk

]

⎤

⎥⎥⎥⎥⎦
> 0,

[
Rl R̃l

� Rl

]
> 0, k = 1, ..., 4, l = 1, 2, (44)

� =

⎡

⎢⎢⎢⎢⎣

[
�11 [0]11n×11n

� �22

]
[0]24n×24n

�
[

�33 [0]11n×11n

� �44

]

⎤

⎥⎥⎥⎥⎦
< 0, (45)

where

�11 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(1, 1)� (1, 2)� −S1A Q1 0 Q3 + L1 0 G12 J1 S1W1 G22 J2 0 S1W2

� (2, 2)� −S1A 0 0 L1 0 0 S1W1 0 0 S1W2

� � −δ1P1 0 0 0 0 0 0 0 0 0
� � � (4, 4)� Q1 0 0 0 G32 J3 0 0 0
� � � � (5, 5)� 0 0 0 0 0 0 0
� � � � � −2Q3 Q3 0 0 0 0 0
� � � � � � (7, 7)� 0 0 0 0 0
� � � � � � � −J1 0 0 0 0
� � � � � � � � −J3 0 0 0
� � � � � � � � � (10, 10)� 0 0
� � � � � � � � � � −J4 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

�22 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−R4 0 0 0 0 0 0 0 0 0 0
� −X1 −Y1 −M1 −N1 0 0 0 0 0 0
� � −Z1 −H1 −T1 0 0 0 0 0 0
� � � −X1 −Y1 0 0 0 0 0 0
� � � � −Z1 0 0 0 0 0 0
� � � � � −R1 −R̃1 0 0 0 0
� � � � � � −R1 0 0 0 0
� � � � � � � −X3 −Y3 −M3 −N3

� � � � � � � � −Z3 −H3 −T3
� � � � � � � � � −X3 −Y3
� � � � � � � � � � −Z3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

�33 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(1, 1)† (1, 2)† −S2B Q2 0 Q4 + L2 0 F12U1 S2V1 F22U2 0 S2V2
� (2, 2)† −S2B 0 0 L2 0 0 S2V1 0 0 S2V2
� � −δ2P2 0 0 0 0 0 0 0 0 0
� � � (4, 4)† Q2 0 0 0 F32U3 0 0 0
� � � � (5, 5)† 0 0 0 0 0 0 0
� � � � � −2Q4 Q4 0 0 0 0 0
� � � � � � (7, 7)† 0 0 0 0 0
� � � � � � � −U1 0 0 0 0
� � � � � � � � −U3 0 0 0
� � � � � � � � � (10, 10)† 0 0
� � � � � � � � � � −U4 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

123



94 Page 16 of 21 S. R. Chandra et al.

�44 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−R3 0 0 0 0 0 0 0 0 0 0
� −X2 −Y2 −M2 −N2 0 0 0 0 0 0
� � −Z2 −H2 −T2 0 0 0 0 0 0
� � � −X2 −Y2 0 0 0 0 0 0
� � � � −Z2 0 0 0 0 0 0
� � � � � −R2 −R̃2 0 0 0 0
� � � � � � −R2 0 0 0 0
� � � � � � � −X4 −Y4 −M4 −N4

� � � � � � � � −Z4 −H4 −T3
� � � � � � � � � −X4 −Y4
� � � � � � � � � � −Z4

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(1, 1)� = δ1P1 + P3 + P5 + P7 − Q1 − Q3 + τ 22 X1 + τ 23 X3 − G11 J1 − G21 J2,

(1, 1)† = δ2P2 + P4 + P5 + P8 − Q2 − Q3 + τ 21 X2 + τ 23 X4 − F11U1 − F21U2,

(1, 2)� = P + τ 22 Y1 + τ 23 Y3 − S1, (1, 2)† = Q + τ 21 Y2 + τ 23 Y4 − S2,

(2, 2)� = τ 22 Q1 + τ 23 Q3 + τ 22 Z1 + τ 23 Z3 +
(

τ 22

2!
)2

R1 − S1 − ST1 ,

(2, 2)† = τ 21 Q2 + τ 23 Q4 + τ 21 Z2 + τ 23 Z4 +
(

τ 21

2!
)2

R2 − S2 − ST2 ,

(4, 4)� = −(1 − μ2)P3 − 2Q1 − G31 J3 − G41 J4,

(4, 4)† = −(1 − μ1)P4 − 2Q2 − F31U3 − F41U4,

(5, 5)� = −P5 − Q1, (7, 7)� = −Q3 − P7, (10, 10)� = −J2 + τ 22 R4,

(5, 5)† = −P6 − Q2, (7, 7)† = −Q4 − P8, (10, 10)† = −U2 + τ 21 R3,

Moreover, desired controller gain matrix are given by

K = S−1
1 L1, M = S−1

2 L2. (46)

Proof The proof is similar to that of Theorem 3.1. Because it is not included here. �
Remark 4.2 By adopting the input delay approach, the proposed model can be transformed
into continuous system. Because of the sampled-data control strategy deals with continuous
system by sampling data at discrete time, we make the first attempt to address the sampled-
data synchronization control problem for the presented model. A novel sampled-data control
strategy was adopted to ensure that the drive system could achieve synchronization with the
response system. To be noted that the sampled-data control drastically reduces the amount
of transmitted information and increases the efficiency of bandwidth usage, because its’
control signals are kept constant during the sampling period and are allowed to change only
at the sampling instant. On the other hand, due to the rapid growth of the digital hardware
technologies, the sampled-data control method is more efficient, secure and useful. Thus, in
this research area, a great deal of remarkable research investigations have been made and it
can be found in [54–57].

Remark 4.3 The leakage delay, in particular, which exists in the negative feedback term of
BAM, has recently emerged as a research topic of great significance. In [58] Gopalsamy was
the first who investigated the stability of the BAM neural networks with constant leakage
delays. He was surprised to launched that time delays in leakage terms has an essential
impact on the dynamical performances, and the stability issue has been destabilized by
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Table 2 Example 5.1. Calculated upper bound of τ1 = τ2 for different δ1, δ2 and τ3 and μ1, μ2 = 1

Methods τ1, τ2 Gain matrices

δ1, δ2, τ3 = 0.01 2.4743 K =
[ −21.1412 −0.3062

−0.3071 −20.6219

]
, M =

[ −20.0062 −1.4845
−1.4039 −26.2567

]
,

δ1, δ2, τ3 = 0.02 1.4290 K =
[ −17.4824 −0.1314

−0.1314 −17.2493

]
, M =

[ −14.4491 −0.8397
−0.7976 −18.8227

]
,

δ1, δ2, τ3 = 0.03 0.5746 K =
[ −15.1595 −0.0495

−0.0494 −15.0783

]
, M =

[ −12.3263 −0.3975
−0.3764 −15.6087

]
,

δ1, δ2, τ3 = 0.04 Infeasible K =
[ −16.1686 −0.1477

−0.1483 −15.8738

]
, M =

[ −12.8771 −0.7226
−0.2716 −17.6965

]
.

leakage term for NN model. Hence, it is clear that, dynamic behaviours of system including
leakage/forgetting term, that can be construct in the negative feedback term in the system
model, which has been sketched back to 1992 Later on, a substantial achievements have been
reached regarding the dynamics of BAMwith delay in the leakage term [59–62]. On the other
hand, it is natural that the BAM contains certain information about the derivative of the past
state. This is expressed via the encompass of delay in the neutral derivative of BAM which
often appears in the study of automatic control, population dynamics and vibrating masses
attached to an elastic bar; the reader may consult the papers [63–66] for more details.

5 Numerical Examples

The usefulness of the theoretical methods proposed is demonstrated in this section by numer-
ical examples.

Example 5.1 We consider the following BAM neural networks with leakage delays:

{
ẋ(t) = −Ax(t − δ1) + W1 f1(y(t − τ1(t))) + W2

∫ t
t−τ1

f2(y(s))ds + Kx(t − τ3(t)),

ẏ(t) = −By(t − δ2) + V1g1(x(t − τ2(t))) + V2
∫ t
t−τ2

g2(x(s))ds + My(t − τ3(t)),

(47)

with the following parameters:

A =
[
5 0
0 5

]
, W1 =

[
0.03 0.02
0.02 0.01

]
, W2 =

[
0.09 0.02
0.02 0.01

]
,

B =
[
4 0
0 5

]
, V1 =

[
0.1 0.2
0.2 0.2

]
, V2 =

[
0.03 0.05
0.02 0.04

]
.

Let the activation functions as f1(x) = f2(x) = g1(x) = g2(x) = tanh(x). It is obvious
that Assumption (A) is satisfied, and we obtain

F11 = F21 = G11 = G21 = 0, F12 = F22 = G12 = G22 = 0.4I .

The allowable new upper bounds of τ1, τ2 and the corresponding new gain matrices for
various values of μ1, μ2 and leakage delays δ1, δ2 are obtained by solving the LMIs in (45)
with the aforementioned new parameter values using the LMI control toolbox. These results

123



94 Page 18 of 21 S. R. Chandra et al.

are listed in Table 2. Let τ1 = τ2 = 0.5746, μ1 = μ2 = 1 the dynamical analysis of BAM
neural framework (1) is stable. The feasible solutions are shown below.

P = 10−03 ×
[

0.9842 −0.0028
−0.0028 0.9901

]
, Q =

[
0.0009 0.0000
0.0000 0.0012

]
, P1 =

[
0.0592 −0.0001

−0.0001 0.0595

]
,

P2 =
[
0.0489 0.0034
0.0034 0.0746

]
, P3 = 10−05 ×

[
0.9160 −0.0427

−0.0427 0.9800

]
, P4 = 10−04 ×

[
0.1719 −0.0596

−0.0596 0.0207

]
,

Q1 = 10−05 ×
[
0.4919 0.0387
0.0387 0.4522

]
, Q2 = 10−04 ×

[
0.3667 0.0561
0.0561 0.1904

]
,

R1 = 10−04 ×
[

0.7117 −0.0382
−0.0382 0.7690

]
,

R2 = 10−03 ×
[

0.1542 −0.0535
−0.0535 0.0186

]
, R3 = 10−04 ×

[
0.8700 −0.0032

−0.0032 0.5637

]
,

U1 = 10−06 ×
[
0.3773 0

0 0.0455

]
,

J1 = 10−03 ×
[
0.1113 0

0 0.1189

]
, L1 =

[ −0.0010 0.0000
0.0000 −0.0010

]
, L2 =

[ −0.0009 −0.0000
−0.0000 −0.0012

]
,

S1 = 10−04 ×
[

0.6801 −0.0043
−0.0043 0.6882

]
, S2 = 10−04 ×

[
0.7692 −0.0034

−0.0034 0.7825

]
.

The following gain matrices are obtained by taking the sample time points tk = 0.01k,
k = 1, 2, ..., and the sampling period τ3 = 0.03, respectively.

K = S−1
1 L1 =

[−15.1595 −0.0495
−0.0494 −15.0783

]
, M = S−1

2 L2 =
[−12.3263 −0.3975

−0.3764 −15.6087

]
.

Thus every requirement in Theorem 4.1 has been satisfies and system (47) is stable under
the specified sampled-data feedback control, according to Theorem 4.1.

6 Conclusion

In order to regulate BAMneuronswith leakage delays, a novel sampled-data control approach
and its stability analysis are investigated in this research. We started by looking at instability
events brought on by leakage delays. After that, we used a sampled-data control approach
to bring the unstable systems under control. To determine the gain matrix for the planned
sampled-data controllers, certain LMIs were generated. Finally, to demonstrate the efficiency
of our theoretical findings, a numerical example and accompanying computational models
have been provided. Future planning will take into account the intricacy of some control
systems.Our future study will also focus on some systems biology with leakage delays as a
key field of research such as Event triggered control and bifurcation analysis.
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