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Abstract
Image sample augmentation refers to strategies for increasing sample size by modifying cur-
rent data or synthesizingnewdata basedon existingdata.This technique is of vital significance
in enhancing the performance of downstream learning tasks in widespread small-sample
scenarios. In recent years, GAN-based image augmentation methods have gained significant
attention and research focus. They have achieved remarkable generation results on large-scale
datasets. However, their performance tends to be unsatisfactory when applied to datasets with
limited samples. Therefore, this paper proposes a semantic similarity-based small-sample
image augmentation method named SSGAN. Firstly, a relatively shallow pyramid-structured
GAN-based backbone network was designed, aiming to enhance the model’s feature extrac-
tion capabilities to adapt to small sample sizes. Secondly, a feature selectionmodule based on
high-dimensional semantics was designed to optimize the loss function, thereby improving
the model’s learning capacity. Lastly, extensive comparative experiments and comprehen-
sive ablation experiments were carried out on the “Flower” and “Animal” datasets. The
results indicate that the proposed method outperforms other classical GANs methods in
well-established evaluation metrics such as FID and IS, with improvements of 18.6 and 1.4,
respectively. The dataset augmented by SSGAN significantly enhances the performance of
the classifier, achieving a 2.2% accuracy improvement compared to the best-known method.
Furthermore, SSGAN demonstrates excellent generalization and robustness.
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1 Introduction

Small-sample image datasets often lead to overfitting and limited generalization capabili-
ties in deep learning tasks. Due to factors such as high data annotation costs and sample
imbalance, the issue of small samples is prevalent [10, 23, 25]. For example, this problem
is commonly encountered in datasets of plant phenotype images for disease and pest iden-
tification [17], images for the diagnosis of severe diseases [13], and images of equipment
failures [3], among others. Image sample augmentation is a direct and effective approach to
address the issue of small samples. Existing image sample augmentation methods include
augmentation methods based on geometric transformations and color transformations, tradi-
tional sample augmentation methods, and GAN-based augmentation methods. The first type
of augmentation methods, such as flipping, rotation, and random noise, often lack diversity
in generating augmented samples [5]. The second type of methods, such as SMOTE [14] and
Mixup [4], are based on existing samples and have shown promising augmentation results.
In recent years, with the remarkable achievements of deep learning in solving practical prob-
lems, GAN-based augmentation methods have been extensively researched and proven to
have the ability to generate high-quality and diverse images. Indeed, WGAN introduced a
generative adversarial network model based on the Wasserstein distance [2]. It focuses on
measuring the distance between the generated data distribution and the real data distribution,
addressing issues such as unstable training in traditional GANs. By minimizing the Wasser-
stein distance, WGAN ensures the diversity of generated samples. While many GANs [1, 18,
19] have shown excellent enhancement results on large-scale datasets, their performance sig-
nificantly deteriorates when applied to datasets with limited samples. This can be attributed to
two main factors. Firstly, existing network architectures may not adequately extract features
from the training images. Secondly, the slow "learning speed" of GANsmakes them less suit-
able for small-sample scenarios, where a limited number of samples are available for training.
More detailed review of related studies will be summarized in Sect. 2. To address these chal-
lenges, we propose a semantic similarity-based GAN for small-sample image augmentation.
We optimize the network architecture to enhance its feature extraction capability specifically
for small-sample datasets. Additionally, a high-dimensional semantic-based feature filtering
module is designed that is able to influence the model’s learning process and enhance its
learning ability. Ultimately, our proposed method aims to improve the enhancement perfor-
mance on small-sample image datasets. We conducted extensive comparative experiments
and comprehensive ablation experiments on the “Flower” and “Animal” datasets. SSGAN
stands out among various GANs, with improvements of 18.6 and 1.4 in terms of FID and IS
metrics, respectively, indicating that the generated images exhibit good clarity and diversity.
The dataset augmented by SSGAN assists the classifier in achieving a 9% accuracy improve-
ment, surpassing other classical methods by 2.2%. The results demonstrate the effectiveness
of the proposed method for small-sample augmentation.

The main contributions and innovations of this paper are as follows:

(1) We designed a pyramid structure for the backbone network to effectively extract fea-
tures from small sample images. The introduction of pyramid connections enables the
fusion of features at different scales, allowing the model to capture multi-dimensional
perspectives and enhance its feature extraction capability.

(2) Integrating a high-dimensional semantic-based feature filtering module into GAN,
enhancing the model’s learning ability and generating samples that closely resemble
real samples, thus obtaining high-quality augmented data and improving the accuracy
of classification tasks.
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(3) Validating the effectiveness and generalization of the proposed method on different
small-sample datasets.

The remaining sections of this paper are organized as follows: Sect. 2 provides a compre-
hensive review of related works. Section 3 presents a detailed description of the proposed
method. Section 4 introduces the experimental setup. Section 5 presents the experimental
results. Section 6 includes the discussion and conclusion.

2 RelatedWorks

There aremany research studies focusing on image sample augmentation, primarily classified
into three categories: basic augmentation methods, traditional augmentation methods, and
GAN-based augmentation methods.

2.1 Basic AugmentationMethods

Basic image augmentation methods primarily include geometric transformation-based meth-
ods and color transformation-based methods. Among them, geometric transformation-based
methods involve operations such as flipping, rotation, cropping, and zooming. Thesemethods
do not alter the content of the image itself, making them the simplest way to enhance the
image dataset. However, excessive use of these methods may result in a dataset with lim-
ited diversity, generating “low-value” data. On the other hand, color transformation-based
methods enhance the image by modifying its content. These methods include random noise,
smooth blurring, color transformations based on HSV or RGB [24], and random erasing.
Such augmentation methods can increase the diversity and variability of the dataset to a
certain extent.

2.2 Traditional AugmentationMethods

Traditional augmentation methods mainly include SMOTE, SamplePairing [9], and Mixup.
SMOTE (Synthetic Minority Over-sampling Technique) is a technique for synthesizing
minority class samples by utilizing the k-nearest neighbor approach. It generates new sam-
ples by synthesizing samples from the same class based on their features, commonly used for
generating minority class samples in imbalanced datasets. SamplePairing is another method
for synthesizing new samples by combining samples with different labels, but it has limited
interpretability. Mixup is a data augmentation method based on the principle of minimizing
neighborhood risk. It generates new samples by linearly interpolating between pairs of sam-
ples, and it has shown good enhancement performance. Traditional augmentation methods
are based on existing samples for sample augmentation, but their augmentation effectiveness
is limited.

2.3 GAN-Based AugmentationMethods

Generative Adversarial Networks (GANs) are unsupervised data augmentation methods that
utilize a generative network and a discriminative network to learn the data distribution and
generate high-quality and diverse new samples. GANs have been extensively researched in
the field of data augmentation, such as WGAN [2], SAGAN [22], ACGAN [15], ReACGAN
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[12], DCGAN [16], WGAN-GP [8, 21], among others. WGAN, for instance, introduces the
Wasserstein distance to alleviate the instability and mode collapse issues in GAN training,
ensuring the diversity of generated samples. SAGAN incorporates self-attentionmechanisms
to enhance the focus on detailed image features, thus improving the quality of generated
images. ACGAN introduces additional structure to the latent space of the GAN by incorpo-
rating a specialized cost function. This modification leads to the generation of higher quality
samples. ACGAN not only generates realistic samples but also enables the discriminator
to predict the class labels of the generated samples. ReACGAN introduces the concept of
inter-data cross-entropy loss and employs auxiliary measures to address the issue of gradient
explosion. This approach alleviates the problem of limited diversity in generated samples
within GAN models. However, existing methods still require a significant amount of train-
ing samples to achieve satisfactory generation performance, making them less effective for
small sample enhancement. To address this limitation, we propose a novel image small
sample enhancement approach based on semantic filtering. Specifically, the challenge of
limited training sample quantity is addressed by designing a shallow pyramid structure for
the generator network, which allows effective feature extraction from small sample images.
Additionally, we incorporate a semantic filtering module based on high-dimensional seman-
tic features into the existing GAN structure to optimize the semantic similarity between
generated and real images. For further details, please refer to Chapter 3.

3 Method

3.1 Overall Structure of SSGAN

The overall structure of SSGAN is illustrated in Fig. 1. The SSGAN model consists of three
main components: the generative network, the discriminative network, and the perceptual
network. The generative network is responsible for transforming an input random noise
vector z into an image G(z) with the expectation of deceiving the discriminative network.
The discriminative network serves as a binary classifier to distinguish between the generated
images G(z) and the real images Pr . These two components engage in a game to drive

Fig. 1 Overall Structure of the Model
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the GAN towards achieving Nash equilibrium. Our novel contribution is the inclusion of a
perception network, which is responsible for extracting high-dimensional semantic features
from the input images and comparing their semantic similarity with the distribution of real
images. This facilitates the generator network in producing superior outputs.

The generator primarily consists of stacked transpose convolutional layers and pyramid
connections. Specifically, it includes one fully connected layer, four transpose convolutional
layers, and two sets of pyramid connections. The generator takes a one-dimensional random
noise vector z, following a Gaussian distribution, as input and generates images of size
64 × 64 × 3 as output. The discriminator is mainly composed of stacked convolutional
layers and pyramid connections. It comprises four convolutional layers, two sets of pyramid
connections, and one fully connected layer. Conventional techniques such as ReLU [7] and
LN [6] are used to prevent overfitting and gradient disappearance. The discriminator network
takes RGB images as input and outputs binary classification results. The perceptual network
is a substructure of the VGG-19 [21] network pre-trained on the ImageNet dataset. We fix
its parameters and select the first 16 layers as our feature extraction network model. In the
overall architecture of the model, our innovation lies in the design of a pyramid structure
for the backbone network to accommodate small sample sizes in image datasets. We have
also introduced the perceptual network, which serves as an image semantic feature extraction
module.

3.2 Pyramid Connection

The function of the pyramid connection is to fuse feature maps of different scales through
upsampling and downsampling operations in different ways. As the connected feature maps
have sizes resembling a “pyramid” structure, we named it the pyramid connection. Figure 2
illustrates the details of the pyramid connection. In the figure, the generation network utilizes
bilinear interpolation for upsampling, which, together with transposed convolution (Deconv),

Fig. 2 Pyramid Connection Details

123



  149 Page 6 of 21 C. Ma et al.

performs feature extraction and fusion operations in the model. This is because: (1) Using
transpose convolution for upsampling, although it can increase the size of the feature maps
and refine coarse feature maps, it often leads to the “checkerboard artifacts” due to uneven
overlap of the convolution kernels. To address this issue,we introduce the pyramid connection
and utilize upsampling with bilinear interpolation, which helps alleviate the problem of
pixel discontinuity and mitigate the checkerboard effect. (2) Due to the varying expressive
power of feature maps at different levels, shallow-level features primarily reflect details
such as brightness, edges, while deep-level features capture overall structures and semantic
information. The introduction of pyramid connections allows the model to integrate features
from different dimensions, enhancing the feature extraction capability of the model. (3)
Additionally, the introduction of pyramid connections provides the model with receptive
fields different from those obtained by transpose convolution, further enhancing the model’s
performance.

3.3 Perceptual Loss

As shown in Fig. 1, we innovatively incorporate a perceptual network to extract high-
dimensional feature maps. This network is based on a pre-trained VGG network with 16
layers, which exhibits strong generalization capabilities due to the rich species diversity in
the ImageNet dataset. Based on this, we introduce the perceptual loss, which ensures high-
dimensional semantic similarity between the generated samples and the original samples.
The perceptual loss is defined as the Euclidean distance between the feature representations
of the reconstructed images and the real images, as shown in Eq. 1.

LP � 1
WH

W∑

i�1

H∑

j�1

(
φ(x)i , j − φ(̃x)i , j

)2
(1)

Here W and H respectively represent the dimension of the output feature map within the
VGG network, namely height and width.φ(̃x) represents the output characteristic matrix of
the generated image in Perceptual Network, and φ(x) represents the output characteristic
matrix of the real image in Perceptual Network.

In particular, we combine the original critic loss calculated by Wasserstein distance with
perceptual loss as our loss function to optimize the GAN model. Our new objective can be
expressed as follows:

LG � −Ex∼Pnoise D(G(x)) + μLP (2)

LD � −Ex∼Pr D(x) + Ex̃∼Pg D(̃x) + λEx̂∼P̂x

[(‖∇x̂ D(̂x)‖2 − 1
)2

]
(3)

where pnoise denotes normal distribution, pr represents real plant data distribution.Pg rep-
resents the data distribution of the generated image.E represents mathematical expectation.
px̂ is defined implicitly as sampling uniformly along straight lines between pairs of points
sampled from pr and the generator distribution G(pnoise). Enforcing the unit gradient norm
constraint everywhere along these straight lines is sufficient. We train the discriminator and
the generator by alternatively minimizing LG and LD .
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4 Experimental Setup

4.1 Experimental Environment

Our experiments are conducted on the graphics processing units (GPUs) of NVIDAGeForce
RTX 3060Ti with 8 GB graphics memory size, 14 GHz memory clock, bit width is 256bit. In
addition, the processor model of the computer is i7-12700 K, the memory size is 32 GB, and
the operating system is Window 10. The model implementation is based on TensorFlow 2.0
framework, Integrated Development environment (IDE) is PyCharm. The main toolkits used
are numpy, random, glob, imageio, math, time, os, etc. The main programming language
used is Python 3.7.

4.2 Dataset

We conducted extensive experiments on two image datasets, “Flower” and “Animal”.
The “Flower” dataset consists of images of five different types of flowers: dandelions,

sunflowers, tulips, daisies, and roses. Each category contains approximately 1000 images. It
is worth noting that dandelions, daisies, and sunflowers belong to the family Asteraceae and
share highly similar phenotypic features, which poses a challenge for our classification task.

The “Animal” dataset includes images of three animal categories: cats, dogs, and tigers,
with 500 images per category. To facilitate the experiments, all images were resized to a
uniform size of 64 × 64 pixels.

All the real images from the original dataset were included in the training of the GAN
network. To evaluate the augmented effect of SSGAN,we also trained and tested the classifier
using the augmented dataset.

The augmented dataset consists of 500 real images per category and 400 generated images
per category. From each category, 100 randomly selected real images were used as the test
set for the classifier, while the remaining data was used for training the classifier.

4.3 Hyperparameters

In contrast to other deep learning models, the training of a GAN requires iterative updates
of the generator and discriminator, aiming to reach a Nash equilibrium state where both
components haveminimized their individual losses. Training is halted once themodel reaches
this equilibrium. At this stage, a lower loss value indicates superior model performance.

4.3.1 Learning Rate

We conducted experiments with different learning rates, and observed that excessively large
learning rates led to significant oscillations in the model’s performance. As the learning
rate decreased, the oscillations gradually diminished, but the convergence speed also slowed
down. We present the results of three different learning rates 10–3, 10–4, and 10–5 to observe
the model’s training process, as shown in Fig. 3. Figure 3 illustrates that when the learning
rate was set to 10–3, the model exhibited significant oscillations. In comparison, the model
converged faster when the learning rate was set to 10–4 compared to 10–5. Consequently, we
ultimately chose a learning rate of 10–4 for our model.
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Fig. 3 Model training process with different learning rates

4.3.2 �and �

In the loss function, we varied the hyperparameter μ and evaluated the model’s training
process. The symbols μ and λ represent hyperparameters in Eqs. 2 and 3, where μ is a
hyperparameter that controls the influence of the perceptual loss LP on the generator loss,
and λ is a hyperparameter that controls the influence of the gradient penalty regularization
term on the discriminator loss. Figure 4 illustrates the training results for different values
of μ. Specifically, we tested μ with values of 1, 0.1, and 0.01. From the figure, it can be
observed that when μ is set to 1, the model exhibits faster convergence but yields higher loss

Fig. 4 Model training process with different values of μ in the loss function
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Fig. 5 Model training process with different values of λ in the loss function

values. In contrast, when μ is set to 0.01, the model achieves faster convergence to the Nash
equilibrium and demonstrates the lowest loss values compared to the case with μ set to 0.1.

In our experiments, we varied the hyperparameter λ in the loss function and examined
the model’s training process. Figure 5 presents the training results for different values of λ.
Specifically, we tested λ with values of 1, 5, 10, and 15. From the figure, it can be observed
that when λ is set to 1, SSGAN achieves the minimum loss value at the Nash equilibrium.
Consequently, based on this observation, we determined the optimal hyperparameter settings
for our model as a learning rate of 10–4, μ value of 0.01, and λ value of 1.

4.4 EvaluationMetrics

4.4.1 Visualization of Generated Results

The real visual feedback of the generated image is important metrics to evaluate the ability
of model generation. This evaluation method will generate images for visual output, and
compare them to observe the clarity of texture details, image diversity and whether pattern
collapse occurs.

4.4.2 t-SNE

t-SNE (t-Distributed Stochastic Neighbor Embedding) is a non-linear dimensionality reduc-
tion algorithm that is particularly suitable for reducing high-dimensional data to 2D or
3D while preserving the similarity in the joint probability distribution between the low-
dimensional and original data. Let xi and x j represent points in the original space, and yi and
y j represent their corresponding points in the low-dimensional space. The objective function
Obj of t-SNE can be expressed as follows:

pi j � exp(−‖xi−x j‖2/2δ2∑
k ��l exp(−‖xk−xl‖2/2δ2 (4)
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qi j �
(
1+‖yi−y j‖2

)−1

∑
k ��l

(
1+‖yk−yl‖2

)−1 (5)

Obj � min
∑

i j pi j log
pi j
qi j (6)

Here, pi j represents theGaussian joint probability distribution betweendata points in the orig-
inal data space, while qi j represents the corresponding joint probability distribution between
points in the target space after dimensionality reduction. Specifically, qi j is computed using
the Student’s t-distribution. The objective function, as defined in t-SNE, aims to minimize
the Kullback–Leibler divergence between these two probability distributions, indicating the
similarity between the distributions.

4.4.3 Objective Evaluation Metrics

Meanwhile, inception score (IS) and Fréchet inception distance (FID) are two other important
indicators to measure the quality and diversity of the pictures generated by the GAN. IS
evaluates the quality of the model from both image clarity and image diversity perspectives.
But FID considers more the connection between the generated images and the real images.
The larger the IS value, the smaller the FID value, and the better the expression effect. Their
formulas for the calculation are as follows:

I S(G) � exp

(
1

N

N∑

i�1

DKL

(
p(y|x (i))|| p̂(y)

)
)

(7)

F I D(G) �
∥
∥
∥μr − μ2

g

∥
∥
∥ + Tr

⎛

⎝
∑

r

+
∑

g

−2

(
∑

r

∑

g

)1/2
⎞

⎠ (8)

Time and space complexity are two basic metrics to measure the performance of network.
This evaluationmethod separately calculates the number of parameters and the floating-point
operations (i.e., FLOPs) to measure the complexity of the algorithm.

The smaller the spatiotemporal complexity metric, the less resources required for model
training and the higher the model performance.

Parameter number

Np � (kw × kh × cin) × cout + cout + nin × nout + nout (9)

FLOPs

NF � [2 × (kw × kh × cin) × cout + cout ] × H × W + 2 × (nin × nout ) + nout (10)

kw × kh represents the kernel size of the convolution layer; nin indicates the number of input
channels and nout indicates the number of output channels. H and W represents the height
and width of the output feature map.

4.4.4 Improvement in Classification Performance

In this evaluationmethod, ResNet-18 [11] is chosen as the classifier, and the augmented image
set is used for the classification task. The validity of the model can be judged intuitively by
comparing whether the classification accuracy and the precision are improved before and
after the augmentation of the image set. The above metrics can be defined as follows.

Accuracy � T P+T N
T P+FP+T N+FN (11)
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Fig. 6 Pyramid connection alleviates checkerboard artifacts

Precision � T P
T P+FP (12)

T P , T N and FN represent the samples belong to True Positive (TP), False Positive (FP),
False Negative (FN), and True Negative (TN) of the category, respectively.

5 Results

5.1 Ablation Study

In this section, we conducted detailed ablation experiments to demonstrate the individual
effects of the pyramid connection module and the perceptual loss component on the overall
model.

5.1.1 Generated Image Visualization

Checkerboard artifact refers to the grid-like pattern of varying color intensity that appears
in generated images, resulting from uneven overlapping of deconvolution operations [20].
Figure 6 illustrates a comparison between the generated images of SSGAN before and after
the introduction of pyramid connections. The left side of Fig. 6 shows the images generated
by SSGAN without pyramid connections, while the right side shows the images generated
by SSGAN with pyramid connections. It can be observed that the introduction of pyramid
connections effectively alleviates the checkerboard artifacts.

5.1.2 Evaluation of Generated Image Quality and Diversity

Table 1 presents the FID and IS scores of SSGAN, SSGAN without Perceptual Loss (PL),
SSGAN without Pyramid Connection (PC) and SSGAN without Pyramid Connection and
perceptual loss. The IS score measures the clarity and diversity of generated images, where
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Table 1 FID and IS results of the
ablation experiments Model FID IS

SSGAN 108.4 22.688

SSGAN without PL 119.4 21.101

SSGAN without PC 127.7 20.989

SSGAN without PL & PC 132.7 20.515

a higher score indicates better performance. On the other hand, the FID score reflects the
distance between generated and real images, with a lower score indicating better similarity.

According to Table 1, the complete SSGAN achieved the best FID and IS scores, demon-
strating that it generates images with the highest quality and diversity. The Perceptual Loss
resulted in an FID reduction of 11 and an IS improvement of 1.58. The Pyramid Connection
led to an FID reduction of 19.3 and an IS improvement of 1.7. The combination of perceptual
loss and pyramid connections in SSGAN led to a decrease of 24.3 in FID and an increase of
2.17 in IS. This confirms the positive impact of both components in enhancing the overall
performance of the model.

5.1.3 t-SNE Visualization

t-SNE is employed as a metric to assess the similarity between generated and original images
in terms of their distribution. A well-clustered distribution of generated and original images
in the t-SNE space indicates high-quality generated images. Moreover, if the generated
images exhibit significant dispersion, it signifies a greater diversity in the generated image set.
Figure 7 showcases the augmented results of several image classes in the “Flower” dataset.

It can be observed that the generated images by SSGAN exhibit the highest overlap
with the real images and demonstrate good dispersion. The SSGAN without perceptual loss
generates images with lower dispersion, indicating a lower diversity in the generated image
set. Similarly, the SSGANwithout pyramid connection generates images with comparatively
lower dispersion compared to the SSGAN.

5.2 Comparison Experiment

In this section, we trained the proposed method along with several classic approaches such
asWGAN, SAGAN, DCGAN, andWGAN-GP on a small-sample dataset. We compared the
augmented effects among these methods and demonstrated the effectiveness of the proposed
approach. The augmented effects among thesemethodswere compared, and the effectiveness
of the proposed approach was demonstrated.

5.2.1 Generated Image Visualization

Figure 8 presents the generated images from several methods, providing an intuitive impres-
sion of their respective generation performances. It can be observed that SSGAN produces
images with superior clarity, diversity, and finer details in terms of edges and textures com-
pared to other methods. Following SSGAN,WGAN-GP and SAGAN exhibit relatively good
generation results, while DCGAN and WGAN perform less favorably in generating high-
quality images.
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Fig. 7 T-SNE visualization results of ablation experiments

Fig. 8 Visualization of generated images from several methods
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Fig. 9 t-SNE Visualization of generated images from various methods

5.2.2 t-SNE Visualization

The distribution of generated images in t-SNE space can reflect the quality and diversity of
the images. A higher degree of overlap between the distributions of generated and original
images in t-SNE space indicates higher image quality. Additionally, if the distribution of
generated images itself exhibits good dispersion in t-SNE visualization, it indicates better
diversity of generated images.

Figure 9 displays the t-SNE visualization results of the generated images by various
methods on the “Flower” dataset. It can be observed that compared to other methods, SSGAN
exhibits better dispersion in the distribution, indicating superior diversity in the generated
images. Additionally, the distribution of SSGAN shows the highest degree of overlap with
the distribution of the original data, confirming the highest quality of the generated images.

5.2.3 Quantitative Evaluation

We compared the generation performance of our proposed SSGAN with six classical GANs
on the “Flower” dataset, and the results are shown in Table 2, the optimal performance is
highlighted in bold. Our SSGAN achieved state-of-the-art performance in terms of both
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Table 2 FID and IS results of various GANs

Model FID IS Parameter FLOPs

SSGAN 108.4 22.688 25M 305G

DCGAN 145.1 19.327 36M 998G

WGAN 131.4 20.375 28M 250G

SAGAN 153.2 17.432 59M 714G

WGAN-GP 127 21.3 28M 395G

ACGAN 141.4 18.5 63M 408G

ReACGAN 130 19.1 76M 428G

The bold values indicate the best performance observed in the comparative experiments

FID and IS metrics. Specifically, the FID score decreased by 18.6 compared to the second-
best method, and the IS score increased by 1.39 compared to the second-best method. This
indicates that the images generated by SSGAN exhibit better clarity and diversity. Compared
to other models, SSGAN has lower spatiotemporal complexity.

5.2.4 Classification Improvement

We utilized the augmented datasets to train the ResNet-18 [11] classifier and evaluated
the improvement in classification performance. The training set of the augmented dataset
consisted of two variations: 400 real images combined with 200 generated images, and
400 real images combined with 400 generated images. Table 3 presents the classification
performance of the classifier trained on the augmented datasets using different methods, the
optimal performance is highlighted in bold.

Table 3 Performance of classifier trained on augmented “Flower” dataset

Augmented data 400 + 200 400 + 400

Model Accuracy Precision Accuracy Precision

Original data 0.7296 0.75 0.7296 0.75

ACGAN 0.7956 0.8002 0.7768 0.7838

DCGAN 0.771 0.765 0.769 0.778

WGAN-GP 0.788 0.772 0.795 0.803

ReACGAN 0.7984 0.8028 0.7756 0.7766

SAGAN 0.78388 0.7853 0.78564 0.78616

WGAN 0.7856 0.791 0.7992 0.8016

SSGAN 0.813 0.817 0.819 0.825

SSGAN without PL 0.806 0.801 0.807 0.812

SSGAN without PC 0.794 0.8 0.793 0.807

SSGAN without PL&PC 0.781 0.792 0.788 0.798

The bold values indicate the best performance observed in the comparative experiments
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Fig. 10 Visualization of generated results by various GANs on the “Animal” dataset

Our proposed SSGANmethod demonstrates the best performance in enhancing the accu-
racy of downstream classification tasks. In both variations of the augmented datasets, it
achieves state-of-the-art results in terms of Accuracy and Precision. Specifically, compared
to the second-best method, SSGAN improves Accuracy by 2% and Precision by 2.3%.

5.3 Model Generalization

To demonstrate the generalization performance of our model, we applied several different
methods to augment the “Animal” dataset and compared their generated results.

5.3.1 Generated Image Visualization

We randomly selected six images from each method’s generated image dataset for visualiza-
tion, two images per class. The results are shown in the following figure.

Based on Fig. 10, it is evident that the images generated by SSGAN exhibit the best clarity
and edge texture features. WGAN-GP follows closely in performance.

5.3.2 Quantitative Evaluation

Similarly, we performed sample augmentation using various GAN methods on the Animal
dataset and compared the corresponding generated images based on their FID and IS results.
Please refer to Table 4 for detailed information, the optimal performance is highlighted in
bold.

According to Table 4, SSGAN also achieves state-of-the-art performance on the Animal
dataset. Specifically, it exhibits a decrease of 6.6 in FID compared to the second-best method
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Table 4 FID and IS results of
generated images by GANs on
the “Animal” dataset

Model FID IS

SSGAN 227.3 26.4

DCGAN 268.0 17.6

WGAN 243.0 22.4

SAGAN 257.1 21.2

WGAN-GP 233.9 23.2

The bold values indicate the best performance observed in the compar-
ative experiments

Table 5 Performance of classifiers trained on the augmented “Animal” dataset

Augmented data 400 + 200 400 + 400

Model Accuracy Precision Accuracy Precision

Original data 0.9087 0.898 0.9087 0.898

Random clipping 0.9227 0.923 0.9333 0.935

DCGAN 0.9466 0.95 0.9467 0.946

WGAN-GP 0.9573 0.953 0.9627 0.964

SAGAN 0.9493 0.947 0.9547 0.954

WGAN 0.9493 0.9468 0.952 0.951

SSGAN 0.962 0.960 0.968 0.971

The bold values indicate the best performance observed in the comparative experiments

(WGAN-GP), and an increase of 3.2 in IS. This demonstrates the strong generalization
capability of the proposed SSGAN method.

5.3.3 Classification improvement

We once again trained the ResNet-18 classifier using the augmented datasets generated by
different methods and compared their performance. The results are shown in Table 5, the
optimal performance is highlighted in bold.

According to Table 5, the classifier trained on the Animal dataset augmented by SSGAN
achieved the best performance. It outperformed the second-best method, WGAN-GP, with
improvements of 0.53% in Accuracy and 0.5% in Precision. The classifier’s overall perfor-
mance on the Animal dataset was generally higher than on the Flower dataset. This can be
attributed to the Animal dataset being a relatively simpler classification task. However, the
performance improvement achieved through training on the augmented dataset was limited.
This further demonstrates the good generalization performance of SSGAN.

5.4 Model Robustness

Robustness in deep learning refers to the model’s ability to maintain stability and effective-
ness in the face of subtle modifications or perturbations to network parameters, as well as
when input data is affected by noise (which may obscure critical information). Robustness
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evaluation is an important consideration to ensure that amodel canmaintain high performance
when confronted with various data perturbations and noise. These approaches collectively
contribute to evaluating the robustness of deep learning models:

Data Distribution Shift Assessment: In practical application scenarios, deep learningmod-
els may encounter data distributions that differ from those in their training data. Therefore,
evaluating a model’s robustness to data distribution shifts is of paramount importance. Our
training data consists of noise that adheres to a normal distribution. To assess the model’s
performance across various distributions, we introduce noise conforming to different data
distributions, such as Poisson distribution and random distribution, as input. This enables us
to evaluate the model’s performance under diverse distribution settings.

Noise and Interference Robustness Evaluation: Assessing the model’s robustness to var-
ious types of noise and interference is essential. Random noise can be added on top of the
original input, and the model’s performance change can be observed.

Sensitivity Analysis: Sensitivity analysis evaluates the model’s sensitivity to variations in
input parameters. Analyzing the response of the model to small changes in input parameters
helps understand the model’s responsiveness to input variations. In SSGAN, we set hyper-
parameters μ and λ to 0.01 and 1, respectively. By perturbing the hyperparameter settings,
the model’s robustness can be assessed.

Based on the three aspects mentioned above, we conducted comparative experiments, and
the experimental results are presented in Tables 6 and 7.

Table 6 presents the performance of SSGAN when different distributions are used as
inputs. It can be observed that using different data distributions as inputs has minimal impact
on the model’s performance. Additionally, adding random noise on top of the training data
distribution also has very little effect on the model’s performance. This demonstrates the
robustness of the model to data distribution shifts and noise interference.

Table 7 shows the performance of SSGAN with different hyperparameter settings. It can
be observed that the further the hyperparameters are set from their optimal values, the faster
the model’s performance decreases. However, the model continues to function normally
without any crashes. This demonstrates that the model maintains stability and effectiveness

Table 6 Performance of SSGAN
using different input distributions Model FID IS

SSGAN with normal noise 108.4 22.688

SSGAN with poisson noise 109.624 22.034

SSGAN with random noise 110.558 22.010

SSGAN with normal noise + random 110.021 22.257

Table 7 Performance of SSGAN
with different hyperparameters Model FID IS

u � 0.01, λ � 1 108.4 22.688

u � 0.1, λ � 1 110.524 22.153

u � 1, λ � 1 111.357 21.032

u � 0.01, λ � 5 115.981 20.477

u � 0.01, λ � 10 117.066 20.109
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when facing minor modifications and perturbations in network parameters, highlighting its
robustness.

6 Discussion and Conclusion

In real-world scenarios, the problem of small samples in image datasets is widely prevalent.
This limitation hinders the accuracy of recognition tasks, particularly in applications based on
deep learning techniques such as fault image detection, critical medical image diagnosis, and
endangered species recognition. Small sample image augmentation techniques can augment
the image dataset, thereby improving the accuracy of downstream image learning tasks. Thus,
these techniques hold significant research value.

The paper proposes a novel image small sample augmentation method called SSGAN
based on semantic similarity. The key innovations are as follows:

(1) The design of a relatively shallow GAN backbone structure to adapt to small sample
sizes. This allows the model to effectively learn from limited data.

(2) The introduction of a pyramid connection structure to enhance the model’s feature
extraction capability and alleviate the checkerboard artifact issue.

(3) The optimization of the loss function using an image high-dimensional semantic feature
filtering module, which enhances the model’s learning ability by focusing on important
semantic features.

These innovations collectively contribute to the effectiveness of the SSGAN method in
addressing the challenges posed by small sample sizes in image augmentation tasks. We
conducted extensive ablation and comparative experiments on the “Flower” dataset. The
results of the experiments demonstrate that SSGAN achieves state-of-the-art performance
in the task of small sample image enhancement. It outperforms the best-known methods by
improving the FID and IS metrics by 18.6 and 1.4, respectively. The dataset enhanced by
SSGAN contributes to achieving state-of-the-art performance in downstream classification
tasks, with a 2.2% increase in accuracy compared to the best-known methods. In addition,
transfer experiments were conducted on the ’Animal’ dataset, and promising results were
achieved, demonstrating the good generalization performance of themodel. Through compar-
ative experiments, we demonstrated that themodel exhibits good robustness. Due to hardware
limitations, we did not perform augmentation experiments on high-resolution images. In the
future, we will continue to research methods for augmenting small sample high-resolution
images.
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