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Abstract
Graph neural networks (GNNs) have emerged as a powerful tool in graph representation
learning. However, they are increasingly challenged by over-smoothing as network depth
grows, compromising their ability to capture and represent complex graph structures. Addi-
tionally, some popular GNN variants only consider local neighbor information during node
updating, ignoring the global structural information and leading to inadequate learning and
differentiation of graph structures. To address these challenges, we introduce a novel graph
neural network framework, GraphSAGE++. Our model extracts the representation of the tar-
get node at each layer and then concatenates all layer weighted representations to obtain the
final result. In addition, the strategies combining double aggregations with weighted concate-
nation are proposed,which significantly enhance themodel’s discernment and preservation of
structural information. Empirical results on various datasets demonstrate that GraphSAGE++
excels in vertex classification, link prediction, and visualization tasks, surpassing existing
methods in effectiveness.
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1 Introduction

Graph structures are very common in real life. GraphNeural Networks (GNNs) have emerged
as a formidable tool for capturing and learning the low-dimensional representations of nodes
in these structures. These learned vector representations can be applied to a variety of tasks
on graphs, including vertex classification [1], relation learning [2] and link prediction [3–5].
GNNs enhance the expressiveness of these vectorswhile preserving the structural information
of graphs through their unique hierarchical architecture. Wu et al.’s comprehensive survey
on graph neural networks provides a broad background for the field, detailing various neigh-
borhood aggregation and graph pooling schemes aimed at enhancing models’ capabilities in
understanding and representing graph information [6].

However, due to the complexity of network structure, as the number of network layers
increases [7], node representations become difficult to distinguish, and classifiers find it
difficult to assign correct labels to each node. Training accuracy decreases as the number of
layers increases, and the over-smooth problem [8–10] also occurs. To solve this problem,
strategies for jump connections are designed. Representative algorithms include GCNII [11],
ResGCN [12], and JK-Nets [13], however, these methods do not account for the varying
impacts of neighbors at different hops in the network.

At the same time, these variants of GNNs cannot effectively distinguish graph structure
information on simple graphs(A “simple graph” refers to networks with fewer nodes and
straightforward edge relationships, while a “complex graph” is described as having a dense
network with intricate connections, potentially including a large number of nodes.) under
certain conditions [14], as shown in Fig. 1. Nodes v and v′ are the central nodes, and their
representations are generated by aggregating neighboring features. Analyzingwhether differ-
ent structures can be distinguished under different aggregation function settings (if different
structures can be identified, their representations of the two should be different). In Fig. 1a,
the two nodes′ results aggregated by Mean and Max are [1/2,1/2] and [1,1], respectively.
Mean and Max aggregation cannot distinguish their structures, while in Fig. 1b, the Max
aggregation over the neighborhood of v and v′ yields the same representation [1,1], the Max
aggregation cannot distinguish their structures. The above example shows that in simple
graph structures, some variants of GNN [15] cannot effectively distinguish graph structure
information using aggregation functions under certain conditions. In addition, these variants
of GNN pay more attention to local neighboring node information and relatively less con-
sideration to the structure information of the entire graph during node updates, which cannot
capture the relationships and global structure between nodes in the graph well. In summary,
the existing classical GNNs expression ability are not powerful to capture different graph
structures.

GIN [14] aggregates neighboring nodes, combines the aggregation results with the node
features, and finally uses fully connected network that can fit any rule to make them have
monomorphic properties. It introduces a learnable parameter to adjust its own features and
adds the adjusted features to the aggregated neighboring features, ensuring that the central
node and neighboring nodes are distinguishable. However, this model mainly focuses on the
neighbor information and have a limited understanding of global information.

In our work, we propose an improvedmethod based onGraphSAGE, which utilizes neigh-
bor sampling and aggregation strategies to effectively capture local and global information
in the graph structure. The main contributions are as follows:

• We propose a deep learning framework GraphSAGE++ based on GraphSAGE. It extracts
the feature representation of the target node at each layer and then concatenates all layer
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Fig. 1 Motivation for this paper. a Demonstrates that when graph structures with nodes labeled [1,0] and [0,1]
are aggregated using Mean and Max functions, the resulting vectors are indistinguishable, hence unable to
capture unique structural information. b Shows that the Mean aggregation results in distinguishable vectors,
whereas the Max function still produces an indistinguishable vector [1,1], highlighting the limitation of these
aggregation functions in differentiating betweengraph structures. This indicates the need formore sophisticated
aggregation mechanisms to accurately reflect the underlying graph topology in feature representations

feature representation to obtain final result, where the i th layer feature information equals
i-hop (i=1,2,3...) structure information between each target node and its i-hop neigh-
bors. Considering the different impact of neighbors at each layer, our model assigns
corresponding weights and proportions based on the role of the i th layer feature infor-
mation in the global representation. This final representation preserves neighborhood
information from 1 to K hops, thus solving the over-smoothing problems.

• Introducing strategies that actively combine double aggregations with concatenation
helps enhance the distinction of structural information and improve the model’s expres-
sive capabilities.

• We conduct extensive experiments on vertex classification and prediction tasks. These
experiments are conducted on several real datasets. The experimental results showed that
our method achieved better performance on graph datasets and demonstrated significant
advantages in tasks such as node classification and link prediction.

2 RelatedWork

In recent years, many methods have emerged in graph representation learning, aiming to
improve the expressive ability of graph structures.

Matrix decomposition-basedmethods:Matrix decomposition-basedmethods are a type of
method that utilizes matrix decomposition techniques to process graph data. These methods
typically represent the graph structure in matrix form and then apply matrix decomposition
algorithms to decompose and reduce the dimensionality of the graph matrix to obtain low
dimensional representations or features of the graph. In SVD-GCN [16, 17], singular value
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decomposition is performed on the adjacency matrix of a graph to decompose it into a prod-
uct of three matrices, including an orthogonal matrix, a diagonal matrix, and a transposed
orthogonal matrix. This decomposition can extract the eigenvectors and eigenvalues of a
graph, thereby capturing the structure and important information. NetMF [18, 19] decom-
poses the adjacencymatrix of a graph into a product of a node embeddingmatrix and a feature
embedding matrix. The node embedding matrix represents the position of a node in a low
dimensional space, and the feature embedding matrix represents the feature representation of
a node. By minimizing reconstruction errors and regularization terms, the embedding matrix
of node features is optimized, and low dimensional embedding representations with good
representation ability are learned. GraRep [20] integrates the obtained information bymanip-
ulating the probability matrix and captures the global structure by iteratively updating the
representation of nodes. DEGREE [21] discovers nonlinear interactions between subgraphs
throughout the aggregation process by decomposing their feedforward propagation process,
which helps to detect incorrect predictions and improve the model’s credibility. As the size
of the graph increases, the computational and storage costs also increase, and information
loss may occur. In contrast, methods based on graph neural networks can better and more
flexibly handle large-scale graph data with high computational efficiency and scalability.

Subgraph isomorphism-based methods: Subgraph isomorphism-based methods have a
wide range of applications in graph data analysis and learning. They are able to utilize the
structural information of subgraphs to extract important features of graphs and perform tasks
such as graph similarity metrics, graph matching and generation, etc. GSN [22] introduces a
mechanismof subgraph isomorphismcounting,which compares andmatches local subgraphs
in a graph with a set of predefined subgraph patterns. By counting the number of successfully
matched subgraphs, the frequency of occurrence or distribution of different subgraph patterns
in the graph can be obtained to capture the local structure and connectivity patterns of
the graph more comprehensively, and to enhance the ability of graph neural networks to
differentiate between different subgraphs. Algorithms such as WL [23], GraphSNN [24]
determine subgraph isomorphism of nodes by comparing their labels with the label of their
neighboring nodes. Two nodes are considered isomorphic if they have the same sequence of
labels. This comparison based on subgraph isomorphism allows these algorithms to identify
graphs with similar local structures and is used for graph isomorphism determination and
graph classification tasks. However, due to the inability of WL [23] and GraphSNN [24] to
deal with the order sensitivity of node labels and global structure information, they may not
be able to accurately represent some graphs with complex global structures.

Methods based ongraphneural networks:Methods such asGCN[25, 26], SGCN[27],GIN
[14], and Causal GraphSAGE [28] aggregate information over neighboring nodes through
convolution of multiple layers. These methods can capture the local structure of the nodes
but have limitations in dealing with the global structure. There are some methods that focus
on improving the neighbor sampling. GraphSAGE [29] is one of the classical methods that
aggregate information by randomly sampling neighbor nodes, which can significantly and
efficiently reduce the computational cost, enabling node embedding learning even on large
graphs. Some methods introduce importance weights or attention mechanisms for neigh-
boring nodes, such as GAT [30, 31], which use the degrees of neighboring nodes or the
similarity between nodes to assign weights and aggregate node features at each layer by
attention weights. These methods can more accurately select neighbor nodes for information
aggregation and improve the quality of node representation. However, current approaches
tend to treat multi-scale representation learning and neighbor sampling as independent steps
and are not well integrated.
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Methods based on randomwalk:MIRW [5] considers the mutual influence between nodes
to better capture the complexity of the network. Thismethod contrastswith traditional random
walk strategies, which consider all nodes and links equally important and therefore cannot
fully reflect the general structure of the graph. In addition, CSADW [4] enhances the link
prediction ability in social networks by combining a new transition matrix with structural
and attribute similarity. This combination improves traditional techniques by ensuring that
random walks are biased towards nodes with similar structures, thereby capturing structural
and unstructured similarities. They perform well in capturing local node interactions and
structural attribute similarities, but they have limitations in handling global graph structures
[32].

To effectively address these issues, we propose the GraphSAGE++ algorithm, which con-
siders multi-scale graph structure information by a weighted multi-dimensional mechanism.
This involves assigning different weights to different hop neighboring nodes based on their
importance to redefine their dimensionality, thereby better capturing local and global graph
structure information. Our method can more comprehensively model the structure of graphs
and improve the performance of graph representation learning.

3 GraphSAGE++

In this section, we will introduce our framework. We first introduce the definition of the
relevant problem, then introduce its overall framework, and finally discuss how to integrate
the global structural information of the graph more effectively.

3.1 Problem Definition

This section provides some basic definitions.

Definition 1 Given a graph G = (V , E, X), where V = {v1, v2, ..., vn}, It represents a set
of n nodes in a graph. N = |V | is the number of nodes in the graph, and |E | is the number
of edges. E = {ei, j }ni, j=1, Represents the set of all edges in a graph, When there is an edge

between vi and v j , ei, j = 1, otherwise ei, j = 0. X ∈ RN×D represents the feature matrix
for all notdes with xv ∈ RD representing the feature vector of a node v.

Definition 2 The feature vector of v at the i-th layer denoted by hiv and h0v = Xv . N (v) =
{u ∈ V : (u, v ∈ E)} represents the neighborhood set of vertex v in the graph.

3.2 GraphSAGE

The advantage of GraphSAGE [29] lies in its ability to effectively capture local structural
information of nodes and its scalability to process large-scale graph data. The main idea is to
obtain node representations by aggregating neighbor information through neighbor sampling.
GraphSAGE is a K -layer network. For a node v, three operations of neighbor sampling,
aggregating neighbor information, and node representation updating are performed at each
layer. Specifically, at the i th layer the model firstly collects fixed neighborsN (v) of the node
v. Then it aggregates the neighbor information, as shown in Eq. (1).

hiN (v) ← AGGEREGAT E
(
hi−1
u , u ∈ N (v)

)
(1)
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Finally, it updates the vector representation of node v, as shown in Eq. (2), where Sigmad
function σ is a nonlinear function: 1

1+e(−x) , it is capable of extracting nonlinear relationships.

hiv ← σ
(
Wi · CONCAT

(
hi−1

v , hiN (v)

))
. (2)

Wi is the training parameter, which is obtained by training with the following objective
function:

L(p, q) = −
∑

(p(v)logq(v) + (1 − p(v))log(1 − q(v))) (3)

This objective function mainly portrays the distance between the actual output (probabil-
ity) and the desired output (probability). The probability distribution p is the desired output,
and the probability distribution q is the actual output. The smaller the value, the closer the
two probability distributions are.

3.3 Framework of GraphSAGE++

GraphSAGE suffers from the over-smoothing problems. And it mainly captures the local
structural information of the nodes, while the global structural information of the graph is
not effectively captured. To solve the problems, we have improved GraphSAGE. Specifically,
for a node v, its direct neighbor nodes have the greatest influence on it. While the influence
of i-hop neighbor nodes gradually decreases as the hop increases. The overall framework is
shown in Fig. 2.

As shown in Fig. 2, At the i th layer the node v representation hiv is reserved after the three
operations of neighbor sampling, aggregating neighbor information, and node representation
updating. At the K th layer, the representations from all layer are concatenated to obtain the
final global representation of [h1v, h2v, ..., hKv ]. Such a representation preserves the neighbor
information from 1 to K hops, thus solving the over-smoothing problem.

Neighbors with different hops affect nodes differently, so the node vectors of each layer
are composed of global representations with corresponding weights and proportions. The
specific idea is that the dimension of the node representation decreases as the hops increases.
Let d be the dimension of the final global representation(the value of d can be set by the user,
and the value is 128 in the paper). Ni is the dimension of node representation from the i th
layer, K is the maximum number of layers of the model(the value in the paper is 8). The ratio
of the i th layer to d is pi , and the specific formula is shown as follows. We firstly compute
the value of the given ratio pi by the Eqs. (4) and (5), and then use Eq. (6) to calculate to get
the dimension Ni .

ϑ = (K − i + 1)
1
2 (4)

pi = ϑ∑K
0 ϑ

(5)

Ni = int(d ∗ pi ) (6)

Algorithm 1 shows the process of GraphSAGE++ forward propagation. Firstly, we ran-
domly sample the neighbor nodes of v using the neighbor sampling function. Then, by
means of the aggregation function, we obtain the representation hiu of the neighbor nodes of
v. Next, we perform a concatenating operation and obtain the representation of v by applying
the nonlinear change σ to the result of the concatenation. In line 8, we perform a normaliza-
tion operation on the representation of the vertex. Eventually, after concatenating all nodes
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Fig. 2 GraphSAGE++ architecture

Algorithm 1 GraphSAGE++ forward_propagation algorithm
Require: G(V , E); input features{Xv, ∀v ∈ V }; depth K ; aggregatorfunctions AGG-REGATE; Neighbor-

hood Sampling Function N ; non-linearity σ ; Weight matrices W = W1, ...,WK , ∀i ∈ {1, ..., K }
Ensure: Representation vectors after concatenating operation Hv

1: Function forward_propagation(Xv,W )

2: h0v ← Xv,∀v ∈ V ;
3: For i = 1 to K do
4: For v ∈ V do
5: Calculate Ni assigned to the current layer according to equation (4)
6: hiN (v)

← AGGEREGATE(hi−1
u , u ∈ N (v))

7: hiv ← σ(Wi · CONCAT (hi−1
v , hiN (v)

))

8: hiv ← hiv/||hiv ||2
9: Hv ← CONCAT (h1v, h1v, ..., hKv )

10: Return Hv

v, we obtain the final vector representation Hv : [h1v, h2v, ..., hKv ]. In line 5, we assign a fixed
number of dimensions to the representation at each layer by using Eq. (6) to ensure that the
important representation information is effectively preserved.

Algorithm 2 shows the GraphSAGE++ back-propagation process. The vector representa-
tion hv of vertex v at each hop is obtained by forward-propagation process, see line 4. Lines 3
to 5 are the process of calculating the loss value, firstly, softmax operation is performed on the
vector representation of each node to convert the node vector representation to a probability
distribution p, and then the label y of the node is converted to a one-hot encoding, which
is computed by the loss function to obtain the loss value. Lines 6 to 7 are the process of
calculating the gradient and updating the parameters.

Algorithm 3 is the GraphSAGE++ algorithm. Firstly, the weight matrix W is initialized
with Xavier.Then the global vector representation Hv of v is obtained by calling Algorithm 1
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Algorithm 2 GraphSAGE++ backward_propagation algorithm
Require: G(V , E); input features{Xv, ∀v ∈ V }; depth K ; learning rate lr ; gradient calculation function

gradients; encoding function one_hot ; Loss function value loss; Node label y
Ensure: Weight matrices W
1: Function backward_propagation(Xv, y,W , lr)
2: hv ← forward_propagation(Xv,W )

3: p ← so f tmax(hv)

4: q ← one_hot(y)
5: Calculate the loss value using equation (1), loss ← L(p, q)

6: gradient ← gradients(loss,W )

7: W ← lr ∗ gradient
8: Return W

forward_propagation, see lines 4 to 5 of the algorithm. Finally, the parameter update is
accomplished by calling Algorithm 2 back_propagation and the loop is iterated until the
whole model converges.

Algorithm 3 GraphSAGE++ Training parameters framework
Require: G(V , E); input features{Xv, ∀v ∈ V }; depth K ; learning rate lr ; Node label y
Ensure: Weight matrices W
1: Input G(V , E)

2: Initialize the weight parameter W with Xavier
3: Repeat
4: For v ∈ V do
5: Hv ← forward_propagation(Xv,W )

6: W ← backward_propagation (Hv, y,W , lr)
7: Until 100 iterations have been completed

3.4 Model Optimization

In this section, we make some improvements. As shown in Fig. 1, the Mean aggregation
andMax aggregation functions cannot effectively capture graph structure information. Mean
aggregation takes the average of the neighboring features of a node, which means that each
neighbor’s feature has the same weight on the final aggregation result. This aggregation
method can lead to information loss because it ignores the importance differences between
different neighboring nodes. In some cases, mean aggregation may not be able to distinguish
different neighboring nodes because their features are mixed together. Max aggregation takes
themaximumvalue of the neighboring features of a node as the aggregation result. This aggre-
gation method preserves the most important features in each neighboring node, but may also
lose other information. Max aggregation usually focuses more on certain important neighbor
nodes, but does not pay attention to other neighbors. In order to better distinguish the struc-
tural information and improve the expression ability, we have designed different methods:
GraphSage++ with double aggregate (GraphSage++DA), GraphSage++ with double aggre-
gate & concat (GraphSage++DAC) andGraphSage++with double aggregate &mixed concat
(GraphSage++DAMC).
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Fig. 3 GraphSAGE++DA architecture

3.4.1 GraphGAGE++DA

TheGraphSAGE++DAis shown inFig. 3. Themain body consists of twoGraphSAGEmodels
aggregated using Mean and Max, respectively. At the i th layer, they share the parameter Wi .
The GraphSAGE model with the aggregation function of Mean obtains the feature vector
representation of the target node at the i th layer, hKv , and the GraphSAGE model with the
aggregation function ofMax get the feature vector representation hKv

′ of the target node at the
K th layer. Concatenateing these two feature vectors to obtain the final vector representation
of the target node [hKv , hKv

′]. GraphSAGE++DA does not effectively capture both local and
global graph structure information.

3.4.2 GraphGAGE++DAC

GraphSAGE++DA suffers from the same oversmoothing problem. For this reason Graph-
sage++DAC was designed. As shown in Fig. 4, the vector representation of each layer is
saved, and the dimension of each layer is based on Eq. (5). hiv indicates the representation
using the Mean aggregation function, and hiv

′ is the aggregation function of the i th layer is
the representation using the Max aggregation function. And the 2K vectors are concatenated
to obtain the final vector representation of the target node [h1v, h2v, ..., hKv , h1v

′, h2v ′, ..., hKv ′],
where the first K vectors are representations of K layers whose aggregation function is Max.

3.4.3 GraphGAGE++DAMC

The only difference between GraphSAGE++DAC and GraphSAGE++DAMC is that the
final vector representation of the concat is different, where the concatenated final vector is
represented as [h1v, h1v ′, h2v, h2v ′, ..., hKv , hKv

′].

4 Experiments

For the implementation of our models, we utilized the PyTorch Geometric (PyG) framework,
which is specifically designed for deep learning on irregularly structured input data such
as graphs. PyG is well-regarded for its efficient handling of large-scale graph data and its
extensive library of optimized graph neural network layers. All experiments were conducted
on a computing setup powered by an Apple M1 Pro(14 Core)@3.20Ghz processor, which
provided thenecessary computational capacity for the intensive training and evaluationphases
of our graph neural network models. Our code and implementation details can be found on:
https://github.com/ejwww/SAGE-plus.
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Fig. 4 GraphSAGE++DAC architecture

4.1 Experimental Settings

To evaluate the performance of different GNNmodes, the evaluation metrics listed in Table 1
were used, where TP, TN, FP, and FN represent the number of true positive, true negative,
false positive, and false negative, respectively.

Parameter settings: For all algorithms, the size of the training set varies from 0.1 to 0.9 and
the rest are test sets. The value of the dimension d set in the paper is 128. The learning rate lr
of the model is set to a value of 0.001. The batch size is set to 64. he value of the maximum
number of hops K of the model is set to 8. To optimize the model parameters, we employed
the backpropagation algorithm combined with the Adam optimizer. The Adam optimizer
is favored in the deep learning community for its adaptive learning rate capabilities and
momentum incorporation, which facilitate faster convergence and robust generalizationwhen
training complexmodels. For regularization, we integrated L2 regularization into our training
process to mitigate the risk of overfitting. This approach penalizes the square magnitude of
parameters, effectively constraining the complexity of the model and promoting simpler,
more generalizable solutions that perform better on unseen data. In order to increase the
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Table 1 The evaluation
indicators used in this study

Metric Vertices

Recall(Detection rate) T P
T P+FN

Precision T P
T P+FP

F1-Score 2 × Reecall×Precision
Recall+Precision

Accuracy T P+T N
T P+FP+T N+FN

generalization ability of the model and reduce the risk of overfitting, we introduced the
dropout parameter p. The value of p is set to 0.5, because a smaller value of p means that
more elements are discarded, the capacity of the model decreases, thereby reducing the risk
of overfitting; A larger value of p means that fewer neurons are discarded and the model’s
capacity increases, but it may also increase the risk of overfitting. The value of the maximum
number of hops K of the model is set to 8. The neighborhood sample sizes S1 = 20 and
S2 = 15 when the value of K is 2. When K is extended to higher values, we define that
S3 = 10, S4 = 5, S5 = 4, S6 = 3, and so on, decreasing layer by layer.We usemore neighbor
sampling for layers near the input layer, while layers near the output layer use less sampling.
This method can reduce computational complexity and avoid over smoothing, preventing
excessive use of computing and storage resources, especially when there are many network
layers.

4.1.1 Datasets

We test with seven real datasets commonly used in vertex embeddings. The details of these
datasets are shown in Table 2, including social networks, protein datasets and citation net-
works. Cora [33] is the standard citation network benchmark data set. Here, the vertex
represents the paper, the edge represents the reference of one paper to another, the vertex
feature is the word bag representation of the paper, and the vertex label is the academic topic
of the paper. The dataset, Pubmed [33] consists of 19,717 scientific publications on dia-
betes from the Pubmed database, in which it categorizes the entire data into three categories.
Amazon [33], the graph structure of the dataset represents the relationship between users and
goods, where users and goods are the nodes of the graph and the purchases between users and
goods are the edges of the graph. PP I [34] is a subgraph generated from human proteins
with different labels for different proteins; there are fifty labels in this dataset. Citeseer
[33] is a citation network where nodes in the dataset represent scholarly literature, directed
edges represent citation relationships between the literature, and the nodes contain some
characteristic information about the literature. EN ZYMES [35] is a collection of graph
data constructed on the basis of the protein structure of biomolecules, with a total of 600
graphs corresponding to 600 samples (protein molecules) with six structures. KarateClub
[36] describes the social relationships of members of a karate club with 34members as nodes,
and adds an edge between nodes if two members remain socially connected outside the club.

4.1.2 Baseline algorithm

We use the following representative algorithms in comparative experiments.
GCN [25] is one of the earliest proposed graph convolutional network model. It uses

adjacency matrices and node feature matrices for node feature updating and propagation.
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Table 2 Network datasets
statistics

Dateset Vertices Edges Labels

Cora 2707 5429 7

Citeseer 3327 4732 6

Pubmed 19, 717 44, 327 3

Amazon 13, 381 245, 778 10

PPI 3980 38, 397 50

ENZYMES 19, 580 74, 565 6

KarateClub 34 78 2

At each layer the feature representation of the current node is updated by aggregating the
features of neighboring nodes.

SGCN [27] is a simplified version of the graph convolution neural network model that
simplifies the graph convolution operation to a single linear operation by removing the non-
linear transformation and polynomial fitting, reducing model complexity and computational
overhead, and improving model interpretability and efficiency.

GraphSAGE [29] is the graph convolutional neural network algorithm,which aggregates
the neighbor information of the vertices through an aggregation function and updates it
through training, and as the number of iterations increases, the vertices are able to aggregate
to higher-order neighbor information.

J K -Net [13] is a framework for graph neural networks that aims to improve the perfor-
mance of GNNs on graph data tasks such as node classification, graph classification, etc. The
core idea of J K -Net is to integrate information from different levels of graph convolutional
layers through jumping connections (jumping connections) to improve the model’s ability to
learn the representation of the graph data.

GI N [14]:In graph isomorphism detection, the goal is to determine whether two given
graphs are isomorphic, i.e., their nodes can be mapped one-to-one and keep the edges con-
nected in the same relationship, GIN applies this idea to graph neural networks. Its learns
the graph representation by combining the features of the nodes with the features of the
neighboring nodes, which are then nonlinearly varied by a multilayer perceptron.

GCN I I [11] introduces a cross layer information transmission and importance coeffi-
cient mechanism, which adaptively adjusts the importance of different layers, taking into
account the information of multiple neighboring orders at each layer, and weighting them
with different importance coefficients.

GraphSNN [24] proposes a new message-passing framework, GMP, which can inject
local structures into aggregation schemes based on overlapping subgraphs Performance is
improved on different graph structures.

SV D-GCN [16] is a graph convolutional neural network model based on singular value
decomposition, which obtains low-order features and high-order features by performing
singular value decomposition of the adjacency matrix, and performs downscaling and repre-
sentation learning of graph data by preserving low-order features and truncating high-order
features.

DGCN [37] is a graph neural network model that further optimizes the topology of the
graph by decoupling the processes of feature learning and graph structure learning, where
the feature learning phase exploits the similarity of node features for feature propagation and
representation learning, and the graph structure learning phase focuses on the connectivity
between nodes to further optimize the topology of the graph.
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Fig. 5 Accuracy results of different algorithms for WL isomorphism detection with increasing K value on
different datasets, where our models can achieve higher WL-test accuracy

4.2 Weisfeiler-Lehman Test

The WL test is an iterative graph local feature encoding algorithm for detecting graph iso-
morphism. We make some adjustments to the algorithm. For each node in the graph, we
initialize a label for it, and then iteratively use the GraphSAGE++ to aggregate the features
of neighboring nodes. At the same time, the aggregated features are mapped to new labels,
and the labels of nodes in the two subgraphs are compared. If the labels of the two subgraphs
are the same, they are considered isomorphic. The aggregation functions used for the WL
isomorphism test in this paper are the same as those used in the fixed-point classification and
link prediction tasks, which are Mean aggregation function and Max aggregation function.
This section validates the effectiveness of the algorithm on the WL isomorphism test task
based on experimental results and compares it with other baseline algorithms. The average
of ten experiments is taken as the result here.

Figure 5 shows the comparison of the results of the WL isomorphism detection accuracy
of different algorithms on different datasets. As can be seen from the figure, at K=2 hops, the
method proposed in this paper has been more competitive, and GIN on the Citeseer dataset is
comparable to theGraphSAGE++DAC andGraphSAGE++DAMCperformances. Compared
to GraphSAGE, our schemes have obtained better performances on both the Cora dataset and
the Citeseer dataset, GraphSAGE++DAMC improves the isomorphism detection accuracy by
seventy percent compared to GraphSAGE.As the number of hops increases, the ability of this
paper’s scheme to performWL isomorphism detection becomes more competitive. When K
is greater than 4, the isomorphic detection accuracy ofGIN,GCINII, GraphSAGE, and SGCN
all show a significant downward trend. With the increase of hop, GraphSAGE++ achieved
good performance and tended to stabilize, among which the comprehensive performance of
GraphSAGE++DAMC is more prominent.
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Table 3 f1_micro values obtained by completing the vertex classification task on the Cora dataset

Algorithm 10% 30% 50% 70% 90%

GCN 0.2256 0.2171 0.2448 0.2031 0.2098

SGCN 0.2238 0.2508 0.2201 0.2065 0.2412

GIN 0.2401 0.2342 0.2309 0.2445 0.2426

GCNII 0.2426 0.2238 0.2227 0.2534 0.2489

DGCN 0.2565 0.2442 0.2616 0.2308 0.2412

SVD-GCN 0.2688 0.2735 0.2628 0.2898 0.2911

GraphSNN 0.2609 0.2870 0.2617 0.2902 0.2734

GraphSAGE-mean 0.2511 0.2393 0.2526 0.2891 0.2518

GraphSAGE-max 0.2692 0.2719 0.2190 0.2194 0.2685

GraphSAGE-pooling 0.2712 0.2738 0.2556 0.2889 0.2733

SAGE-based JK-net 0.2898 0.2974 0.2886 0.3001 0.2905

GraphSAGE++mean 0.2834 0.3012 0.2812 0.2983 0.3009

GraphSAGE++max 0.2821 0.2715 0.2784 0.2946 0.2912

GraphSAGE++DA 0.2868 0.2830 0.2903 0.3013 0.2861

GraphSAGE++DAC 0.3009 0.3124 0.2997 0.3066 0.3018

GraphSAGE++DAMC 0.3073 0.2992 0.3057 0.3052 0.3082

4.3 Experimental Result

In this section, we verify the effectiveness of our methods in link prediction, classification,
and visualization. And we compare themwith other baseline algorithms. It is noteworthy that
throughout the tables in this section (Tables 3–12), the best achieved results are highlighted
in bold.

4.3.1 Classification Task

The purpose of vertex classification tasks is to predict the labels of each vertex.
Tables 3, 4, 5, 6, 7 and Fig. 6 demonstrate the performance of ourmethods and several other

algorithms in performing classification tasks on 5 real datasets. During the evaluation process,
we ran the program ten times and then derived their averages to ensure fair competition. The
experimental results show that GraphSAGE++ achieves good results in all datasets. On the
Amazon dataset, GraphSAGE based JK-Net performed better (when the training set is 70%),
and compared to GraphSAGE, GraphSAGE+DAC improved performance on classification
tasks by about 13% (when the training set is 90%). On the PPI dataset, GraphSAGE+DAMC
improved by about 7% compared to GraphSAGE (when the training set is 50%). On the
Citeseer dataset, GraphSAGE++DAMC showed a performance improvement of about 6%
compared to GraphSAGE++DA (when the training set is 70%), while GraphSAGE++DAC
showed a performance improvement compared to GraphSAGE++DA. Overall, in terms of
classification tasks, GraphSAGE++DAC and GraphSAGE++DAMC have achieved better
performance compared to other algorithms.

Figure 7 demonstrates the time consumed by different algorithms to complete the node
classification task on the PPI dataset, which still has a relatively large overhead in time
compared to the traditional algorithms due to the use of concatenating operations. Although
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Table 4 f1_micro values obtained by completing the vertex classification task on the Pumbed dataset

Algorithm 10% 30% 50% 70% 90%

GCN 0.1776 0.1790 0.2042 0.1903 0.1844

SGCN 0.1752 0.2157 0.2023 0.2212 0.2076

GIN 0.1873 0.2356 0.2200 0.2107 0.2098

GCNII 0.1894 0.2457 0.2169 0.2214 0.2180

DGCN 0.2176 0.2412 0.2108 0.2519 0.2307

SVD-GCN 0.2423 0.2770 0.2566 0.2647 0.2779

GraphSNN 0.2568 0.2820 0.2874 0.2626 0.2612

GraphSAGE-mean 0.2072 0.1983 0.1702 0.2227 0.2175

GraphSAGE-max 0.2253 0.2197 0.2190 0.2470 0.2308

GraphSAGE-pooling 0.2442 0.2283 0.2367 0.2411 0.2389

SAGE-based JK-net 0.2594 0.2912 0.2513 0.2530 0.2610

GraphSAGE++mean 0.2677 0.2426 0.2412 0.2460 0.2552

GraphSAGE++max 0.3087 0.2879 0.2594 0.2544 0.2581

GraphSAGE++DA 0.2810 0.2969 0.2598 0.2459 0.2645

GraphSAGE++DAC 0.3149 0.3286 0.2644 0.2600 0.2759

GraphSAGE++DAMC 0.3179 0.2858 0.2574 0.2667 0.2818

Table 5 f1_micro values obtained by completing the vertex classification task on the PPI dataset

Algorithm 10% 30% 50% 70% 90%

GCN 0.4385 0.4351 0.4321 0.4311 0.4300

SGCN 0.4395 0.4378 0.4370 0.4410 0.4322

GIN 0.4405 0.4512 0.4434 0.4497 0.4366

GCNII 0.4456 0.4530 0.4477 0.4510 0.4482

DGCN 0.4497 0.4578 0.4409 0.4598 0.4490

SVD-GCN 0.4503 0.4601 0.4506 0.4631 0.4566

GraphSNN 0.4621 0. 4612 0.4695 0.4586 0.4577

GraphSAGE-mean 0.4443 0.4430 0.4326 0.4439 0.4422

GraphSAGE-max 0.4512 0.4498 0.4560 0.4487 0.4563

GraphSAGE-pooling 0.4549 0.4601 0.4599 0.4613 0.4568

SAGE-based JK-net 0.4599 0.4723 0.4660 0.4715 0.4600

GraphSAGE++mean 0.4549 0.4621 0.4733 0.4638 0.4575

GraphSAGE++max 0.4487 0.4696 0.4599 0.4637 0.4609

GraphSAGE++DA 0.4462 0.4687 0.4658 0.4650 0.4521

GraphSAGE++DAC 0.4603 0.4739 0.4760 0.4825 0.4713

GraphSAGE++DAMC 0.4628 0.4762 0.4770 0.4714 0.4696
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Table 6 f1_micro values obtained by completing the vertex classification task on the Citeseer dataset

Algorithm 10% 30% 50% 70% 90%

GCN 0.2451 0.2171 0.2448 0.2230 0.2118

SGCN 0.2489 0.2780 0.2431 0.2274 0.2412

GIN 0.2491 0.2533 0.2774 0.2552 0.2603

GCNII 0.2523 0.2450 0.2787 0.2732 0.2689

DGCN 0.2760 0.2728 0.2931 0.2508 0.2612

SVD-GCN 0.3394 0.3556 0.3572 0.3609 0.3548

GraphSNN 0.3402 0. 3389 0.3516 0.3128 0.3050

GraphSAGE-mean 0.3312 0.3258 0.2919 0.3294 0.2714

GraphSAGE-max 0.3369 0.3354 0.3216 0.3547 0.2780

GraphSAGE-pooling 0.3321 0.3069 0.3266 0.3550 0.2994

SAGE-based JK-net 0.3155 0.3252 0.3369 0.3412 0.3349

GraphSAGE++mean 0.3078 0.3186 0.3330 0.3598 0.3538

GraphSAGE++max 0.3303 0.3033 0.3225 0.3381 0.3538

GraphSAGE++DA 0.3126 0.2928 0.3478 0.3390 0.3472

GraphSAGE++DAC 0.3618 0.3384 0.3721 0.3430 0.3565

GraphSAGE++DAMC 0.3232 0.3628 0.3470 0.3612 0.3479

Table 7 f1_micro values obtained by completing the vertex classification task on the Amazon dataset

Algorithm 10% 30% 50% 70% 90%

GCN 0.2730 0.2809 0.2980 0.3146 0.2853

SGCN 0.2998 0.3018 0.3206 0.3355 0.3110

GIN 0.3115 0.3309 0.3152 0.3286 0.3191

GCNII 0.3125 0.3509 0.2993 0.3390 0.3276

DGCN 0.3518 0.3690 0.3714 0.3552 0.3611

SVD-GCN 0.3812 0.3797 0.3868 0.3985 0.3770

GraphSNN 0.3810 0.3728 0.3956 0.3954 0.3837

GraphSAGE-mean 0.3730 0.3743 0.3713 0.3640 0.3605

GraphSAGE-max 0.3773 0.3759 0.3679 0.3674 0.3642

GraphSAGE-pooling 0.3840 0.3912 0.3887 0.3923 0.3748

SAGE-based JK-net 0.4048 0.3995 0.4023 0.4101 0.3978

GraphSAGE++mean 0.3880 0.3912 0.3821 0.3948 0.3719

GraphSAGE++max 0.3791 0.3854 0.3882 0.3926 0.3879

GraphSAGE++DA 0.3963 0.4010 0.3916 0.3809 0.3890

GraphSAGE++DAC 0.4078 0.3996 0.4126 0.4080 0.4104

GraphSAGE++DAMC 0.4135 0.4082 0.3906 0.4057 0.3827
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Fig. 6 Values of f1_micro and f1_macro obtained by different algorithms for classification tasks on different
datasets
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Fig. 7 Comparison of algorithms’ time-consuming on the link prediction tasks

the algorithm proposed in this paper cannot outperform SVD-GCN, GraphSNN and DGCN
etc. in terms of time efficiency, it achieves better performance than them in most of the cases
in link prediction and classification tasks.

4.3.2 Link Prediction

The purpose of link prediction is to predict possible connections or edges based on known
information about the network structure.

Tables 8, 9, 10 display the results of the link prediction task on the Amazon,Pubmed
and Cora datasets. In the Cora dataset, our scheme achieved better performance as the train-
ing set increased. Compared to GraphSAGE, GraphSAGE++DAMC increased by about 7%,
compared to GraphSAGE++Mean andGraphSAGE++Max increased by about 2%, and com-
pared to GraphSAGE++DA increased by about 3% (when the training set is 50%). In the
Pubmed dataset, GraphSAGE++DAC increased by about 20% compared to GraphSAGE
(when the training set was 70%), and GraphSAGE++DAMC increased by 17% compared to
GraphSAGE (when the training set was 90%). It is worth mentioning that overall, Graph-
SAGE+DAMC performs significantly better than other algorithms.

Figure 8 shows the effect of the different values of K in the experiment on the acc score
of each algorithm when performing the classification task on Cora, Citeseer, Amazon, and
Pubmed datasets, and the results show that our algorithms are not affected by the value of
K and the overall shows an upward trend. Among them, as the depth increases, the DGCN
algorithm realizes the function of controlling its expression power to strengthen or weaken
gradually through the decoupling operation, so the effect of DGCN to become less effective
by the increase of the value of K is not significant. The baseline algorithms show a significant
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Table 8 f1_micro values obtained by completing the link prediction task on the Amazon dataset

Algorithm 10% 30% 50% 70% 90%

GCN 0.5005 0.5000 0.5914 0.5746 0.5765

SGCN 0.5337 0.5461 0.5875 0.5896 0.5502

GIN 0.5664 0.6109 0.5897 0.5959 0.5601

GCNII 0.5753 0.6086 0.5847 0.5916 0.5773

DGCN 0.6068 0.6185 0.5934 0.6003 0.5732

SVD-GCN 0.6157 0.6264 0.6733 0.6770 0.6682

GraphSNN 0.6198 0.6110 0.6790 0.6548 0.6226

GraphSAGE-mean 0.6130 0.6087 0.6495 0.6356 0.5740

GraphSAGE-max 0.6146 0.5995 0.6612 0.6420 0.6060

GraphSAGE-pooling 0.6229 0.6501 0.6668 0.6808 0.6462

SAGE-based JK-net 0.6230 0.6547 0.6632 0.6748 0.6523

GraphSAGE++mean 0.6289 0.6301 0.6758 0.6848 0.6423

GraphSAGE++max 0.6174 0.6089 0.6702 0.6790 0.6194

GraphSAGE++DA 0.6190 0.6200 0.6693 0.6812 0.6610

GraphSAGE++DAC 0.6273 0.6662 0.6770 0.6931 0.6596

GraphSAGE++DAMC 0.6382 0.6730 0.6842 0.6057 0.6648

Table 9 f1_micro values obtained by completing the link prediction task on the Pubmed dataset

Algorithm 10% 30% 50% 70% 90%

GCN 0.4706 0.4978 0.5112 0.4804 0.4536

SGCN 0.4998 0.5140 0.5205 0.4956 0.4706

GIN 0.5005 0.5230 0.5355 0.4877 0.4624

GCNII 0.5167 0.5334 0.5189 0.4785 0.4660

DGCN 0.5343 0.5580 0.5628 0.5079 0.5121

SVD-GCN 0.5765 0.5886 0.5902 0.5456 0.5556

GraphSNN 0.5694 0.5845 0.5910 0.5403 0.5314

GraphSAGE-mean 0.5455 0.5389 0.5199 0.4877 0.4748

GraphSAGE-max 0.5646 0.5535 0.5307 0.4801 0.4906

GraphSAGE-pooling 0.5621 0.5846 0.5897 0.5445 0.5500

SAGE-based JK-net 0.5732 0.5925 0.5876 0.5531 0.5630

GraphSAGE++mean 0.5789 0.5612 0.5796 0.5106 0.5030

GraphSAGE++max 0.5830 0.5735 0.5848 0.5263 0.5124

GraphSAGE++DA 0.5664 0.5995 0.5775 0.5117 0.5050

GraphSAGE++DAC 0.5779 0.6002 0.6163 0.5884 0.5880

GraphSAGE++DAMC 0.5990 0.6108 0.6220 0.5772 0.5935
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Table 10 Auroc values obtained by completing the link prediction task on the Cora dataset

Algorithm 10% 30% 50% 70% 90%

GCN 0.7894 0.8267 0.8584 0.8138 0.8189

SGCN 0.8552 0.8252 0.8438 0.8210 0.8318

GIN 0.8509 0.8557 0.8612 0.8319 0.8348

GCNII 0.8546 0.8703 0.8455 0.8256 0.8417

DGCN 0.8633 0.8752 0.8820 0.8408 0.8566

SVD-GCN 0.8790 0.8848 0.9014 0.8603 0.8857

GraphSNN 0.8752 0.8803 0.9006 0.8608 0.8664

GraphSAGE-mean 0.8273 0.8725 0.8669 0.8864 0.8314

GraphSAGE-max 0.8736 0.8602 0.8978 0.8610 0.8631

GraphSAGE-pooling 0.8823 0.8737 0.8890 0.8901 0.8695

SAGE-based JK-met 0.8845 0.8633 0.8910 0.8864 0.8919

GraphSAGE++mean 0.8804 0.8537 0.9017 0.8813 0.8729

GraphSAGE++Max 0.8716 0.8860 0.9016 0.8792 0.8594

GraphSAGE++DA 0.8848 0.8608 0.8821 0.8915 0.8655

GraphSAGE++DAC 0.9175 0.8531 0.9188 0.8992 0.8591

GraphSAGE++DAMC 0.8652 0.8957 0.9223 0.8685 0.9240

Fig. 8 Accuracy values of different algorithms as K values increase on different datasets

decreasing trend in the acc score after the value of K is 6. In addition, compared to the baseline
algorithms, our algorithms consistently maintain high accuracy scores across various values
of K , with the GraphSAGE++DAMC variant demonstrating significant advantages. Specif-
ically, on the Pubmed dataset, GraphSAGE++DAMC outperforms GraphSAGE++Mean,
GraphSAGE++Max, and GraphSAGE++DA by 3–4% in terms of accuracy.
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Fig. 9 Visualization results on the Citeseer dataset. Each dot represents a document and the color of the dot
indicates the category

4.3.3 Visualization

We first learn the representation vectors of the vectors by different models and then map the
representation vectors to a two-dimensional space using t-SNE [38], where the vertices of
different classes are labeled with different colors so that the ideal visualization result should
be that the vertices of the same class are closer together.

The visualization results are shown in Fig. 9. We choose the Citeseer dataset as the dataset
for the visualization task, and we can see that as far as the baseline algorithm is con-
cerned, effective clustering occurs only in small and scattered areas, and the total overall
view is still confusing and indistinguishable. Our algorithm is able to distinguish differ-
ent points more clearly, and in contrast to the other algorithms, the visualization results of
GraphSAGE++DAMC are much more outstanding. The experimental results show that our
algorithmic framework is a more desirable global graph structure.

4.4 Ablation Experiment and Analysis

The ablation experiments aim to analyze and evaluate the impact of different components
in the graph neural network model on the performance of the model in order to reveal the
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Table 11 Comparison of the accuracy of different GraphSAGE++ models in ablation experiments

Model Accuracy (%)

GraphSAGE++DA (with proportional weights) 79.5

GraphSAGE++DAC (with proportional weights) 81.3

GraphSAGE++DAMC (with proportional weights) 82.2

GraphSAGE++DA (without proportional weights) 76.3

GraphSAGE++DAC (without proportional weights) 77

GraphSAGE++DAMC (without proportional weights) 78.4

Table 12 Comparison of
accuracy between GraphSAGE
and GraphSAGE++models in
ablation experiments

Model Accuracy (%)

GraphSAGE-Mean (without concat) 74.2

GraphSAGE-Max (without concat) 74.1

GraphSAGE-Pooling(without concat) 76.8

GraphSAGE++DA (with concat) 80.8

GraphSAGE++DAC(with concat) 81.6

GraphSAGE++DAMC (with concat) 82.4

role and importance of these components in the task. n this section, we evaluate the impact
of these components on the overall performance of the Cora dataset by removing the use of
proportional weight allocation and concatenating strategies. The value of K is set to 3.

Table 11 shows the impact of using a proportional weight allocation strategy on the results
of three different concatenating algorithms in GraphSAGE++. We use Eq. (2) to calculate
the dimensionality of each layer representation. Through experimental comparison, it was
found that whenwe use a proportional weight allocation strategy, GraphSAGE++DA, Graph-
SAGE++DAC, and GraphSAGE++DAMC all achieved better results. This also confirms our
viewpoint in Sect. 3.3 that neighbors with different hop numbers have different impacts on
nodes, and a fixed dimensionality is allocated according to the weight proportion for each
layer representation, This effectively preserves the important representation information in
the node vector.

Table 12 shows the impact of using concatenating strategies on the results. Through
experiments, it was found that the method using concatenating strategy (GraphSAGE++)
showed a greater performance improvement compared to themethod not using concatenating
strategy (GraphSAGE). This also confirms our viewpoint that we introduce strategies which
actively combine double aggregations with concatenation helps enhance the distinction of
structural information and improve the model’s expressive capabilities.

5 Conclusion

In this work, we have proposed the GraphSAGE++ framework that considers multi-scale
graph structure information by a weighted multi-dimensional mechanism, effectively cap-
turing both local and the global structure information. The final representation preserves
neighborhood information from 1 to K hops, thus overcoming the common over-smoothing
issue seen in deep network architectures of traditional graph neural networks successfully.
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In addition, the strategies combining double aggregations with concatenation are introduced
to better distinguish the structural information. It has been shown experimentally that the
method is effective in improving the expressive ability of the model. The experimental results
of this research confirm that GraphSAGE++ demonstrates superior performance across vari-
ous datasets in tasks such as vertex classification, link prediction, and visualization. Notably,
GraphSAGE+DAMC outperforms existing methods across multiple evaluation metrics.

Despite the results of our research, there are still some challenges and room for improve-
ment. The proportional allocation of dimensions to each layer can be combined with the
PageRank [39, 40] algorithm, which utilizes the linking structure between nodes to be able
to better capture the correlation and importance between nodes. Furthermore, optimizing
model training efficiency and extending our framework to accommodate increasingly intri-
cate graph structures remain as pertinent objectives for forthcoming research endeavors.
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