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Abstract
To solve a general time-variant Sylvester equation, twonovel zeroing neural networks (ZNNs)
solutions are designed and analyzed. In the foregoing ZNN solutions, the design convergent
parameters (CPs) before the nonlinear stimulated functions are very pivotal because CPs
basically decide the convergent speeds. Nonetheless, the CPs are generally set to be constants,
which is not feasible because CPs are generally time-variant in practical hardware conditions
particularly when the external noises invade. So, a lot of variant-parameter ZNNs (VP-ZNNs)
with time-variant CPs have been come up with. Comparing with fixed-parameter ZNNs, the
foregoing VP-ZNNs have been illustrated to own better convergence, the downside is that the
CPs generally increases over time, and will be probably infinite at last. Obviously, infinite
large CPs would lead to be non-robustness of the ZNN schemes, which are not permitted
in reality when the exterior noises inject. Moreover, even though VP-ZNNs are convergent
over time, the growth of CPs will waste tremendous computing resources. Based on these
factors, 2 hyperbolic tangent-type variant-parameter robust ZNNs (HTVPR-ZNNs) have
been proposed in this paper. Both the convergent preassigned-time of the HTVPR-ZNN
and top-time boundary of CPs are theoretically investigated. Many numerical simulations
substantiated the admirable validity of the HTVPR-ZNN solutions.
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1 Introduction

Generally, how to resolve the complex time-variant Sylvester equations (TVSEs) A(t)X(t)−
X(t)B(t) + C(t) = 0, which is a basic mathematical question involved in many control
systems and machine vision quests, with better disturbance rejection characters and faster
convergence speed, has aroused more and more concern [1]. To resolve the corresponding
design problems for dynamic nonlinear systems [2], switched nonlinear systems [3], time-
delay systems [4] and stochastic nonlinear systems [5].Many solutions have been put forward,
such as Bartels–Stewart algorithm, homogeneous approach, terminal sliding mode control
approach and so on [6].

These methods can get an ideal result with dealing with small dimensions Sylvester equa-
tions. But when the dimensions of Sylvester equations get larger, they will have a poor
efficiency. With the development of technology, the neural-dynamic solutions have been
applied in practice. Gradient neural networks (GNN) is one of the methods. However, the
evolution speed of GNN may not synchronize with the change speed of time-variant coeffi-
cient. To solve this problem, zero neural network (ZNN), a kind of RNN, is proposed. ZNN
owns many desired features, for instance higher accuracy, disturbance rejection features and
faster convergent rate [7, 8]. Particularly, the main way for analysis of preassigned-time sta-
bility in the nonlinear situation is the Lyapunov function method [7–10]. With the purpose
of accelerating the convergence, Weibing Li first used a sign-bi-power function stimulated
ZNN that owns finite-time convergence [1–3]. Recently, ZNNs have been broadly applied to
solve many time-variant questions under finite-time [11–14].

The ZNN solutions involve a design convergence parameter (CP) that influences the
ZNNs convergent performance [15–18]. The CPs of conventional ZNNs are limited to be
constants [19–21]. To obtain a better convergent performance, different variant-parameter
ZNNs (VP-ZNNs) with time-variant CPs have been obtained [21–23]. The time-varying CPs
shown in [24–26] can expedite the convergence of ZNNs, but the current CPs design results
in two problems: (1) the CPs increase over time in the course of this solving process; and (2)
it occupies too much computing resources.

Fixed-time convergence/stability was firstly proposed by Polyakov in 2012 to eliminate
the dependence of the convergent time on initial values [27, 28]. This elimination has great
advantages and convenience in applications compared to finite time stability, as the initial
values ofmany real systemsmay not be accessible in advance [27–30]. Therefore, in the fields
of power systems and space technology, fixed-time stability has received a lot of attention and
becomeahot researchfield [27–31].Comparedwith thefinite-time convergence, preassigned-
time convergence does not depend on the initial states of ZNN; based on the known design
parameters, the convergence-time’s upper bound can be calculated beforehand [32–34]. Once
preassigned-time convergence is reached, we also call it preassigned-time stable [33–36].

To solve the above problems, we propose the hyperbolic tangent-type variant-parameter
robust ZNN (HTVPR-ZNN) solutions for resolving the time-variant Sylvester equations. The
primary contributions of our work are as follow:

(1) To resolve the complex time-variant Sylvester equations, two new HTVPR-ZNN
solutions are designed. Differing from the existingVP-ZNNs and FP-ZNNs, theHTVPR-
ZNN involves hyperbolic tangent-type parameters that can be changed over time and also
converge to a constant once the HTVPR-ZNN is convergent in preassigned time.

(2) Unlike other ZNN solutions, the proposed HTVPR-ZNN solutions employ two new
nonlinear activation functions that own various variable parameters as well. The stability
and robustness of the HTVPR-ZNN solutions are proven. Moreover, the preassigned-
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time convergence upper bound of the HTVPR-ZNN is obtained, which is smaller than
other convergence ZNN solutions.

(3) Comparative numerical simulations are done to demonstrate the excellent convergent
characters of the HTVPR-ZNN solutions. Many stimulation functions are comparatively
used to stimulate the HTVPR-ZNN solutions. The results theoretically illustrate that
two HTVPR-ZNN solutions are effective to tackle the TVSEs under the interference of
different noises (for instance the time-variant bounded constant noise). Moreover the
preassigned time is calculated as a priority and independent of initial situations.

The structure of this article is as follows. In Sect. 2, we introduce the problem formulation
and preliminary results. Section 3, we develop HTVPR-ZNN Solutions. Main theoretical
analysis is shown in Sect. 4. One numerical simulation example is presented to prove the
validity of solutions in Sect. 5. At last, a conclusion is put in Sect. 6.

2 Problem Formulation and Preliminaries

The time-variant Sylvester problem formulation and its preliminaries are described in this
subsection. The design procedures of HTVPR-ZNN solutions and regularity condition (RC)
for the solution of the TVSEs are illustrated as well [21, 22].

We consider a high smooth and rank matrix A(t) ∈ R
m×m , the problem of the TVSE is

defined as

A(t)X(t) − X(t)B(t) = −C(t), ∀t ∈ [0,+∞) (1)

M(t)X(t) = L(t), (2)

while X(t) ∈ R
m×n is an uncertain time-variant state matrix that neeeds to be resolved and

t denotes the time variable. Then the time-variant coefficient matrices A(t) = (ai j (t))m×m ,
B(t) = (bi j (t))n×n , and C(t) = (ci j (t))m×n and the time derivatives matrices ˙A(t), ˙B(t)
and ˙C(t) are settled to be estimated. If this Sylvester equation is true, then the corresponding
scheme X(t) = X∗(t) ∈ R

m×n of the Sylvester equation holds, its reliable to figure out the
right solution quickly.

Before the new HTVPR-ZNN solutions are raised to solve the upper Sylvester equation
(1), two important lemmas are provided as follows.

Lemma 1 [37, 38]We consider a nonlinear systems of the nether differential equations:

ẋ(t) = h(t, x), x(0) = x0 (3)

where h(0) = 0, and x = [x1, x2, . . . , xn]T , h(t, x) : Rn → Rn is a nonlinear function.
If there is a unbounded and radially continuous function Q : Rn → Rn with a result that
(1) for every x ∈ R

n\{0} there is x ∈ R+ so that Q(x) = 0;
(2) then any solution x(t) of (3) satisfies the inequality:

Q̇(x(t)) ≤ −α1Q
μ(x(t)) − β2Q

ν(x(t)),

where parameters α1 > 0, β2 > 0, 0 ≤ μ < 1 and ν > 1. The system is globally
preassigned-time stable, then the upper bound of the settling time is:

T (x0) = 1

α1(1 − μ)
+ 1

β2(ν − 1)
,∀x0 ∈ R

n .

.
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Lemma 2 If any solution x(t) of (3) satisfies the inequality:

Q̇(x(t)) ≤ −β1Q
p(x(t)) − β2Q

q(x(t)) − β3Q
r (x(t)),

where parameters β1, β2, β3 > 0, 0 ≤ q < 1, p, r > 1. The system is globally preassigned-
time stable, and the upper boundary of the settling time is:

T (x0) = Max

⎧
⎨

⎩

ln
[

β1+β3
β3Q(x(0))1−p+β1

]

β3(p − 1)
,
ln

[
β1+β3

β1Q(x(0))1−r+β3

]

β1(r − 1)

⎫
⎬

⎭
+ 1

β2(1 − q)
.

Proof For any x(t) so that Case I: Q(x(0)) > 1, the last inequality

Q̇(x(t)) ≤ −β1Q
p(x(t)) − β3Q

r (x(t)).

By classification, we have

Q̇(x(t)) ≤
⎧
⎨

⎩

−(β1 + β3)Qp(x(t)), p = r; (a)

−β1Qp(x(t)) − β3Q1(x(t)), p > r > 1; (b)
−β1Q1(x(t)) − β3Qr (x(t)), r > p > 1. (c)

Since situation (a) is similar to the situation in [29], we get

T (x0) = 1

(β1 + β3)(1 − p)
, ∀x0 ∈ R

n .

Then we focus on case situation (b) and multiply (b) by exp(β3t) yields,

eβ3t Q̇(x(t)) + eβ3tβ3Q(x(t)) ≤ −eβ3tβ1Q
p(x(t)).

Then,

deβ3t Q(t)

(eβ3t Q(t))p
≤ −β1e

(1−p)β3tdt .

Integrating the above differential inequality from 0 to t, we can obtain

Q(x(t)) ≥ e−β3t
[

Q(x(0))1−p + β1

β3
− β1

β3
e(1−p)β3t

] 1
1−p

,

let the upper right part equal to 1, we get t ′1,

t ′1 =
ln

[
β1+β3

β3Q(x(0))1−p+β1

]

β3(p − 1)
,

such that Q(x) ≤ 1,t ≥ t ′1.
Similarly, with regard to (c) situation, we get

Q(x(t)) ≥ e−β1t
[

Q(x(0))1−r + β3

β1
− β3

β1
e(1−r)β1t

] 1
1−r

,

let the upper right part equal to 1, we get t ′′1 ,

t ′′1 =
ln

[
β1+β3

β1Q(x(0))1−r+β3

]

β1(r − 1)
,

while Q(x) ≤ 1, t ≥ t ′′1 .
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Let t1 = Max(t ′1, t ′′1 ),

t1 = Max

⎧
⎨

⎩

ln
[

β1+β3
β3Q(x(0))1−p+β1

]

β3(p − 1)
,
ln

[
β1+β3

β1Q(x(0))1−r+β3

]

β1(r − 1)

⎫
⎬

⎭
.

Then, for any x(t) such that Q(x(t ′)) ≤ 1, the before inequality

Q̇(x(t ′)) ≤ −β2Q
q(x(t ′)), t ′ ≥ t1,

t2 = Q1−q(t1)

β2(1 − q)
= 1

β2(1 − q)
.

So, we make Q(x(t)) = 0, for

t ≥ t1 + t2 =
ln

[
β1+β3

β3Q(x(0))1−p+β1

]

β3(p − 1)
+ 1

β2(1 − q)
.

Case II: Once Q(x(0)) ≤ 1, the inequality

Q̇(x(t)) ≤ −β2Q
q(x(t)),

holds, indicates

t ≥ 1

β2(1 − q)
, Q(x(t)) = 0.

Finally, Q(x0) ≥ 1 and Q(x(t)) = 0 for

∀t ≥ T (x0) = Max

⎧
⎨

⎩

ln
[

β1+β3
β3Q(x(0))1−p+β1

]

β3(p − 1)
,
ln

[
β1+β3

β1Q(x(0))1−r+β3

]

β1(r − 1)

⎫
⎬

⎭
+ 1

β2(1 − q)
.

Therefore, the system has globally predefined-time convergence/stability and its settling time
satisfies the upper boundary. 
�

3 HTVPR-ZNN Solutons

In this part, through using two nonlinear activation functions we design and develop the
HTVPR-ZNN solution for the specific Sylvester problem (1) [32–36].

Step 1: To survey the time-variant process, we define a matrix-type error function (EF) as

E(t) = A(t)X(t) − X(t)B(t) + C(t), ∀t ∈ [0,+∞). (4)

The time-variant unique solution X∗(t) of the TVSE (1) can be obtained once the error
function (4) equals or converges to zero. Thus it successfully turns the initial problem (1)
into insuring E(Q(t), t) equals to 0.

Step 2: With the purpose of ensuring each element ei j (t) (i = 1, 2, . . . ,m, j =
1, 2, . . . , n) of E(Q(t), t) convergent to 0, the EF derivation Ė(Q(t), t) is expressed as:

dE(Q(t), t)

dt
= −Λ(t)F(E(Q(t), t)), (5)

where F(·) : Rm×n → R
m×n is amapping of amatrix and every unit is amonotone increasing

odd function. The Λ is a positive-defined matrix that influences the convergent speed of (5).
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For the simplicity of theoretical analysis, Λ is set to γ I , where γ > 0 and I is an identity
matrix. Hence, each unit of E(Q(t), t) owns the coincident convergence speed adjusted by
parameter γ .

Λ(t) =

⎡

⎢
⎢
⎢
⎢
⎣

λ1(t) 0 · · · 0

0 λ2(t)
. . . 0

...
...

. . . 0
0 0 · · · λm(t)

⎤

⎥
⎥
⎥
⎥
⎦

∈ R
m×n .

λi (t) = γ tanh(|e(t)| /ε)

Step 3: Combining Steps 1 and 2, then we obtain one consistent HTVP-ZNN solution for
resolving Sylvester equation (1):

A(t)Ẋ(t) + Ẋ(t)B(t) = − Ȧ(t)X(t) − X(t)Ḃ(t) − Ċ(t)

− Λ(t)F(A(t)X(t) + X(t)B(t) + C(t)).
(6)

where F(·) denotes 2 new stimulation functions (i.e., PpSAF and NSBPAF).
With the injection of noise, the perturbed HTVPR-ZNN solution is obtained as follows:

A(t)Ẋ(t) + Ẋ(t)B(t) = − Ȧ(t)X(t) − X(t)Ḃ(t) − Ċ(t)

− Λ(t)F(A(t)X(t) + X(t)B(t) + C(t)) + N (t).
(7)

where N (t) ∈ R
m×n denotes external noise. After dealing with the upper equation, the

column vectorization of HTVPR-ZNN solution (7) can be deduced as

M(t)Ẋ(t) = −Ṁ(t)X(t) − Ċ(t) − Λ(t)F(E(t)) + N (t), (8)

where M(t) := Im×m ⊗ A (t) + BT (t) ⊗ I n×n , X(t) := vec(Ẋ(t)), e(t) := M(t)X(t) −
vec(C(t)), and N (t) := vec(N (t)). Our goal of this paper is to propose two new solutions
for systems (1) so that the corresponding closed-loop system owns fast preassigned-time
convergence.

3.1 Different Stimulation Functions

Stimulation functions (SFs) play very vital roles in the ZNN solutions. Different stimulation
functions are adopted to ZNN solutions with many results. When the ZNN solutions stimu-
lated by SBPAF achieving finite-time convergence [1, 2]. And their finite-time convergence
is mainly influenced by the initial conditions of ZNN solution, which lead it very difficult to
find out the upper boundary because of the undiscovered initial condition [26, 39, 40]. In this
paper, four conventional SFs and two new SFs have been adopted to stimulate the proposed
ZNN solutions:

(1) Linear function (LF): F(x) = d · x .
(2) Smooth power-sigmoid function (SPSF):

F(x) = 1

2

(
1 − exp(−bx)

1 + exp(−bx)
· 1 + exp(−b)

1 − exp(−b) + xa

)

,

where a ≥ 3, b > 2.
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(3) Power-sigmoid function (PSF):

F(x) =
{
x p, i f |x | ≥ 1,
1+exp(−b)
1−exp(−b) · 1−exp(−bx)

1+exp(−bx) , otherwise,

(4) Sign-bi-Power function (SBPF):

F(x) = 1

2
|x |ι sign(x) + 1

2
|x | 1ι sign(x)

where 0 < ι < 1.

Consider the features of different SFs, let’s induce it into the HTVPR-ZNN solution to
resolve the TVSEs achieving the preassigned-time convergence. The expression of PpSAF
can be:

F(u) = (
β1sign(u) + β2u

p) , (9)

When β1 = 1 and β2 = 1, (9) will be F(u) = sign(u) + u p , odd p >= 3.
Referring to previous works [34–36, 40], we come up with a new sign-bi-Power activation

function (NSBPAF), which will be convergent in a preassigned time. Its formula is presented
as follow:

F1(u) = (
β1 |u|p + β2 |u|q) sign(u) + β3u

r + β4sign(u), (10)

where design parameters β1 > 0, β2 > 0, β3 ≥ 0, β4 ≥ 0, p > 1, 0 < q < 1, r = 1, 3, 5
and sign(·) represents signum function. Initial parts (β1|u|p + β2|u|q)sign(u) are used to
obtain the preassigned-time convergence; Then time-variant boundary constant noises can
be repressed by the intermittent items β3ur and β4sign(u).

For convenience, the HTVPR-ZNN solutions stimulated by PpSAF and NSBPAF are
respectively called HTVPR-ZNN1 and HTVPR-ZNN2 solution.

4 Main Theoretical Analysis

In this subsection, we will address the preassigned-time convergence of proposed HTVPR-
ZNN solutions in 2 situations. By analysis, the preassigned-time convergence and also the
robustness of HTVPR-ZNN solutions for solving TVSEs is illustrated rigorously.

4.1 Pure-Case1:Without Noises

Under the pure-case1: with no noises, we find the preassigned-time and robust convergence
of the HTVPR-ZNN solutions for solving time-variant and non-linear equations.

Theorem 1 Under pure environment, when PpSAF is adopted in HTVPR-ZNN1 solution, the
state matrix P(t) of HTVPR-ZNN1 solution beginning from random P(0) ∈ R

m1×n1 can
converge to theoretical P∗(t) in a preassigned-time T gradually:

T ≤ 1

γβ1(1 − q)
+ 1

γβ2(p − 1)
.

Though Eqs. (4) and (5), we use an EF Ė(t) = −λF(E(t)). Then the subelement ε̇(t) =
−λ f (ε(t)), and f (·) is a common unit of F(·) are got. Using the Lyapunov theory, we
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introduce a Lyapunov energy-function (LEF) Nov(t) = |ε(t)|. When PpSAF is invasive, the
formula of Ṅov(t) can be obtained as below:

Ṅov(t) = dNov(t)

dt
= ε̇(t)sign(ε(t))

= −λ f (ε(t))sign(ε(t))

= −γ tanh(|e(t)| /ε) (
β1sign(ε(t)) + β2ε(t)

p) sign(ε(t))

= −γ tanh(|e(t)| /ε) (
β1 + β2ε(t)

psign(ε(t))
)

= −γ tanh(|e(t)| /ε) (
β1 + β2 |ε(t)|p)

≤ −γ tanh(|e(t)| /ε) (
β1 |ε (t)|q + β2 |ε(t)|p)

= −γ tanh(|e(t)| /ε) (
β1Novq(t) + β2Nov p(t)

)
.

On account of the Lemma 1, the scheme for the upper LEF inequality can be

t ≤ 1

γ tanh(|e(t)| /ε)
(

1

β1 (p − 1)
+ 1

β2 (1 − q)

)

.

Generally, the convergent time hinges on the trial parameters. Once the trial parameters are
fixed, T = max(t) can be preassigned, the convergent time of HTVPR-ZNN1 solution

Tmax(t) ≤ 1

γ tanh(|e(t)| /ε)
(

1

β1 (1 − q)
+ 1

β2 (p − 1)

)

(0 ≤ tanh(|e(t)| /ε) ≤ 1)

≤ 1

γ

(
1

β1 (1 − q)
+ 1

β2 (p − 1)

)

.

(11)

make parameters β1 = 1, β2 = 1; γ = 0.5, 1, 2, 3, . . ., p = 3 and q = 0; we have

Tmax(t) <
1

γ
+ 1

2γ
= 1.5

γ
.

Finally, all the processes and steps show the preassigned-time convergence of HTVPR-ZNN1
solution stimulated by PpSAF for resolving the Sylvester equation (1).

Theorem 2 Under pure environment, when NSBPAF is invasive in HTVPR-ZNN2 solution,
the matrix V (t) of HTVPR-ZNN2 solution beginning from V (0) ∈ R

m×n will converge to
theoretical V ∗(t) under preassigned-time T :

T ≤ Max

⎧
⎨

⎩

ln
[

β1+β3
β3Q(x(0))1−p+β1

]

β3(p − 1)
,
ln

[
β1+β3

β1Q(x(0))1−r+β3

]

β1(r − 1)

⎫
⎬

⎭
+ 1

β2(1 − q)

Proof In Eqs. (4) and (5), we let an EF Ė(t) = −γ F(E(t)). When NSBPAF is invasive, the
formula of Ṅov(t) can be obtained as below:

Ṅov(t) = dNov (t)

dt
= ε̇(t)sign(ε(t)) = −λ(t) f (ε(t))sign(ε(t))

= −γ tanh(|e(t)| /ε) (
β1 |ε(t)|p + β2 |ε(t)|q + β3 |ε(t)|r + β4

)

≤ −γ tanh(|e(t)| /ε) (
β1 |ε(t)|p + β2 |ε(t)|q + β3 |ε(t)|r )

= −γ tanh(|e(t)| /ε) (
β1Nov p(t) + β2Novq(t) + β3Novr (t)

)
.
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Fig. 1 Theoretical and analytical trajectories of Sylvester (1), where blue lines represent the process resolution
of HTVP-ZNN solution (6) stimulated by PpSAF and the red represent the theory resolution of Sylvester (1).
(Color figure online)

Based on the Lemma 2, then we get

t ≤ 1

γ tanh(|e(t)| /ε)
⎛

⎝Max

⎧
⎨

⎩

ln
[

β1+β3
β3Q(x(0))1−p+β1

]

β3(p − 1)
,
ln

[
β1+β3

β1Q(x(0))1−r+β3

]

β1(r − 1)

⎫
⎬

⎭
+ 1

β2(1 − q)

⎞

⎠

≤ 1

γ

⎛

⎝Max

⎧
⎨

⎩

ln
[

β1+β3
β3Q(x(0))1−p+β1

]

β3(p − 1)
,
ln

[
β1+β3

β1Q(x(0))1−r+β3

]

β1(r − 1)

⎫
⎬

⎭
+ 1

β2(1 − q)

⎞

⎠ .

(12)

Evidently the upper threshold of convergent time is preassigned and relied on the trial param-
eters. Make the parameters β1 = β2 = β3 = 1; γ = 0.5, 1, 2, . . ., p = r = 3, q = 1/3 and
Q(x0) ≥ 1; then, we have

t ≤ 1

γ

⎛

⎝Max

⎧
⎨

⎩

ln
[

2
Q(x(0))(−2)+1

]

2
,
ln

[
1

Q(x(0))(−2)+1

]

2

⎫
⎬

⎭
+ 1.5

⎞

⎠ . (13)


�

4.2 Case2: Time-Variant Boundary-Constant Noise

When the boundary time-variant and constant noise is considered, every entry ni j (t) satifies
the inequation |ni j (t)| ≤ N + δ, whie δ ∈ (0,+∞); and the convergent peculiarity of
HTVPR-ZNN solutions under preassigned time is investigated.

Theorem 3 When the bounded time-variant and constant noise is interferential, if PpSAF
is used in HTVPR-ZNN1 solution with β1γ tanh(|e(t)| /ε) ≥ N + δ, the state matrix P(t)

123



  174 Page 10 of 19 J. Luo et al.

Fig. 2 Theoretical and analytical trajectories of Sylvester (1), where blue lines represent the process resolution
of HTVP-ZNN solution (6) stimulated by NSBPAF and the red represent the theory resolution of Sylvester (1).
(Color figure online)

Fig. 3 Steady-state residual errors of HTVP-ZNN solution (6) with no noise and r=1. a By PpSAF. b By
NSBPAF

of HTVPR-ZNN1 solution beginning from random P(0) ∈ R
m1×n1 can slowly converge to

theoretical P∗(t) under the preassigned-time T :

T ≤ 1

(γβ1 − (N + δ)) (1 − q)
+ 1

γβ2 (p − 1)
.

Induce a LEF Nov(t) = |ε(t)|2, let’s compute the Ṅov(t):

Ṅov(t) = 2ε(t)ε̇(t) = 2ε(t)(−λ f (ε(t)) + n(t))

= −2λε(t)
(
β1sign(ε(t)) + β2ε(t)

p) + 2ε(t)n(t)

= −2γ tanh (|e(t)| /ε) (
β1|ε(t)| + β2|ε(t)|p+1) + 2ε(t)n(t)

≤ −2γ tanh(|e(t)| /ε) (
β1|ε(t)| + β2|ε(t)|p+1) + 2|ε(t)|(N + δ)

(when β1γ tanh(|e(t)| /ε) ≥ N + δ)

= −2γ tanh(|e(t)| /ε) (
(β1 − (N + δ)/γ )|ε(t)| + β2|ε(t)|p+1)

= −2γ tanh(|e(t)| /ε)
(
(β1 − (N + δ)/γ )Nov

q+1
2 (t) + β2Nov

q+1
2 (t)

)
.
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Then, we get the restringent time of contaminated HTVPR-ZNN1 solution:

Tmax(t) ≤ 1

(γ tanh(|e(t)| /ε)β1 − (N + δ)) (1 − q)
+ 1

γ tanh(|e(t)| /ε)β2(p − 1)

(0 ≤ tanh(|e(t)| /ε) ≤ 1)

≤ 1

(γβ1 − (N + δ))(1 − q)
+ 1

γβ2(p − 1)
.

(14)

Set β1 = 1, β2 = 1; γ = 1, 1.5, 2, . . ., p = 3 and q = 0; there is

Tmax(t) ≤ 1

(γ − (N + δ))
+ 1

2γ
. (15)

Theorem 4 When the noise is invasive, once NSbpAF is used in the polluted HTVPR-ZNN2
solution with β4 tanh(|e(t)|/ε) ≥ δ, Q(t) of HTVPR-ZNN2 solution beginning from Q(0) ∈
R
m×n can converge to theoretical Q∗(t) under preassigned-time.

Proof Bring in a LEF Nov(t) = |ε(t)|2, let’s compute the Ṅov(t):

Ṅov(t) = 2ε(t)ε̇(t)(t) = 2ε(t)(−λ f (ε(t)) + n(t))

= −2γ
(
β1|ε(t)|p+1 + β2|ε(t)|q+1 + β3|ε(t)|r+1)

+ 2(ε(t)n(t) − γβ4|ε(t)|)
≤ −2γ

(
β1|ε(t)|p+1 + β2|ε(t)|q+1 + β3|ε(t)|r+1)

+ 2((N + δ)|ε(t)| − γβ4|ε(t)|)
≤ −2γ

(
β1|ε(t)|p+1 + β2|ε(t)|q+1 + β3|ε(t)|r+1)

= −2γ
(
β1Nov

p+1
2 (t) + β2Nov

q+1
2 (t) + β3Nov

r+1
2 (t)

)
.

From Lemma 2, it can be concluded that the convergent time of the contaminated HTVPR-
ZNN2 solution is also preassigned. 
�

Remark 1 It can be seen from Theorems 1 and 2 that there exists a preassigned-time conver-
gent peculiarity of the HTVPR-ZNN1 and the HTVPR-ZNN2 solutions in pure environment,
based on the known design parameters, the convergence-time’s upper bound can be calculated
beforehand. Then, seen from the convergence time of two HTVPR-ZNN solutions presented
in (11) and (13). Then the convergence speed of HTVPR-ZNN2 solution will be faster than
that of HTVPR-ZNN1 solution.

Remark 2 Seen from the Theorems 3 and 4, the 2 polluted HTVPR-ZNN solutions can
converge to the theoretical solution of TVSE (1) under preassigned time. And they also
suppress the time-variant bounded constant noise very well under the noised environment.

Remark 3 From the above design procedure, we know that two HTVPR-ZNN solutions with
PpSAF and NSBPAF bring lots of parameters: βi (i = 1, 2, 3, 4), p, q and r ; they determine
the peculiarity of HTVPR-ZNN solutions. Theorems 1 and 2 illustrate that HTVPR-ZNN1
solution stimulated by PpSAF, its convergence time is contingent on γ , β1, β2, p. When
HTVPR-ZNN2 solution stimulated by NSBPAF, its convergence time is determined by the
γ , β1, β2, β3, β4, p, q and r . Seen from Theorems 3 and 4, coefficients β3 and β4 would
suppress the invasive noises. In addition, their parameters β1 and β2 are used to tolerate
various noises respectively. Increasing the value of γ , all the preassigned-time T will be
much smaller.
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Fig. 4 Errors of HTVP-ZNN1 solution (6) stimulated by PpSAF to resolve the time-variant Sylvester (1) with
the six values of the parameter γ

5 Numerical Simulation Example

One example is provided in this section on dealing with the TVSE (1). We apply the 2
HTVPR-ZNN solutions to prove the validity of the our theorems.

Firstly, We bring in the coefficient matrices of Sylvester equation as below:

A(t) =
[
3c2/2 − 1 −3s/4 − 1
−3s/4 + 1 3s2/2 − 1

]

,

C(t) =
[

2s − 3sc2 −c(1 − 6s2)/2
c(4 − 3c2 + 3s2)/2 s(1 − 3s2 + 3c2)/2

]

,

while s = sin(5t), c = cos(5t). The theoretical solution can be:

P∗(t) =
[
sin(5t) − cos(5t)
cos(5t) sin(5t)

]

,

123



Hyperbolic Tangent-Type Variant-Parameter and Robust ZNN Solutions. . . Page 13 of 19   174 

Fig. 5 Errors of HTVP-ZNN2 solution (6) stimulated by NSBPAF to resolve the time-variant Sylvester (1)
with the six values of the parameter γ

which settles a basis to prove the availability of our proposed solutions.

N (t) =
[

sin(10t) 2 + cos(10t)
1 + cos(10t) − sin(10t)

]

,

which is used as a invasive noise to verify the robustness of our proposed solutions.
Under the pure environment, the convergence time of our proposed solutions can be

predicted and preassigned. Figures 1 and 2 exhibit the moving trajectories of TVSE (1)
respectively stimulated byPpSAFandNSBPAF. Seen fromFig. 3a, the solution (6) stimulated
by PpSAF, γ = 1 the corresponding convergent time T ≤ 0.61s; and T ≤ 0.42 s when
stimulated by NSBPAF. The residual errors presented in following figures also verify the
truth, which proves the effectiveness of the Theorems 1 and 2 further.

Figure 4 shows the corresponding errors of HTVPR-ZNN1 solution stimulated by PpSAF
to resolve the TVSE(1) with 6 different values of γ . And Fig. 5 displays the corresponding
errors of HTVPR-ZNN2 solution stimulated by NSBPAF to resolve the TVSE(1) with the
six different values of γ (γ = 0.5, γ = 1, γ = 1.5, γ = 2, γ = 3 and γ = 4). Moreover,
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Fig. 6 Errors of disturbed HTVPR-ZNN1 solution (7) stimulated by PpSAF to resolve the time-variant
Sylvester (1) with 3 values of γ

seen from Figs. 4 and 5, HTVPR-ZNN2 solution has more quickly convergent speed than
HTVPR-ZNN1 solution, in the matter of errors.

Figures 6 and 7 adopt the time-variant boundary constant noise refer to the inescapability
of distruction. HTVPR-ZNN solutions own nearly the uniform convergence time. However,
when stimulated by linear, smooth power-sigmoid, power-sigmoid and SBPAF, the conver-
gent delays of time seriously. And the corresponding errors of HTVPR-ZNN solutions can
converge to zero as usual, while the errors of stimulation functions such as linear, Smooth
power-sigmoid, power-sigmoid and SBPAF cannot converge to 0 and merely provide the
upper boundaries. Numerical experiments results prove the effectiveness of preassigned-time
convergence theory from Theorems 1–4. Moreover, NSbpAF do better than others, which
ulteriorly bears out the admirable noise-tolerance character of HTVPR-ZNN solutions.

In general, HTVPR-ZNN solutions’ parameters play important roles in the numerical
experiment simulations. And the influence of 3 parameters in simulations are presented in
the Figs. 6 and 7. Then, the error would draw to 0 bit by bit. By fixing parameters β1 = β2 =
β3 = β4 = 1, p = 4, q = 0.25 and r = 3, and convergence time of the proposed solution
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Fig. 7 Errors of disturbed HTVPR-ZNN2 solution (7) stimulated by NSBPAF to resolve the time-variant
nonlinear Sylvester (1) with the 3 values of γ

(6) stimulated by PpSAF and NSbpAF are depend on γ . Then in later simulations, we adjust
3 various values (γ = 3, γ = 4 and γ = 5). Counting the convergent time, they will be
smaller as we increase increase the value of the parameter γ .

To be specific, to further present the remarkable peculiarity of the proposed solution
(6) with PpSAF and NSBPAF, other AFs involving Linear AF, SPSAF, BSAF, PSAF and
SBPAF are used in the simulations too. Seen from the Fig. 8, the errors of PpSAF or NSBPAF
converge to 0 more quickly than others. Furthermore HTVPR-ZNN2 solution has the fastest
speed while HTVPR-ZNN1 solution is in the second place.

To improve the precision of the experimental results, we can adjust and set the values
of the ODE45 solver. From Figs. 5, 6, 7 and 8, the relative and absolute error tolerances of
the ODE45 solver are respectively preset as default values of 10−3 and 10−6. Seen from the
Fig. 9, the experimental results HTVPR-ZNN solutions errors become much smaller when
decrease the RelTol and AbsTol values of the ODE45 solver (values of 10−4 and 10−8).
So the setting of ODE45 play important roles on the numerical experiment simulations. In
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Fig. 8 Errors of HTVP-ZNN solution (6) stimulated by various functions

this case, its convergence time is the same; its setting time is mainly related to the design
parameters.

In summary, all the results of simulations show that the 2 HTVPR-ZNN solutions have
outstanding advantages. Moreover, facing with time-variant boundary-constant noise, both
the 2 HTVPR-ZNN solutions maintain valid.

6 Conclusion

In the paper, 2 HTVPR-ZNN solutions for the time-variant Sylvester equation are come
up with. HTVPR-ZNN has hyperbolic tangent-type parameters that can change over time;
they will be constant when the HTVPR-ZNN are convergent at last. HTVPR-ZNN owns
faster convergence than others such as FP-ZNNs. Global and preassigned-time convergence
properties of HTVPR-ZNN solutions are proved theoretically. A number of simulations sub-
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||E(t)||F
RelTol = 1e− 3, AbsTol = 1e− 6

RelTol = 1e− 4, AbsTol = 1e− 8

||E(t)||F
RelTol = 1e− 3, AbsTol = 1e− 6

RelTol = 1e− 4, AbsTol = 1e− 8

Fig. 9 Errors of solution (6) with the adjustments of the ODE45 solver when γ = 1

stantiate the accuracy and efficacy of HTVPR-ZNN solutions. Besides, we also study the
influences of the related parameters and stimulation functions in the HTVPR-ZNN related
to the convergence. In addition, the HTVPR-ZNN solutions can achieve an expedited con-
vergence speed and reduce the assigned time. What’s more, one example is further presented
to indicate the effectiveness of our designed solutions intuitively. One of our future research
efforts is to apply the HTVPR-ZNN solutions to some engineering situations such as robot
manipulators’ control.

Acknowledgements This work was supported by the National Natural Science Foundation of China (NSFC)
under Grants (62162044), the Jiangxi Key Research and Development Plan under Grants (20212BBE53017)
and the Aeronautical Science Foundation under Grants (20200057056006).

Author Contributions JL: conceptualization, methodology, software, validation, investigation, writing-
original draft, project administration. LY: resources, writing-review and editing, supervision, funding
acquisition. BX: software, supervision, investigation, validation, funding acquisition. All authors reviewed
the manuscript.

123



  174 Page 18 of 19 J. Luo et al.

Declarations

Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Li W (2018) A recurrent neural network with explicitly definable convergence time for solving time-
variant linear matrix equations. IEEE Trans Ind Inform 14(12):5289–5298

2. Li W, Ma X, Luo J, Jin L (2021) A strictly predefined-time convergent neural solution to equality- and
inequality-constrained time-variant quadratic programming. IEEE Trans Syst Man Cybern 51(7):4028–
4039

3. Li W, Xiao L, Liao B (2020) A finite-time convergent and noise-rejection recurrent neural network and
its discretization for dynamic nonlinear equations solving. IEEE Trans Cybern 50(7):3195–3207

4. Zhang Z, Zheng L, Yang H, Qu X (2019) Design and analysis of a novel integral recurrent neural network
for solving time-varying Sylvester equation. IEEE Trans Cybern 16(6):1477–1490

5. Chen D, Zhang Y (2018) Robust zeroing neural-dynamics and its time-varying disturbances suppression
model applied to mobile robot manipulators. IEEE Trans Neural Netw Learn Syst 29(9):4385–4397

6. Liao B, Wang Y, Li W et al (2021) Prescribed-time convergent and noise-tolerant Z-type neural dynamics
for calculating time-dependent quadratic programming. Neural Comput Appl 33:5327–5337

7. Liao B, Han L, He Y et al (2022) Prescribed-time convergent adaptive ZNN for time-varying matrix
inversion under harmonic noise. Electronics 11(10):1636

8. Xiao L, Li S, Li K, Jin L, Liao B (2018) Co-design of finite-time convergence and noise suppression: a
unified neural model for time varying linear equations with robotic applications. IEEE Trans Syst Man
Cybern Syst 50(12):5233–5243

9. Qiu B, Guo J, Li X, Zhang Z, Zhang Y (2020) Discrete-time advanced zeroing neurodynamic algorithm
applied to future equality-constrained nonlinear optimization with various noises. IEEE Trans Cybern
52(5):3539–3552

10. Li S, Chen S, Liu B (2013) Accelerating a recurrent neural network to finite-time convergence for solving
time-varying Sylvester equation by using a sign-bi-power activation function.Neural Process Lett 37:189–
205

11. Xiao L, Zhang Y (2014) From different Zhang functions to various ZNNmodels accelerated to finite-time
convergence for time-varying linear matrix equation. Neural Process Lett 39:309–326

12. LiW, Su Z, Tan Z (2019) A variable-gain finite-time convergent recurrent neural network for time-variant
quadratic programming with unknown noises endured. IEEE Trans Ind Inform 15(9):5330–5340

13. Zhang Y, Zhang Y, Chen D, Xiao Z, Yan X (2016) From Davidenko method to Zhang dynamics for
nonlinear equation systems solving. IEEE Trans Syst Man Cybern 99:1–14

14. Jin L, Zhang Y, Qiao T, Tan M, Zhang Y (2016) Tracking control of modified Lorenz nonlinear system
using ZG neural dynamics with additive input or mixed inputs. Neurocomputing 196:82–94

15. Dai J, Jia L, Xiao L (2021) Design and analysis of two prescribed-time and robust ZNN models with
application to time-variant Stein matrix equation. IEEE Trans Neural Netw Learn Syst 32(4):1668–1677

16. Feng J, Qin S, Shi F, Zhao X (2018) A recurrent neural network with finite-time convergence for convex
quadratic bilevel programming problems. Neural Comput Appl 30(11):3399–3408

17. Qiu B, Zhang Y, Yang Z (2018) New discrete-time ZNN models for least-squares solution of dynamic
linear equation system with time-varying rank-deficient coefficient. IEEE Trans Neural Netw Learn Syst
29(11):5767–5776

18. Xiao L, Li K, Duan M (2019) Computing time-varying quadratic optimization with finite-time conver-
gence and noise tolerance: a unified framework for zeroing neural network. IEEE Trans Neural Netw
Learn Syst 30(11):3360–3369

123

http://creativecommons.org/licenses/by/4.0/


Hyperbolic Tangent-Type Variant-Parameter and Robust ZNN Solutions. . . Page 19 of 19   174 

19. Liu J, ZhangY,YuY, SunC (2020) Fixed-time leader–follower consensus of networked nonlinear systems
via event/self-triggered control. IEEE Trans Neural Netw Learn Syst 31(11):5029–5037

20. Liu J, Zhang Y, Sun C, Yu Y (2019) Fixed-time consensus of multi-agent systems with input delay and
uncertain disturbances via event-triggered control. Inf Sci 480:261–272

21. Zhang Y, Li S, Kadry S, Liao B (2019) Recurrent neural network for kinematic control of redundant
manipulators with periodic input disturbance and physical constraints. IEEE Trans Cybern 49(12):4194–
4205

22. Zhang Y, Li S, Zhou X (2019) Recurrent neural network based velocity-level redundancy resolution for
manipulators subject to joint acceleration limit. IEEE Trans Ind Electron 66(5):3573–3582

23. Yu F, Liu L, Xiao L, Li K, Cai S (2019) A robust and fixed-time zeroing neural dynamics for computing
time-variant nonlinear equation using a novel nonlinear activation function. Neurocomputing 350:108–
116

24. Li W, Liao B, Xiao L, Lu R (2019) A recurrent neural network with predefined-time convergence and
improved noise tolerance for dynamic matrix square root finding. Neurocomputing 337:262–273

25. Xu F, Li Z, Nie Z, Shao H, Guo D (2018) Zeroing neural network for solving time-varying linear equation
and inequality systems. IEEE Trans Neural Netw Learn Syst 30(8):2346–2357

26. Li J, Zhang Y, Mao M (2019) General square-pattern discretization formulas via second-order derivative
elimination for zeroing neural network illustrated by future optimization. IEEE Trans Neural Netw Learn
Syst 30(3):891–901

27. Hu C, He H, Jiang H (2020) Fixed/preassigned-time synchronization of complex networks via improving
fixed-time stability. IEEE Trans Cybern 51(6):2882–2892

28. Liang T, Zhang W, Dong J, Yang D (2023) Fixed/preassigned-time stochastic synchronization of T–S
fuzzy complex networks with partial or complete information communication. ISA Trans 137:339–348

29. Qin X, Jiang H, Qiu J, Hu C (2023) Fixed/prescribed-time synchronization of quaternion-valued fuzzy
BAM neural networks under aperiodic intermittent pinning control: a non-separation approach. Neuro.
Comput 549:126460–126476

30. Hu C, Yu J, Chen Z, Jiang H, Huang T (2017) Fixed-time stability of dynamical systems and fixed-time
synchronization of coupled discontinuous neural networks. Neural Netw 89:74–83

31. Ji G, Hu C, Yu J, Jiang H (2018) Finite-time and fixed-time synchronization of discontinuous complex
networks: a unified control framework design. J Frankl Inst 355(11):4665–4685

32. Xiao L, Zhang Z, Li S (2019) Solving time-varying system of nonlinear equations by finite-time recurrent
neural networks with application to motion tracking of robot manipulators. IEEE Trans Syst Man Cybern
Syst 49(11):2210–2220

33. Luo J, Li K, Yang H, Yang J (2020) Comparison on inverse-free method and psuedoinverse method for
fault-tolerant planning of redundant manipulator. IEEE Access 8:178796–178804

34. Xiao L, Tao J, Dai J, Wang Y, Jia L, He Y (2021) A parameter-changing and complex-valued zeroing
neural-network for finding solution of time-varying complex linear matrix equations in finite time. IEEE
Trans Ind Inform 17(10):6634–6643

35. Luo J, Yang H (2022) New variant-parameter ZNN solutions for resolving time-variant plural Lyapunov
equation under preassigned time. IEEE Trans Ind Inform 19(5):6482–6491

36. Luo J, Yang H (2022) A robust zeroing neural network model activated by the special nonlinear function
for solving time-variant linear system in predefined-time. Neural Process Lett 54(3):2201–2217

37. Zuo Z, Tie L (2014) A new class of finite-time nonlinear consensus protocols for multi-agent systems.
Int J Control 87(2):363–370

38. Zuo Z, Tie L (2016) Distributed robust finite-time nonlinear consensus protocols for multi-agent systems.
Int J Syst Sci 47(6):1366–1375

39. Tan Z, Li W, Xia L, Hu Y (2020) New varying-parameter ZNN models with finite-time convergence and
noise suppression for time-varyingmatrixMoore–Penrose inversion. IEEE Trans Neural Netw Learn Syst
31(8):2980–2992

40. Xiao L, Dai J, Lu R, Li S, Li J,Wang S (2020) Design and comprehensive analysis of a noise-tolerant ZNN
model with limited-time convergence for time-dependent nonlinear minimization. IEEE Trans Neural
Netw Learn Syst 31(12):5339–5348

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123


	Hyperbolic Tangent-Type Variant-Parameter and Robust ZNN Solutions for Resolving Time-Variant Sylvester Equation in Preassigned-Time
	Abstract
	1 Introduction
	2 Problem Formulation and Preliminaries
	3 HTVPR-ZNN Solutons
	3.1 Different Stimulation Functions

	4 Main Theoretical Analysis
	4.1 Pure-Case1: Without Noises
	4.2 Case2: Time-Variant Boundary-Constant Noise

	5 Numerical Simulation Example
	6 Conclusion
	Acknowledgements
	References


