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Abstract
In knowledge graph embedding, multidimensional representations of entities and relations
are learned in vector space. Although distance-based graph embedding methods have shown
promise in link prediction, they neglect context information among the triplet components,
i.e., the head_entity, relation, and tail_entity, limiting their ability to describe multivari-
ate relation patterns and mapping properties. Such context information denotes the entity
structural association inside the same triplet and implies the correlation between entities
that are not directly connected. In this work, we propose a novel knowledge graph embed-
ding model that explicitly considers context information in graph embedding via triplet
component interactions (TCIE). To build connections between components and incorporate
contextual information, entities and relations are represented as vectors comprised of two
specialized parts, enabling comprehensive interaction. By simultaneously interacting with
one-hop related head and tail entities, TCIE strengthens the connections between distant
entities and enables contextual information to be transmitted across the knowledge graph.
Mathematical proofs and experiments are performed to analyse themodelling ability of TCIE
in knowledge graph embedding. TCIE shows a strong capacity for modelling four relation
patterns (i.e., symmetry, antisymmetry, inverse, and composition) and four mapping prop-
erties (i.e., one-to-one, one-to-many, many-to-one, and many-to-many). The experimental
evaluation of ogbl-wikikg2, ogbl-biokg, FB15k, and FB15k-237 shows that TCIE achieves
state-of-the-art results in link prediction.
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1 Introduction

Knowledge graphs (KGs), a kind of knowledge base, such as WordNet [1], Freebase [2],
YAGO [3], and DBpedia [4], store large amounts of structured data in the form of triplets
(head_entity, relation, tail_entity), abbreviated as (h, r, t). KGs concisely represent entities
and their relationships, providing an effective way to organize, manage and use a vast amount
of information on the internet. Therefore, KGs have attracted much attention and play crucial
roles in many deep learning domains, including recommender systems [5], question answer-
ing [6], and natural language processing [7]. Although knowledge graphs contain a large
number of entities and relations, there are still many missing links between entities, which
causes KGs to face the dilemma of incompleteness. To solve this problem, predictingmissing
relations or entities, known as knowledge graph completion or link prediction, is becoming
a hot research topic. Knowledge graph embedding (KGE) encodes entities and relations as
multidimensional vectors in space, which is considered an efficient link prediction method.

Distance-based KGE models determine the rationality of a triplet by measuring the dis-
tances among the head_entity, relation, and tail_entity. TransE heuristically embeds the
positive triplets with the translation rule h + r ≈ t [8], and can model multiple relation pat-
terns, including antisymmetry, inversion, and composition. TransH [9] defines the relations
on the hyperplane and enforces constraints by projecting the entities onto the hyperplane. In
TransR [10], when two entities share similar meanings, they are expected to be in close prox-
imity within the physical space. TransH [9] and TransR [10] can model 1-to-N and N-to-1
mapping properties well but cannot model inversion and composition. Inspired by the Euler
formula eiθ = cos θ + i sin θ , RotatE [11] assumes that each relation r is the rotation from
the head_entity h to the tail_entity t . RotatE [11] is a promising model for encoding sym-
metry, antisymmetry, inverse, and composition relation patterns but has difficulties dealing
with N-to-1 relations. These models are intuitive and mathematically interpretable, but their
performance in simultaneously modelling four relation patterns, i.e., symmetry, antisymme-
try, inverse, and composition, and four mapping properties, i.e., one-to-one, one-to-many,
many-to-one, and many-to-many, is limited. Distance-based approaches focus on the condi-
tions that should be met among the head_entity, relation, and tail_entity of a positive triplet
while ignoring the correlation between entities that are not in the same triplet. We refer to
the potential information stored in the knowledge graph structure that reflects the relation
patterns and mapping properties as context information.

Figure1 depicts a straightforward example of a knowledge base and a knowledge graph.As
shown in Fig. 1b, the triplet (Albert Einstein, WinnerOf, Nobel Prize in Physics), and (Albert
Einstein, GraduateFrom, University of Zurich) hold at the same time. Despite the fact that
the entities Nobel Prize in Physics and University of Zurich are not directly connected, they
are interconnected and may have a potential relationship, i.e., Winner’s alma mater. This
hypothesis is based on the possible relationship between multihop connected entities in two
different triplets. Thus, context information among the head_entity, relation, and tail_entity
is indispensable for link prediction. However, most distance-based KGE methods are only
committed to properly representing the connections between entities and relations in the
positive triplets and do not account for context information when embedding entities and
relations.

Therefore, to add contextual information to knowledge graph embeddings, we represent
the head_entity and tail_entity as vectors consisting of two specialized parts, h = [hr , hc]
and t = [tr , tc], respectively. The part associated with c is used to capture the contextual
information, and the r -related part is used to build the connection between the entity and
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Fig. 1 An example of a knowledge base and knowledge graph. The red dotted line indicates the potential
relationship Winner’s alma mater

relation in the positive triplet. From Fig.1c, we find that the relation connects the head and tail
entities directionally. Therefore, the relation is represented as r = [rh, rt ]. rh is specifically
used to connect to the head_entity, and rt is used to connect to the tail entity. The entity Alfred
Kleiner shown in Fig. 1b is the head_entity in triplet (Alfred Kleiner, ProfessorOf, University
of Zurich) and the tail_entity in triplet (Albert Einstein, SupervisedBy, Alfred Kleiner). This
shows that relations can assign different roles to the same entity and have a critical effect on
the transmission of context information. Motivated by latent associations among the triplet
components, we opine that the embeddings of entities and relations should embody context
information about related entities and relations. To achieve this goal, we devise an interaction
for hc, rh and tc, rt to specifically learn context information. In addition, we design another
interaction for hr , rh , rt , and tr , building associations between entities and relations in the
positive triplets.

Herein, we propose a new KGE model named TCIE, which conducts interactions to build
the connection between entity and relation in the positive triplet and capture the context
information stored in the graph structure. The contributions of our paper are summarized as
follows:

1. We propose a novel model for knowledge graph embedding, TCIE, which learns contex-
tual information among the triplet components and establishes appropriate associations
between entities and relations in positive triplets.

2. TCIE explicitly incorporates context information into the graph embeddings and shows
a solid ability to model four relation patterns and mapping properties.

3. Extensive experiments are conducted to evaluate the performance of TCIE in terms of
link prediction on six benchmark datasets: ogbl-wikikg2 [18], ogbl-biokg [18], FB15k
[8], FB15k-237 [19], WN18 [8], and YAGO3-10 [15]. The experimental results show
that with the help of triplet component interactions, TCIE obtains highly competitive
results compared with those of state-of-the-art models.
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Table 1 Details of some knowledge graph embedding models

Models Score function Parameters

TransE [8] − ‖ h + r = t ‖1/2 h, t, r ∈ R
k

TransH [9] ‖ (h − wr
�hwr ) + dr − wr

�twr ) ‖22 h, t, wr , dr ∈ R
k

TransR [10] ‖ Mrh + r − Mr t ‖22 h, t ∈ R
k , r ∈ R

d , Mr ∈ R
k×d

DistMult [12] h�diag(r)t̄ h, t, r ∈ R
k

ComplEx [13] Re(h�diag(r)t̄) h, t, r ∈ C
k

HolE [14] r�(h�t) h, t, r ∈ R
k

ConvE [15]
〈
σ(vec(σ ([r̄ , h̄] ∗ ω))W ), t

〉
h, t, r ∈ R

k

RotatE [11] − ‖ h ◦ r − t ‖1 h, t, r ∈ C
k , |ri| = 1

PairRE [16] − ‖ h ◦ r H − t ◦ rT ‖1 h, r H , rT , t ∈ R
k

StructurE [17] − ‖ h + r − tcedge ‖1/2 − ‖ t − r − hcedge ‖1/2 h, hc, r , hcedge, tcedge, t, tc ∈ R
k

TCIE (Ours) − ‖ hr ◦ rh − tr ◦ rt ‖1− ‖ hc ◦ rt − tc ‖1
− ‖ tc ◦ rh − hc ‖1 hr , hc, rh , rt , tr , tc ∈ R

k

〈·〉 denotes the generalized dot product
σ denotes activation function and ∗ denotes 2D convolution
◦ denotes the Hadamard product and � denotes the circular correlation
·̄ denotes conjugate for complex vectors, and 2D reshaping for real vectors in the ConvE

2 RelatedWork

A knowledge graph is a directed heterogeneous multigraph G = (E, R, T ), where E , R, and
T are sets of entities, relations, and triplets, respectively. A triplet is denoted as (h, r, t) ⊆
E × R× E , where h represents the head_entity, r represents the relation, and t represents the
tail_entity.Given a knowledge graph,which is described as a list of fact triplets, the knowledge
graph embedding method defines a score function fr (h, t) to measure the plausibility of a
triplet. Knowledge graph completion mainly predicts the tail of a given head and relation (h,
r, ?) and the head of a given tail and relation (?, r, t).

Typical knowledge graph embedding methods properly encode entities and relations in
vector space via the score function [20, 21]. Table 1 summarizes the score functions and
parameters of some recent knowledge graph embedding models. We can roughly divide
these models into three categories [22]: distance-based models, semantic matching models,
and neural network models.

2.1 Distance-BasedModels

Distance-based models develop distance-based score functions and usually measure the dis-
tance between two entities after a relation has been transformed [23]. TransE [8] was the first
approach to use translation distance constraints, which assumes that entities and relations
satisfy h + r ≈ t. When the pattern of a relation is symmetric, its vector will be encoded by 0,
thus, TransE unable to distinguish symmetric relations. TransH [9], which was proposed to
compensate for this demerit of TransE [8], interprets a relation as a translation operation on a
hyperplane and has advantages in modelling N-to-1, 1-to-N, and N-to-Nmapping properties.
In TransR [10], it is assumed that entities have multiple attributes, and various relations can
focus on different attributes of entities. TransR models entities and relations in entity space
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and relation-specific entity space and transforms them into the corresponding relation space.
TransR has more parameters than TransE and TransH. Because of its complexity, TransR
is challenging to apply to large-scale knowledge graphs. TransD [24]simplifies TransR by
setting up two projection matrices, which project the head and tail entities into the relational
space. TransD considers the diversity of entities and the low complexity of the model, which
is suitable for large-scale knowledge graphs.

RotatE [11] defines each relation as a rotation from the source entity to the target entity
in a complex vector space and can model symmetry, asymmetry, inversion, and composi-
tion relation patterns. However, it does not perform well in N-to-1 relations. HAKE [25]
considers that elements in the knowledge graphs belong to different hierarchical levels and
captures semantic hierarchies by mapping entities into a polar coordinate system. PairRE
[16] represents each relation with paired vectors and can deal with complex relations and
more relation patterns. These translation-basedmodels do not make significant use of context
information, which is critical for modelling multivariate relationships. StructurE [17] uses
a dual-interaction model to capture both relational structure-context information and edge
structure-context information. To model complex relationships, StructurE defines different
scoring functions for different relationships, but there is no unified scoring function, and a
large number of parameters are needed.

2.2 Semantic MatchingModels

Semantic matching models utilize similarity-based score functions. These models measure
the plausibility of facts by matching the underlying semantics of entities and relations con-
tained in a vector space representation. RESCAL [26] associates each entity with a vector to
capture its potential semantics. Each relation is represented as a matrix that models pairwise
interactions between potential factors. DistMult [12] simplifies RESCAL by limiting Mr to
diagonal matrices. For each relation r, DistMult introduces an embedding vector r ∈ R

k and
requires that Mr = diag(r). Nevertheless, only the interactions between the components of
h and t in the same dimension are captured. HolE [14] combines the expressive power of
RESCAL with the efficiency and simplicity of DistMult. ComplEx [13] extends DistMult by
introducing complex-valued embeddings of entities and relations to better model antisym-
metric relations. However, despite the significantly increased space and time complexity,
ComplEx cannot model composition patterns. QuatE [27] is an extension of ComplEx in
hypercomplex space and provides a better spatial interpretation. Semantic matching mod-
els can reflect the credibility of semantic information of triplets, but they have defects in
encoding relation patterns [28].

2.3 Neural NetworkModels

Driven by deep learning and machine learning, neural network models for knowledge graph
embedding are developing rapidly. ConvE [15] outputs vectors on an input feature map using
2D convolution filters and computes the triplet fraction through the inner product of the output
vector and the embedded tail entities. HypER [29] fully convolves head entity embeddings
using relation-specific convolutional filters generated by the hypernetwork. Since a hyper-
network is a fully connected network, the interactions and relationships between entities are
increased at the expense of the parameters. Neural network models start from the distributed
representation of entities and relations. Some utilize complex neural structures such as tensor
networks (NTN [30]), graph convolution networks (SACN [31] and R-GCNs [32]), recurrent
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networks (RSNs [33]), and transformers (CoKE [34] and KG-BERT [35]) to learn richer
representation. These neural network models achieve outstanding results but are opaque and
lack interpretability.

3 ProposedMethod

3.1 Motivation and Overview

Examples of knowledge bases and knowledge graphs are illustrated in Fig. 1. There are four
triplets e.g., (Albert Einstein, WinnerOf, Nobel Prize in Physics) in Fig. 1b. To properly rep-
resent entities and their relationships during graph embedding, first, we need to reasonably
construct the appropriate association among the head_entity, relation, and tail_entity in the
positive triplet. Second, due to the potential relationships between indirectly related enti-
ties, for instance, the entities Nobel Prize in Physics and University of Zurich may have a
potential relationship, i.e., Winner’s alma mater , such context information between triplet
components can provide favourable evidence for link prediction. Naturally, we believe that
the representations of entities and relations should not only simulate the association among
h, r , and t in the positive triplet (h, r, t), but also contain context information stored in the
graph structure.

Consequently, to address this challenge, we propose a targeted KGE model, TCIE, which
represents entities and relations as vectors consisting of two parts, such as h = [hr , hc], r =
[rh, rt ], and t = [tr , tc], and conducts three interactions among them to establish appro-
priate associations between entities and relations in positive triplets and capture contextual
information in the graph. For head_entity, hc ◦ rt ≈ tc; for relation, hr ◦ rh ≈ tr ◦ rt; for
tail_entity, tc ◦ rh ≈ hc. An illustration of TCIE is shown in Fig. 2. A relation interaction is
devised to build a connection among h, r , and t in the positive triplet, and the head_entity
and tail_entity interactions are designed to capture the context information from the related
entities and relations.

3.2 TCIE

To facilitate building connections in positive triplets and capturing contextual information,
all entity and relation vectors are composed of two parts according to their attributes in
knowledge graphs. For relations, head_entity and tail_entity are simultaneously and directly
connected. Therefore, the embedding vector of the relation is expected to contain semantic
information about the head_entity and tail_entity. Therefore, in TCIE, the embedding vectors
of relations should be composed of two parts related to the head_entity and tail_entity, which
are denoted as:

r = [rh, rt ] (1)

As shown in Fig. 1c, tail_enti t y2 is the tail of the triplet (head_enti t y1, relation2,
tail_enti t y2) and the head of the triplet (head_enti t y2, relation4, tail_enti t y1). There-
fore, the embedding vector of tail_enti t y2 also contains the context information of these
two linked triplets. In addition, tail_enti t y2 directly connects relation2 and relation4,
which indicates that the embedding vector of tail_enti t y2 also contains information about
relations. Hence, the embedding vector of tail_entity is designed to include the related relation
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Fig. 2 Illustration of TCIE. For head_entity, the embedding vector of hc will be close to the Hadamard product
of rh and tc to learn contextual information of related entities and relations. For relation, the vector of hr and
rh will be close to tr and rt after the Hadamard product to build the semantic connection between entities
and relations. For tail_entity, the embedding vector of tc will approach the Hadamard product of rh and hc to
learn the context information. TCIE employs three interactions to build the association among the h, r , and t
in the positive triplet and capture context information stored in the graph structure

information and context information, which is denoted as:

t = [tr , tc] (2)

Head_entity is also directly connected with relations and contains the information of
related entities. Therefore, its embedding vector should contain two parts, the relevant relation
and context information, and is denoted as:

h = [hr , hc] (3)

During knowledge graph embedding, to let the vectors of the entities and relations
explicitly learn context information from the remaining triplet components, we design two
interactions. ◦ denotes the Hadamard product. For head_entities, hc is devoted to learning
context information from other tail_entities through rh . The interaction for the head_entity
is represented as:

hc ≈ rh ◦ tc (4)

For tail_entities, tc is devised to learn context information fromother head_entities through
rt . The interaction for tail_entity is represented as:

tc ≈ rt ◦ hc (5)

To build the proper connection among the head_entity, relation, and tail_entity in the
positive triplet, we design another interaction for relations. rh is designed to connect with
head entities, and rt is used to connect with tail entities. The relation is a bridge to connect
the head entity and tail entity. Therefore, the interaction for the relation is represented as:

hr ◦ rh ≈ tr ◦ rt (6)

TCIE makes the associated embeddings in triplet components close in geometric space
to build associations in the positive triplets and capture context information. An illustration
of TCIE is shown in Fig. 2. From Fig. 2a, for the head_entity, the embedding vector of hc
will be close to the Hadamard product of rh and tc to learn contextual information of related
entities and relations. From Fig. 2b, for the relation, the vector of hr and rh will be close
to tr and rt after the Hadamard product to build the semantic connections between entities
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and relations. From Fig. 2c, for the tail_entity, the embedding vector of tc will approach
the Hadamard product of rh and hc to learn the context information. These interactions are
conducive to TCIE capturing context information and strengthening the triplets’ associations
to better model relation patterns and mapping properties.

3.3 Score Function

Wecombine the interactions for head_entities, relations, and tail_entities as the score function
of our KGE model to measure the plausibility of facts by calculating the Euclidean distance
between vector components. The projection operation is theHadamard product between these
two vectors. The distance of two projected vectors will be computed as the plausibility of
the triplet. In this paper, the L1-norm is chosen to measure this distance. The score function
is defined as follows:

fr (h, t) = − ‖ hr ◦ rh − tr ◦ rt ‖1 − ‖ hc − rh ◦ tc ‖1 − ‖ tc − rt ◦ hc ‖1, (7)

3.4 Loss Function

Knowledge graphs only contain positive triplets. Therefore, we need to randomly replace
the head_entity or tail_entity of an existing triplet to construct negative triplets, known as
negative sampling. The distances between positive samples should be shorter, and the dis-
tances between negative samples should be longer. Many negative sampling methods have
been proposed [36–38], among which the self-adversarial negative sampling method [11]
dynamically adjusts the weights of negative samples according to the scores during training.
We use this self-adversarial negative sampling loss as the objective for training:

L = − log σ(γ − fr (h, t))

−
n∑

i=1

p(h′
i , r , t

′
i ) log σ( fr (h

′
i , t

′
i ) − γ ),

(8)

whereσ is the sigmoid function and γ is a fixedmargin. (h′
i , r , t

′
i ) is the i

th negative triplet and
p(h′

i , r , t
′
i ) represents the weight of this negative sample. p(h′

i , r , t
′
i ) is defined as follows:

p((h′
i , r , t

′
i ) | (h, r , t)) = exp fr (h′

i , t
′
i )∑

j exp fr (h′
j , t

′
j )

, (9)

3.5 Proofs of Modeling Relation Pattern

We deduce the conditions for our TCIE to be able to model the four relation patterns. The
main results are as follows:

Proposition 1 Our model can encode symmetry/antisymmetry relation patterns.

Proof If (h1, r1, t1) ∈ T and (t1, r1, h1) ∈ T, we have
⎧
⎪⎨

⎪⎩

h1r ◦ r1h = t1r ◦ r1t
h1c ◦ r1t = t1c
t1c ◦ r1h = h1c

(10)
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⎧
⎪⎨

⎪⎩

t1r ◦ r1h = h1r ◦ r1t
t1c ◦ r1t = h1c
h1c ◦ r1h = t1c

(11)

⇒

⎧
⎪⎨

⎪⎩

h1r ◦ r1h = t1r ◦ r1t ∧ t1r ◦ r1h = h1r ◦ r1t
h1c ◦ r1t = t1c ∧ t1c ◦ r1t = h1c
t1c ◦ r1h = h1c ∧ h1c ◦ r1h = t1c

⇒ r1h
2 = r1t

2 = 1 (12)

If r1 satisfies the symmetry relation pattern, we need r1 h2 = r1t 2 = 1.
If (h1, r1, t1) ∈ T and (t1, r1, h1) /∈ T, we have

⎧
⎪⎨

⎪⎩

h1r ◦ r1h = t1r ◦ r1t
h1c ◦ r1t = t1c
t1c ◦ r1h = h1c

(13)

⎧
⎪⎨

⎪⎩

t1r ◦ r1h �= h1r ◦ r1t
t1c ◦ r1t �= h1c
h1c ◦ r1h �= t1c

(14)

⇒

⎧
⎪⎨

⎪⎩

h1r ◦ r1h = t1r ◦ r1t ∧ t1r ◦ r1h �= h1r ◦ r1t
h1c ◦ r1t = t1c ∧ t1c ◦ r1t �= h1c
t1c ◦ r1h = h1c ∧ h1c ◦ r1h �= t1c

⇒ r1h
2 �= r1t

2 �= 1 (15)

If r1 satisfies the antisymmetry relation pattern, we need r1 h2 �= r1t 2 �= 1. ��

Proposition 2 Our model can encode inverse relation pattern.

Proof If (h1, r1, t1) ∈ T and (t1, r2, h1) ∈ T we have
⎧
⎪⎨

⎪⎩

h1r ◦ r1h = t1r ◦ r1t
h1c ◦ r1t = t1c
t1c ◦ r1h = h1c

(16)

⎧
⎪⎨

⎪⎩

t1r ◦ r2h = h1r ◦ r2t ,
t1c ◦ r2t = h1c),

h1c ◦ r2h = t1c)

(17)

⇒

⎧
⎪⎨

⎪⎩

h1r ◦ r1h = t1r ◦ r1t ∧ t1r ◦ r2h = h1r ◦ r2t
h1c ◦ r1t = t1c ∧ t1c ◦ r2t = h1c
t1c ◦ r1h = h1c ∧ h1c ◦ r2h = t1c

⇒ r1h ◦ r2h = r1t ◦ r2t = 1 (18)

If r1, r2 satisfy the inverse relation, we need r1 h ◦ r2 h = r1t ◦ r2t = 1. ��

Proposition 3 Our model can encode composition relation pattern.
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Table 2 Statistical information of the datasets used in experiments

Datasets #E #R #Train #Valid #Test

ogbl-wikikg2 2,500,604 535 1,610,912 429,456 598,543

ogbl-biokg 45,085 51 4,762,678 1,628,866 162,870

FB15k 14,951 1345 483,142 50,000 59,071

FB15k-237 14,541 237 272,115 17,535 20,466

WN18 40,943 18 141,442 5000 5000

YAGO3-10 123,182 37 1,079,040 5000 5000

#Test, #Valid and #Train denote the number of test, valid and training triplets, respectively; #R and #E denote
the number of relations and entities, respectively

Proof If (h1, r1, t1) ∈ T, (t1, r2, t2) ∈ T, and (h1, r3, t2) ∈ T we have
⎧
⎪⎨

⎪⎩

h1r ◦ r1h = t1r ◦ r1t
h1c ◦ r1t = t1c
t1c ◦ r1h = h1c

(19)

⎧
⎪⎨

⎪⎩

t1r ◦ r2h = t2r ◦ r2t
t1c ◦ r2t = t2c
t2c ◦ r2h = t1c

(20)

⎧
⎪⎨

⎪⎩

h1r ◦ r3h = t2r ◦ r3t
h1c ◦ r3t = t2c
t2c ◦ r3h = h1c

(21)

⇒

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

h1r ◦ r1h = t1r ◦ r1t ∧ t1r ◦ r2h = t2r ◦ r2t
∧h1r ◦ r3h = t2r ◦ r3t
h1c ◦ r1t = t1c ∧ t1c ◦ r2t = t2c ∧ h1c ◦ r3t = t2c
t1c ◦ r1h = h1c ∧ t2c ◦ r2h = t1c ∧ t2c ◦ r3h = h1c

⇒ r1h ◦ r2h = r3h, r1t ◦ r2t = r3t (22)

If r1, r2, and r3 satisfy the composition relation pattern, we need r1 h ◦ r2 h = r3 h, r1t ◦ r2t =
r3t . ��

4 Experiments

4.1 Datasets

Six commonly used standard datasets are used in our link prediction experiments: ogbl-
wikikg2 [18], ogbl-biokg [18], FB15k [8], FB15k-237 [19], WN18 [8], and YAGO3-10 [15].
The statistical information of these datasets is summarized in Table 2.

ogbl-wikikg2 is extracted from the Wikidata knowledge base [39]. The main challenge
for this dataset is complex relations.

ogbl-biokg contains data from a large number of biomedical data repositories. The main
challenge for this dataset is symmetry relations.
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FB15k is a subset of Freebase [2], and the main relation patterns are inverse, symmetric
and antisymmetric.

FB15k-237 is a subset of FB15k and has no inverse relations. The challenge of link
prediction on FB15k-237 is how to handle composition patterns.

WN18 is extracted from WordNet [1], the main challenges of link prediction on WN18
are to model inversion and symmetry relations.

YAGO3-10 is a YAGO3 sample proposed by [15]. This dataset was built by identifying
all entities with at least ten different relations in the KG and extracting all the corresponding
facts.

4.2 Evaluation Protocol

We use the mean rank (MR), mean reciprocal rank (MRR), and Hits@N (the proportion
of correct entities ranked in the top N, where N = 1, 3, and 10) as the evaluation metrics.
The lower the MR is, the better, while the higher the MRR and Hits@N are, the better. For
ogbl-wikikg2 and ogbl-biokg, we follow the settings in the work by [18], using the average of
multiple experiments to reflect the volatility of the results. For the other datasets, we follow
the mainstream practice to select the best results for comparison. The embedding dimension
is the same for h, r , and t in our model. The embedding size of the vector components
hr , hc, rh, rt , tr , and tc is half that of h, r , and t .

Through the grid search method, hyperparameters are selected according to the perfor-
mance of the model on the validation dataset. We set the range of the hyperparameter as
follows: temperature of sampling a ∈ { 0.5, 1.0 }, embedding size k ∈ { 100, 200, 500, 1500,
2000, 2500 }, batch size b ∈ { 512, 1024 }, fixed margin γ ∈ { 3, 4, 5, 6, 7, 8, 12 }, δ ∈ {
0.2, 0.4, 0.6, 0.8, 0.9 }, and number of negative samples for each observed triplet n ∈ { 128,
256, 512, 1024 }. We add two additional coefficients to the score function at training, i.e.
fr (h, t) = −λ1 ‖ hr ◦ rh − tr ◦ rt ‖1 −λ2 ‖ hc − rh ◦ tc ‖1 −λ2 ‖ tc − rt ◦ hc ‖1, where
λ1, λ2 ∈ [0, 1], λ1 + 2λ2 = 1. The optimal configurations of our model are:

a=1.0, k=100, b=1024, n=128, λ1=0.6, λ2=0.2, γ=4 on ogbl-wikikg2;
a=1.0, k=200, b=1024, n=128, λ1=0.6, λ2=0.2, γ=6 on ogbl-wikikg2;
a=1.0, k=400, b=1024, n=128, λ1=0.4, λ2=0.3, γ=12 on ogbl-biokg;
a=1.0, k=2000, b=1024, n=128, λ1=0.4, λ2=0.3, γ=12 on ogbl-biokg;
a=1.0, k=2500, b=1024, n=256, λ1=0.9, λ2=0.05, γ=17 on FB15k;
a=1.0, k=1500, b=1024, n=256, λ1=0.8, λ2=0.1, γ=4 on FB15k-237;
a=0.5, k=500, b=512, n=1024, λ1=0.9, λ2=0.05, γ=8 on WN18;
a=1.0, k=500, b=1024, n=512, λ1=0.8, λ2=0.1, γ=17 on YAGO3-10.

4.3 Main Results

The experimental results of knowledge graph completion on the Open Graph Benchmark
[18] datasets are shown in Table 3. To incidentally explore the effect of dimensionality on
the model performance, we used two embedding sizes for all models. TCIE outperforms all
baselines significantly on two large datasets, ogbl-wikikg2 and ogbl-biokg. Compared with
the test MMRs obtained using PairRE, our model obviously improves the test MRRs by 23%
on ogbl-wikikg2 (dimension 100), 18% on ogbl-wikikg2 (dimension 200), and 0.67% on
ogbl-biokg (dimension 2000). On the ogbl-wikikg2 and ogbl-biokg2 dataset, TCIE performs
best using both finite and increased embedding sizes. As the dimension increases, the test
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Fig. 3 Histograms of relation embeddings for different relation patterns. r1 is relation _sim-
ilar_to. r2 is relation _part_of. r3 is relation _hyponym. r4 is relation _hypernym. r5 is
relation /location/location/adjoin_s./location/adjoining_relationship/adjoins. r6 is relation /loca-
tion/statistical_region/gdp_real./measurement_unit/adjusted_money_value/adjustment_currency. r7 is
relation /location/statistical_region/gdp_nominal./measurement_unit/dated_money_value/currency

MRR improvement using TCIE weakens, indicating that our model does not need many high
dimensions to achieve competitive results.

Table 4 shows the experimental results of link prediction on the FB15k and FB15k-
237 datasets. Compared with the results of recent competitive models, TCIE shows clear
improvements on FB15k-237 for all evaluation metrics. On FB15k, our model outperforms
all baselines in terms of almost all metrics. One exception is that TransH [9] performs better
than TCIE in terms of the MR. The relations in FB15k and FB15k-237 are mainly inversion
and composition patterns. Thus, TCIE is more suitable for capturing context information in
such relationships.

Table 5 displays the experimental results of link prediction onWN18 and YAGO3-10. The
major relations in WN18 are inversion and symmetry patterns. TCIE achieves comparable
results to those of the state-of-the-art models and scores the highest in terms of Hit@1 and
Hit@3. These comparisons demonstrate the strong ability of our model to encode inverse and
symmetry relations. YAGO3-10 has 37 kinds of relations, among which the triplets involved
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in is A f f iliatedT o and playsFor account for 35%and 30%, respectively, in the training set.
This may be because their (subject, object) pairs basically overlap, resulting in nonoptimal
results with our model.

4.4 Model Analysis

4.4.1 Analysis of the Relation Patterns

Thepropositions in Sect. 3.5 prove that TCIE canmodelmultiple relationships.We investigate
the relation embeddings of different patterns (500 dimensions onWN18 and 1500 dimensions
on FB15k-237), the histograms are shown in Fig. 3.

SymmetryPattern.Figure3a and b show a symmetry relation r1 _similar_to fromWN18.
We can see that most elements in Fig. 3a are close to or equal to 0, and the absolute values
of the r1t elements are very close to 1 in Fig. 3b. The embeddings of r1 basically satisfy
r1 h2 = r1t 2 = 1

Antisymmetry Pattern. Figure3c and d show an antisymmetry relation r2 _part_of from
WN18. We observe that the elements in Fig. 3c are not concentrated at approximately 0, and
the value of r2t elements is not close to 1 in Fig. 3d. These results demonstrate that the
embeddings of r2 satisfy r2 h2 �= r2t 2 �= 1.

Inverse Pattern. Figure3e and f show the inverse relation r3 _hyponym and r4 _hypernym
from WN18. Most elements in Fig. 3e are approximately 0, and the Hadamard products of
r3t and r4t are much closer to 1 in Fig. 3f. These results indicate that the embeddings of r3
and r4 nearly satisfy r3 h ◦ r4 h = r3t ◦ r4t = 1.

Composition Pattern. Figure3g and h show the composition relation r5 /loca-
tion/location/adjoin_s./location/adjoining_relationship/adjoins, r6 /location/statistical
_region/gdp_real./measurement_unit/adjusted_money_value/adjustment_currency, and r7
/location/statistical_region/gdp_nominal./measurement_unit/dated_money_value/currency
from FB15k-237. Most elements in Fig. 3g and h are close to or equal to 0, which shows that
these three relations are close to satisfying r5 h ◦ r6 h = r7 h, r5t ◦ r6t = r7t .

4.4.2 Analysis of the Complex Relations

We study the performance of TCIE in different relation categories. Table 6 summarizes the
precise results by relation category on FB15k-237, which shows that our model achieves
highly competitive performance on different mapping properties. TCIE is capable of mod-
eling complex mapping properties and performs pretty well on 1-to-N, N-to-1, and N-to-N
relations.

4.4.3 Analysis of Embedding Dimension

The embedding dimension will impact the performance of KGE on the knowledge graph.
We further conduct experiments to explore the influence of the embedding dimension on
TCIE. On the ogbl-wikikg2 dataset, for TCIE in all embedding sizes, λ1=0.6, λ2=0.2 and
γ=4. On FB15k-237, for TCIE in all embedding sizes, λ1=0.8, λ2=0.1 and γ=4. As shown
in Fig. 4a, with the increase in dimensions in the ogbl-wikig2 dataset, the MRR increases
and then remains unchanged. The same law is found in Fig. 4b on FB15k-237, and when
the dimension increases to 2000, the MRR even decreases. Thus, we have learned that the
improvements brought by adding dimensions are limited in link prediction. The embedding
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Table 6 The detailed link prediction results by relation category on FB15k-237

Relation Category 1-to-1 1-to-N N-to-1 N-to-N 1-to-1 1-to-N N-to-1 N-to-N
Tasks Prediction Head (Hits@10) Prediction Tail(Hits@10)

TransE [8] 0.594 0.659 0.162 0.458 0.583 0.138 0.879 0.606

ComplEx [13] 0.521 0.655 0.170 0.454 0.531 0.126 0.862 0.591

RotatE [11] 0.594 0.658 0.167 0.463 0.563 0.131 0.880 0.609

PairRE [16] 0.604 0.675 0.212 0.493 0.594 0.133 0.880 0.618

TCIE 0.599 0.677 0.216 0.496 0.593 0.134 0.881 0.619

Tasks Prediction Head (MRR) Prediction Tail(MRR)

TransE [8] 0.490 0.450 0.081 0.248 0.481 0.070 0.746 0.364

ComplEx [13] 0.367 0.463 0.091 0.249 0.362 0.064 0.737 0.357

RotatE [11] 0.496 0.463 0.086 0.253 0.482 0.072 0.757 0.369

PairRE [16] 0.496 0.476 0.114 0.277 0.492 0.073 0.762 0.381

TCIE 0.501 0.479 0.116 0.287 0.494 0.075 0.764 0.385

The results of PairRE are our experimental results by using their source codes, and other results are taken from
[42]
The best results are in bold

Table 7 Ablation experiment
results on FB15K-237 and
ogbl-wikikg2

Score Function Test MRR
ogbl-wikikg2 FB15k-237

score1 0.4872 0.3492

score2 0.4385 0.3089

score3 0.2608 0.2866

score1 + score2 + score3 0.5975 0.3567

dimension in Fig. 4 is the entity dimension. PairRE’s relation dimension is twice that of the
entity. In TCIE, the dimensions of entities and relations are the same.Ourmodel needs a lower
relation dimension compared with that need for PairRE but achieves better performance.

4.4.4 Analysis of the Score Function

We perform an ablation study on combinations of score functions. We set score1 = − ‖
hr ◦ rh − tr ◦ rt ‖1, score2 = − ‖ hc − rh ◦ tc ‖1, score3 = − ‖ tc − rt ◦ hc ‖1. The score1 +
score2 + score3 = −λ1 ‖ hr ◦ rh − tr ◦ rt ‖1 −λ2 ‖ hc − rh ◦ tc ‖1 −λ2 ‖ tc − rt ◦ hc ‖1. For
ogbl-wikikg2, λ1=0.6, λ2=0.2. For FB15k-237, λ1=0.8, λ2=0.1. As shown in Table 7, better
results are achieved using score1 than using score2 or score3; however, the lowest MRR is
achieved using score3. These results indicate that the interactions initiated by the relation
are more useful than those of the head and tail; more information may be learned from the
interactions initiated by the head than those initiated by the tail. The best result is achieved
with our score function (score1 + score2 + score3) obtains the best results. This proves that
aggregating the interactions among the head, relation, and tail will help capture more triplet
semantic information and obtain better knowledge representations.
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Fig. 4 Results of different embedding dimensions on ogbl-wikikg2 and FB15k-237

Table 8 Parameter statistics of
baselines and TCIE, where ne
denotes the number of entities
and nr and denotes the number of
relations, d is the embedding
dimension

Model Number of parameters

TrasnE (ne+nr )×d

Complex (2ne+nr )×d

RotatE (2ne+nr )×d

PairRE (ne+2nr )×d

StructurE (2ne+3nr )×d

TCIE (ne+nr )×d

4.4.5 Analysis of the Parameters

The number of parameters of the baseline models is shown in Table 8. TCIE and TransE
require the same number of parameters. However, the performance of TCIE is significantly
improved. Our model requires less parameters than those required by the recent state-of-the-
art model StructurE [17] and performs better on FB15k and FB15k-237.

4.4.6 Analysis of the Entity Embeddings

To explore the distribution of entity embeddings in vector space, we project the learned
entity embeddings from TransE [8], PairRE [16], and TCIE into a 3D space by t-SNE [43].
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Fig. 5 3D scatter plot of entity embedding on FB15k-237. Each color represents a relation and each point
represents an entity

As shown in Fig. 5, points with the same colour are related to the same relation. We can
observe that points of the same colour tend to be grouped together in TransE, PairRE, and
TCIE. However, the points in TransE and PairRE are more dispersed than those in TCIE.
In Fig. 5c, all the points are clustered together and very dense. This demonstrates that the
distance between entities is closer through the interactions. A closer distance indicates that
the context information has been learned and that the entity embeddings have similarities.
This will help to strengthen the connections between entities and infer potential relationships
in link prediction.

5 Conclusion

The contextual information between the triplet components reflects the correlation between
entities that are not directly connected and is essential for inferring potential relations between
entities. To explicitly account for this context information in knowledge graph embedding,
we propose a new model, TCIE, which designs three interactions for entity and relation
representations consisting of two specialized parts. These interactions are used separately
for building semantic connections between entities and relations in the positive triplets and
capturing contextual information. In addition, we design a unified score function to combine
the interactions for semantic connections and contextual information. With these two key
factors, TCIE shows a strong capacity for modelling four relation patterns and four map-
ping properties. Compared with distance-based KGE models, TCIE achieves state-of-the-art
results on multiple standard datasets in link prediction.
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In future work, we plan to study the following problems. (1) We will integrate the general
semantic information in language models into TCIE. (2) We intend to extend the TCIE to
KGE downstream tasks, such as graph-to-text generation and complex question answering
over knowledge bases.
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