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Abstract
Accurately predicting the future trend of a time series holds immense importance for decision-
making andplanning across various domains, including energyplanning,weather forecasting,
traffic warning, and other practical applications. Recently, deep learning methods based on
transformers and time convolution networks (TCN) have achieved a surprising performance
in long-term sequence prediction. However, the attention mechanism for calculating global
correlation is highly complex, and TCN methods do not fully consider the characteristics
of time-series data. To address these challenges, we introduce a new learning model named
wavelet-based Fourier-enhanced network model decomposition (W-FENet). Specifically, we
have used trend decomposition and wavelet transform to decompose the original data. This
processed time-series data can then be more effectively analyzed by the model and mined for
different components in the series, as well as capture the local details and overall trendiness
of the series. An efficient feature extraction method, Fourier enhancement-based feature
extraction (FEMEX), is introduced in our model. The mechanism converts time-domain
information into frequency-domain information through a Fourier enhancement module, and
the obtained frequency-domain information is better captured by the model than the original
time-domain information in terms of periodicity, trend, and frequency features. Experiments
on multiple benchmark datasets show that, compared with the state-of-the-art methods, the
MSE and MAE of our model are improved by 11.1 and 6.36% on average, respectively,
covering three applications (i.e. ETT, Exchange, and Weather).
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1 Introduction

A time series is an essential data structure consisting of a sequence of numerical values
appear in chronological order. Recently, time series analysis has become crucial for predict-
ing dynamic phenomena in various applications, including climate change [1–5], financial
markets [6–9], energy management [10, 11], manufacturing, and transportation planning
[12–14]. Time-series forecasting is categorized into univariate and multivariate forecasting
based on the number of target variables to be forecasted [15]. Time-series forecasting (TSF)
is a vital area within data mining, revolving around the prediction of future trends through
the analysis of past values observations [16–18]. It plays a vital role in several practical
scenarios. For instance, improved combustion environments can be designed by predicting
coal-fired power generation, and better planning of power supply and demand can be achieved
by predicting wind power generation in the following weeks to ensure stable power system
operation [19].

In recent years, researchers have used deep neural networks (DNNs) applied in various
fields and have extraordinary impact in solvingmany problems [20]. Currently, there are three
main types of deep learning-based time-series forecasting models: recurrent neural network
(RNN)-based [21, 22], TCN-based [23, 24], and transformer-based [25]. The RNN-based
method faces challenges such as gradient vanishing, gradient explosion, and limited paral-
lelism. The primary working capability of the transformer-based model originates from the
multi-head attention. However, this mechanism is permutable and reversible, leading to loss
of time-series information. Additionally, the self-attention mechanism within transformers
computes pairwise similarities for all elements, resulting in quadratic growth in both tempo-
ral and spatial complexities as the time series length increases. For the TCN-based method,
although the TSF method based on these general models achieved good results, it failed to
adequately account for the unique characteristics of the time-series data in the modelling
process. By contrast, the TCN-based method requires deeper layers to achieve a larger local
receptive field. With this, the network can be traced back to the farther past such that the
receptive field of each layer exponentially increases, however, this also causes the network
to become deeper, which may increase the computational cost and training time.

Given the above problems, we proposed a Fourier enhancement network based on wavelet
decomposition to capture sequence features for forecasting and modelling. Specifically, we
designed a new module for extracting time-series information: feature extraction based on
Fourier enhancement. The Fourier enhancement module can better extract the correlation
between sequences, such as periodicity or seasonality, because the original sequence infor-
mation can be converted to frequency-domain information after Fourier transform, and it can
also enhance the frequency domain through this module, reducing the influence of noise and
improving the performance of extracting sequence features.

However, it is insufficient to rely solely on FEMEX to extract information from original
sequences. There is significantly different information in the sequence than in the original
data. Inspired by this, we proposed trend decomposition and wavelet transform to process
data entering FEMEX. When the data enter the wavelet transform, they obtain detailed
and approximation functions at different scales, allowing the extraction of time–frequency
localized features in the sequence, thus improving the prediction performance.

123



W-FENet: Wavelet-based Fourier-Enhanced Network Model … Page 3 of 23 43

The following are our main contributions in this paper:

(1) We proposed W-FENet. This applies trend extraction and wavelet transform to decom-
pose the original sequence into multiple subseries at different scales and model the
temporal correlations in the subsequences with the aim of adaptive learning and captur-
ing temporal patterns in a long-term temporal forecasting environment.

(2) By studying sample convolution in time-series forecasting, we designed a new feature
extraction structure: Fourier enhancement based on feature extraction (FEMEX). This
module captures sequence features well, and can improve the prediction efficiency.

(3) The experimental results on three benchmark datasets covering energy, economy, and
weather indicate that our model outperforms previous forecasting models. Specifically,
our model achieved a relative improvement of MSE with 11.1% and MAE with 6.36%.

The rest of this paper is organized as follows: Sect. 2 reviews the relatedwork. InSect. 3, the
describes our model. Section 4 presents experimental results. In the end, Sect. 5 summarizes
the study and provides possible trends for subsequent research.

2 RelateWork

This section briefly reviews related work on time series forecasting, temporal temperature
enhancement approaches, and wavelet transforms in time series.

2.1 Time Series Forecasting

In the early stages of time-series forecasting, traditional mathematical models like vector
autoregressive (VAR) [26] and autoregressive integrated moving average (ARIMA) [27]
were commonly used. The introduction of a support vector machine (SVR) [28] brought
a conventional machine learning approach to predict future values. The Gaussian distribu-
tion [29] models the future distribution instead of assuming a specific functional form for
predictions. Nevertheless, these classical models face limitations when dealing with high-
dimensional data, as they are primarily suitable for univariate predictions and cannot handle
complicated data distributions.

With the increase in the amount of available data and deep learning techniques have
advanced, neural networks have demonstrated superior performance compared to traditional
models in time-series forecasting. RNNs [30] and TCNs [31] are two common deep models
used to model sequence data. RNNs exhibit an excellent ability to capture time dependence
and have become popular [32]. Two variants of RNN (i.e. long short-term memory (LSTM)
[33] and gated recursive unit (GRU) [34]) have notably enhanced the best performance in
time-series forecasting. Nevertheless, there are still notable challenges when it comes to
acquiring and effectively utilizing long-sequence features. This challenge can be understood
in two ways. First, directly training the RNN on long time series still experiences the problem
of vanishing gradients and explosions. Second, cells must remember both short- and long-
term information, leading to a trade-off between capturing these two types of information.

On the other hand, relying on its attention mechanism for continuous innovation in text
processing and time series analysis with better effectiveness and efficiency, transformer archi-
tectures have been extensively adopted in TSF tasks. Zhou et al. [35] designed a selective
sparse attention mechanism aimed at reducing the model’s time complexity the from O(L2)
to O(LLogL) to achieve higher efficiency. Inspired by the former model, Autoformer [51]
adopts a more effective sequence fragment-level correlation and designs a new time-series
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forecasting model with a new decomposition architecture and an autocorrelation mechanism.
Liu et al. [36] proposed a tree-structured pyramid attention to reduce complexity and enhance
the capture of time dependence.

With further research on time-series forecasting algorithms, the focus is biased toward
designing new architectures to address the challenge of error accumulation in long time
series forecasting [37, 38]. Oreshkin et al. introduced the N-Beats model [39], which is built
by stacking multiple layers of fully connected stacks and introduces a bi-residual structure.
Liu et al. designed the SCINet model [40], which improves the sample convolution and
interaction to effectively model time-series models with complicated temporal dynamics.
In addition, there is also ensemble learning to solve extreme cases, such as model collapse
caused by mitigating structural mismatches that can easily occur in a single model. Du et al.
designed a dynamic ensemblemodel based onBayesian optimization [41], which is tuned and
trained by the Bayesian Optimization Algorithm (BOA), and finally, the ensemble outputs
using the optimal combination of configurations. Gao et al. proposed an online deep learning
model based on the ensemble deep random vector functional link (edRVFL) [42], which
decomposes, learns, and aggregates through three components: the online decomposition,
the online training, and the online dynamic ensemble.

2.2 Temporal Feature Enhancement Approaches

Recently, the feature enhancement has become an important issue in various fields. They
are widely used in language, text, and other applications. With limited data availability, data
augmentation has become an effective strategy for solving time-series problems [56]. In
response to the above problems, research has focused on four schemes: (1) Time-domain
to frequency-domain conversion, (2) Unbalanced class enhancement, (3) Gaussian process-
ing methods, and (4) A deeper neural network enhancement model method [57]. In this
study, we focused on frequency-domain enhancement. The Fourier transform is a classi-
cal mathematical tool widely used in signal processing and spectrum analysis. Due to the
good development of deep learning in recent years, researchers have begun to investigate
the combination of the Fourier transform and deep learning. For example, Sutskever et al.
[43] proposed a sequence-to-sequence (Seq2Seq) model, wherein they utilized a Fourier
transform to process the time–frequency characteristics of the input sequence. Li et al. [44]
introduced the Fourier transform into a neural network model to solve parametric partial
differential equations.

2.3 Wavelet Transform in Time Series

Wavelet transform is a waveform oscillation technique used to localize the characteristics
of a signal. Unlike the Fourier Transform, it can accurately capture not only the frequency
information of a signal, but also the location of the signal in time. Wavelet transform consists
of two main types: (1) Continuous wavelet transform (CWT), which transforms the signal
in a continuous time range., and (2) Discrete wavelet transform (DWT), which performs the
transform on a finite number of discrete data points. Our study focuses on DWT, which uses
orthogonal basis representation to represent signals. Therefore, DWT is an efficient signal
analysis method. Due to the ability of wavelet transform to enhance the frequency domain
features and improve the signal-to-noise ratio of the sequence, researchers have combined
the wavelet transform with different deep learning models to improve the performance of the
models. For example, Sasal et al. [45] proposed aunivariate time-series forecasting framework

123



W-FENet: Wavelet-based Fourier-Enhanced Network Model … Page 5 of 23 43

based on wavelet transform. Guo et al. [46] employed wavelet decomposed approximation
functions fed into the model restore missing details in tasks. Multi-level wavelet [47] trans-
forms amplify the receptive field for image restoration without losing information. Williams
et al. [48] used a wavelet transform to change the original sequence into multiple-level detail
functions and approximation functions, and discarded the bottom detail function (cD1) to
decrease the feature dimension in the task. The Haar wavelet neural network was combined
with multi-level processing in reference [49] for image texture analysis and image text gen-
eration. In reference [50], ResNet was modified by integrating the initial layer with a wavelet
scattering network, achieving considerable performance in image recognition with fewer
parameters. Gao et al. [51] achieved fast learning, extrapolation process, and elimination
noise by echo state network and empirical wavelet transform (EWT).

3 W-FENet

We defined a multivariate point prediction problem in discrete time. A sample of multivariate
sequence with length L: {x1, ..., xL }, xi ∈ Rd , and d denotes the number of features. The
data at timestamp t is xt , and a fixed-length τ is set as the length of the prediction window
to predict τ future values. The predicted values of X̂ is expressed as follows:

X̂t+τ = f
(
xt−N+1,xt−N+2, ..., xt

)
, (1)

where N is the length of the lookback window, and xt−N+1:t = { xt−N+1, . . . , xt } is the
lookback window at time point t . For brevity, we used X and X̂ to denote the historical and
predicted data.

3.1 Architecture Analysis

We introduce our W-FENet model, a network architecture for time-series forecasting and
modelling that includes trenddecomposition andwavelet extraction, FEMEX,U-net improve-
ment [55], and double residual connection. The overall framework of our model is shown in
Fig. 1. Our model adopted a codec structure. In encoder, our model via a linear layer to mine
features and the Fourier enhancement module to enhance the frequency domain information,
better capture the frequency domain features, and extract more accurate and informative
frequency domain features from the enhanced data.

Subsequently, we extracted the correlation between broader time-series data using a down-
sampling operation. Finally, we used a fully connected network as a decoder prediction.
Using the decoder, we remap the features extracted by the encoder to the original data space
to reconstruct the prediction results.

In addition, we are aware that information loss may be caused during the feature down-
sampling process. Therefore, to compensate for this information loss, we divided the original
data into two subsequences and compensated for them using interactive learning.

3.2 Trend Decomposition andWavelet Extraction

We performed a series of processing steps to extract and utilize temporal information and
to adapt to learning and capturing temporal patterns in long-series time prediction. First, we
decompose the raw data using a moving average technique to derive the data with a trend
XT , where the step size of the moving average is k. However, this type of processing leads to
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Fig. 1 Overall framework of the W-FENet model

the loss of time-series information. Therefore, we further residualise the trend data to obtain
the residual data XR . The trend data XT and residual data XR obtained are shown in Fig. 2.
The processes are expressed as follows:

XT = AvgPool(Padding(X))k (2)

XR = X − XT (3)

In the residual data, there is still much information that can help with the prediction of the
model. To capture this information, we applied the discrete wavelet decomposition technique
(DWT) to decompose the residual data into multiple approximation functions (cA) and
detailed functions (cD). Approximation functions provide information regarding the overall
trend of the residual data, whereas detailed functions can capture subtle temporal variations.
We processed thewavelet-decomposed functions using FEMEX to further analyze and utilize
the timing information in these approximate and detailed functions. This feature extraction
process helps extract more representative and valuable features that reveal deeper timing
patterns. Finally, we merged the processed approximation and detail functions using wavelet
reconstruction to restore them to the standard form of the original data. The decomposition
and reconstruction processes are as follows:

cAn = downsample(conv(XR, lowpass_ f ilter)) (4)

cDn = downsample(conv(XR, highpass_ f ilter)) (5)

x[n] =
∞∑

k=−∞

(
yhigh[k] · g[2k − n]) + (ylow[k] · h[2k − n]

)
(6)

Equation 1.4 shows the process of discrete wavelet decomposition and the calculation
of the detail and approximate functions. Equation 1.5 describes the wavelet reconstruction
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Fig. 2 Trend and residual data

process. g[] and h[] are high-pass and low-pass filters, respectively. The relationship between
them is expressed as follows:

g[I − 1 − n] = (−1)n · h(n) (7)

As shown in Fig. 3, the subsequence set Xoriginal = {cD1, cD2, ..., cDi , cA4} is called
the i-level DWT result of Xoriginal . Thismulti-level structure allows us to observe the original
time series on different scales. Specifically, the detail functions preserve finer details, while
the approximation functions capture slowly changing trends.

This method combines the moving average, residual processing, discrete wavelet decom-
position, and time-series information feature extraction, aiming to capture and utilize the
features in the original series data to the greatest extent possible to improve the understand-
ing and prediction ability of long-term time patterns.

3.3 Feature ExtractionModule Based on Fourier Enhancement (FEMEX)

Amultilayer feed-forward neural network cascade neuron is set up to extract the time correla-
tion and consider more comprehensive sequence information in the time series. To offset the
potential information loss that may be caused by downsampling, we adopted the trend data
XT obtained by trend decomposition and multiple detail functions and approximation func-
tions obtained by wavelet extraction as inputs, which are separated into two subsequences
(i.e. Xodd and Xeven). Information loss is compensated for by the interactive learning of the
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Fig. 3 Multi-level wavelet decomposition diagram, where cAi represents the approximate function and cDi
represents the detail function

two sequences.

Xs
odd = Xodd � exp(ϕ(Xeven)) (8)

Xs
even = Xeven � exp(φ(Xodd)) (9)

Xs
even , X

s
odd is the hidden state of the projection after training by two feedforward neural

networks, where � is the product of elements, and ϕ and φ are the training structures we
used the feedforward neural network to build, where the training parameters are different,
ϕ = φ = tanh(F(dropout(LRelu(F())))).

The frequency-domain features of the data can be highlighted by converting the time-
domain information into frequency-domain information using a Fourier enhancement
module. Making these features more visible and recognizable can help the model better
capture periodicities, trends, and patterns in the data.

Xodd ′ = Xs
odd + P

(
Xs
even

)
(10)

Xeven ′ = Xs
even +U

(
Xs
odd

)
(11)

As shown in Eqs. (10) and (11), Xeven ′, Xodd ′ is the final output of the inter-
active learning module, where P and U are functions of the same structure with
different Fourier enhancement parameters based on Fourier transforms, P = U =
tanh(FE(dropout(LRelu(FE())))), FE are Fourier enhancement functions. The FEMEX
structure is shown in Fig. 4.

3.4 U-net Improvement

In this part, we improve the U-shaped structure to analyze time-series data and efficiently
capture sequence features. A residual connection was added at the end to enable a U-shaped
structure to extract information better than the trend data.
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Fig. 4 Schematic structure of
FEMEX, integrate denotes the
integration of the parity
subsequence into the sequence
interval before decomposition

Using a U-shaped structure for downsampling can extensively expand the receptive field
and extract the correlation between time series data to efficiently capture features between
series. Our model mines the potential features in the data and provides richer information
for subsequent analysis and prediction. The architecture has N layers. First, the features
of a more extensive range of time series data are extracted by downsampling compression
information, and each layer of input is derived from the output of the previous layer. Second,
in the upsampling stage, the downsampling compression information of the same layer is first
combined, and then the upsampling embedding is performed. Subsequently, the remaining
residual data after trend decomposition is connected to the last layer of the encoder through
the residuals to make the sequence more predictable. The specific process is shown in Fig. 5.
Finally, the coded part Xen is obtained after going through this structure, and the Xen of the
coding output is input into the full connection layer to decode and predict Xde. The process
is represented as follows:

Xde = Fc(Xen) (12)

3.5 Double Residual Connection

The classic deep learning residual network architecture passes the results from the upper
stack to the following stack, and the upper stack output residuals are added to the output of
the lower stack. These deepening network models can improve trainability. However, in this
study, simple deepening and residual connections lead to overfitting, and some features that
cannot be trained are not well mined. A hierarchical double-residual topology was used. The
proposed architecture has two residual branches: one running on the reverse prediction of each
layer and the other running on the prediction branch of each layer. This hierarchical double-
residual topology can better uncover latent data features, enhancing both model performance
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Fig.5 Illustration of the U-net Improvement structure. Effectively use the U-net structure to extract information
from different receptive fields. To ensure that there will not be too much information loss, we use the residual
connection to connect the down-sampled data and the up-sampled data at the same layer

and trainability. The following equations describe this operation:

f i = Wi−1
f or x

i−1 + θ f or (13)

bi = Wi−1
back x

i−1 + θback (14)

xlb = xl − b̂l (15)

ŷ =
∑

l

f̂ l +
∑

l

x̂ lb (16)

where f and b are obtained by forward and reverse predictions, respectively. The forward
prediction of f is stacked, and the reverse prediction b is subtracted from the current stack
input, which is also stacked onto the predicted value.

The blocks are organized into stacks using the double residual stacking principle to obtain
higher prediction accuracy, but it also leads to increased time complexity. we perform inter-
mediate supervision on all stack outputs using basic fact values to learn intermediate time
features. The predicted value of the m th stack, xl of length τ , is connected to part of the
input Xt−N+1:t and fed as input to the (m + 1) stacks, where l = 1, ...,m − 1. M is the total
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number of stacks in the stack structure. The process is expressed as follows:

xl+1 = cat(xl , xl−1) (17)

where xl is the output value obtained from the output of the first layer after reverse prediction,
followed by the reverse residual. xl−1 is the input of the first layer.

The model considers both forward and reverse predictions to capture data patterns. The
backcast part can help the model understand the data and provide more information for
prediction,making thepredictionof the downstreamblock easier. This structure alsopromotes
smooth gradient backpropagation.

4 Experiment

This section presents a comparison of our model with state-of-the-art time-series forecast-
ing models. We conducted experiments using three popular benchmark datasets (i.e. ETT
(Electricity Transformer Temperature), Exchange, and Weather) to evaluate our model. We
compared it with recent time-series forecastingmodels (i.e. SCI-Net, Preformer, Autoformer,
and Informer) as baselinemodels.Additionally,weperformed ablation experiments on impor-
tantmodules of themodel to assess the effectiveness of thesemodules in ourW-FENetmodel.

4.1 Dataset

We completed experiments using three public benchmark datasets to illustrate the broad
applicability of our approach, as summarised in Table 1. For each dataset, the task was to
predict the T-step of the future trajectory within a given step context window.

ETT : As described by Wu et al. (2021), ETT contains power-related data collected from
two power stations in China within two years. We used multiple sampling times to obtain
different datasets (i.e. ETTh1, ETTm1, ETTm2) to discover the performance of the model
for different granularity data.

Exchange: Exchange [52] collected 17 years of daily exchange rates for eight countries,
starting in 1990.

Weather: This dataset consisted of climate data recorded by the Max Planck Institute in
2020. Itwas recorded every tenminutes and included 21 climatic features, such as temperature
and pressure.

Table 1 Details of datasets

Dataset Frequency Features Total observations Test observations Horizon (H)

ETTh1 1 h 7 14,163 2833 {48,96,336,720}

ETTm1 15 min 7 57,363 11,473 {48,96,288,672}

ETTm2 15 min 7 57,363 11,473 {48,96,288,672}

Weather 10 min 21 52,697 10,444 {48,96,192,336}

Exchange 1 day 8 7588 1517 {48,96,192,336}
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Table 2 Setting of
hyperparameters Parameter Datastes

ETT Weather Exchange

Batch_size 32 32 32

Stacks 3 3 3

Initial
learning rate

1e–4 1e–4 5e–5

hidden-size 1 1 0.125

Training
epochs

20 20 20

Predict_step {48, 96, 288,
336, 672,
720}

{48, 96, 192,
336}

{48, 96, 192,
336}

4.2 Implementation Details

For all adjustable hyperparameters on all datasets, we needed to have performed a grid search
for these hyperparameters. The final hyperparameters determined after grid search are shown
in Table 2. We used the learning rate decaying the ADAM optimizer to optimize our model
and set an early stopping strategy in model training. All experiments are implemented with
PyTorch.

4.3 Baseline

Multivariate time prediction. We selected several advanced models for comparison with the
proposed model. The methods are compared and evaluated as follows:

(1) SCINet: This model is based on a dilated casual convolution. It is a recursive downsam-
pling convolution-interaction architecture. It uses multiple convolution filters in each
layer to extract different and effective sequence features from the downsampled subse-
quences or information.

(2) Preformer [53]: It is a transformer-based model that designs multi-scale segment-
correlation (MSSC). It improves efficiency of time-series forecasting, extracts more
effective features from the sequence, and avoids segment length selection.

(3) Autoformer [54]: It is a new decomposition architecture model with an autocorrelation
mechanism based on transformer.

(4) Informer [35]: This model was a transformer-basedmodel. It proposes a sparse attention
mechanism improving the quadratic time complexity and high memory consumption of
the attention mechanism.

4.4 Evaluation Settings

In order to make the experimental comparisons fairer, this study uses the mean absolute error
(MAE) andmean square error (MSE) as rubrics to assess the accuracy and performance of our
method. MAE is the mean value of the absolute difference between the true and predicted
values, and MSE is the mean value of the square sum of the errors between the true and
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predicted values. The two error evaluation values are expressed in Eqs. (18) and (19).

MSE = 1

H

t+H∑

τ=t

(
yτ − ŷτ

)2 (18)

MAE = 1

H

t+H∑

τ=t

∣
∣yτ − ŷτ

∣
∣2 (19)

where H is the predicted length, yτ and ŷτ are the predicted and true values, respectively.

4.5 Main Results

To better compare our model with baselines, we conducted a comprehensive multivariate
prediction comparison experiment on various datasets under various settings. We followed
the same evaluation protocol to compare the prediction performances. The input length was
96 for all datasets, and the prediction length was changed based on the selection frequency.
The prediction lengths were selected as {48, 96, 168, 228, 192, 336, 720}. In these tables,
we have bolded the results with the best results, and only the ones after that are underlined.

According to Table 3, ourmodel is superior to the othermodels inmost cases. For instance,
under the input length of 96 and output length of 48 setting, our model obtains 6.37%
(0.361→0.338) relative MSE improvement for ETTh1, 6.62% (0.136→0.127) for Weather
and 36.71% (0.079→0.050) for Exchange compared with those of the previous advanced
models. In addition, our model also performs relatively well in the long-term prediction,
reflecting the relatively stable performance of our model. Compared with the baselines,
our model adaptively extracts the trend pattern and uses wavelet decomposition to mine
deeper information, thus improving prediction performance. In Fig. 6, we can observe the
prediction comparison between our model and the baselines more intuitively. The prediction
accuracy comparison diagram at the baseline is shown in Fig. 7. However, in a few cases,
its performance was slightly worse than that of the other models. Preformer achieves better
long-term prediction performance on the hourly ETT data set and every 15-min ETT data
machine and two factors are identified here: (1) The attention mechanism focuses on the
weights of the global elements, which play a crucial role in long-term sequence prediction.
(2) It uses the multi-scale correlation self-attention mechanism of MSSC and the multi-scale
segmentation correlation of PreMSSC with prediction paradigm. The query described in the
preceding section can be employed for predicting unknown segments.

As shown in Fig. 6, we plotted the multivariate prediction results of the model on different
benchmark datasets in comparison. The blue dotted line represents the true values, the orange
solid line is the prediction result of the W-FENet model, and the prediction results of the
rest of the benchmark models are marked with different makers and colors. Our model can
accurately predict cycles, trends, and even some small fluctuations. Although in some dataset
predictions, i.e. in Fig. 6d, there is a difference in the peak position of the prediction and the
true value, our method predicts the trendiness more closely compared to the other benchmark
models.

4.6 Ablation Study

We conducted comparative experiments on several variants of the model on all the datasets
to evaluate the impact of each gradual used in our model.
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Fig. 6 W-FENet compares the prediction results of ETTh1 a, ETTm1 b, ETTm2 c, and Weather d data sets
with the baselines

4.6.1 Performance of FEMEX

To explore whether FEMEX can improve the prediction performance of the model, we
performed ablation experiments on FEMEX on ETTh1, ETTm1, Weather, and Exchange,
as listed in Table 4. FEMEX in the table refers to the W-FENet model with a Fourier-
enhanced feature extraction module. To make a fair comparison, we replaced FEMEX with
a time convolution TCN and set the hyperparameters, such as batch and learning rates, to
be consistent. Based on Table 4, compared to the other feature extraction modules, using
FEMEX for feature extraction achieves a good prediction performance.

4.6.2 Influence of Trend Decomposition andWavelet Extraction

Trend decomposition and wavelet decomposition are effective for capturing more features.
Wavelet decomposition decomposes the raw series into detail and approximation functions,
whereas trend data in the series are obtained using trend decomposition, which is particularly
important for the performance of our model. To demonstrate the effectiveness of this module,
we remove the trend decomposition and wavelet extraction module from the model to obtain
a model without trend decomposition and wavelet decomposition. The results predicted by
feeding raw data into the model without this module are listed in Table 5.

4.6.3 Impact of Other Modules

We performed ablation experiments on these modules using different datasets to explore
whether the other modules in our model were efficient for prediction, as shown in Table 5.
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Fig. 7 W-FENet compares the predictive outcome metrics (MSE) of the ETTh1 a, ETTm1 b, Exchange c, and
Weather d datasets to the baseline, the lower MSE means better performance. The Lookback window length
is 96, and the prediction lengths include {48, 96, 192, 288, 336, 720}

Table 4 Ablation of FEMEX modules

Window_size ETTh1 ETTm1 Weather Exchange

96 96 96 96

Predict_step 48 96 48 96 48 96 48 96

FEMEX MSE 0.338 0.383 0.310 0.333 0.128 0.161 0.053 0.100

MAE 0.366 0.391 0.344 0.358 0.174 0.215 0.168 0.237

TCN MSE 0.356 0.421 0.328 0.345 0.136 0.188 0.067 0.143

MAE 0.387 0.429 0.371 0.374 0.192 0.247 0.193 0.282

No double residuals indicate that our model removed these double residuals. The absence
of a U-net indicates that our model did not undergo U-net processing. The results of the
ablation study showed that the model with these modules predicted better than that without
them in almost all cases, proving that the U-net improvement and double residual connection
are helpful for prediction tasks. Figure 8 shows the prediction accuracies of the ablation
experiments for each module.
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Table 5 Ablation of other modules

Methods No wavelet
extraction

No double
residuals

No U-net
improvement

Our

Datasets MSE | MAE MSE | MAE MSE | MAE MSE | MAE

ETTh1-48 0.341 0.367 0.339 0.364 0.340 0.367 0.338 0.366

ETTm1-48 0.317 0.346 0.326 0.360 0.328 0.323 0.310 0.344

Weather-48 0.132 0.175 0.134 0.185 0.135 0.179 0.128 0.174

Exchange-48 0.053 0.168 0.077 0.203 0.080 0.209 0.053 0.168

Fig. 8 Different modules’ ablation performance (MSE,MAE) is tested on three large datasets of ETT,Weather,
and Exchange. The lookback window is selected as 96, and the prediction step is 48. We use our model
prediction results to compare with ablation experiments

4.7 Discussion

In this part, we analyze the impact of two important hyper-parameters on W-FENet (i.e. the
number of stack layers and the number of wavelet decomposition stages). To analyze the
stack layers, we deepened the stack layers to obtain more sequence information. The results
are shown in Fig. 9 that we can better extract the features between sequences as the stack
gets deeper. However, if the stack is too deep, the complexity of the model will be too high,
and overfittingmay occur. Considering prediction performance and computational efficiency,
we selected three layers with stack of three. For the series of wavelet decompositions, we
analyzed the effect of different wavelet decomposition layers on prediction performance.
We attempted multiple decomposition layers and compared them from the shallow to deep
layers. The results showed that with an increase in the number of decomposition layers, the
representation ability and complexity of the model also increased. A deeper decomposition
level can better capture detailed information in a time series. However, it may also introduce
more redundant information, as shown in Fig. 3. Considering prediction performance and
computational efficiency, we selected a moderate number of wavelet decomposition layers.
In our experiment, the model with three decomposition layers exhibited good performance
in extracting trends and detailed information.

Secondly, we will use the same size of the lookback window as previous state-of-the-art
models for two reasons: firstly, as shown in Table 6, too small a lookback window leads to a
decrease in the model’s ability to capture features of the long-series a lookback window that
is too large will show a reduction in prediction accuracy and increase the time complexity.
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Fig. 9 The parameters are adjusted using a grid search. Each grid represents a unique parameter combination.
Each colored cell in the grid is plotted in different green colors. The color scale reflects the difference between
MAE and MSE, where darker shades of green signify lower MSE and MAE values, indicating superior
prediction performance

Table 6 Forecasting results as the lookback window size grows

Lookback window_size 48 64 96 128 192 336 720

ETTh1-48
result

MSE 0.349 0.342 0.338 0.338 0.336 0.335 0.337

MAE 0.370 0.368 0.366 0.367 0.367 0.368 0.373

Secondly, choosing the same size of the lookback window as the previous state-of-the-art
models can better illustrate the fairness of our experiments.

In addition, we considered whether the decomposition method could be replaced using
other more advanced methods to validate the excellent performance of our modeling frame-
work, such as EWT. Therefore, we tried to change the DWT to EWT at the base of our model,
and Table 7 lists the experimental comparison of our model with the model that changes the
DWT to EWT in W-FENet on the benchmark dataset ETTh1. As seen from Table 7, using
EWT as a decomposition method improves the prediction performance in some cases.

Finally, the above experiments indicate that our method achieves a better prediction per-
formance and smaller errors than the other fourmethods inmost cases for different real-world
datasets. In most cases, our model shows better performance. However, in a more long-term
prediction, our model performance presents a decreasing trend. Therefore, we must consider
how to improve the long-term predictive ability of our model. According to the results, we
find that the long-term prediction ability of the Preformer works better than that of the other
models because of the segmented self-attention mechanism adopted in the Preformer. This
suggests that we need to further explore global features, which can help enhance the long-
term predictive power of our models. We can also consider more efficient approaches to
obtaining global features in the future.
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5 Conclusions

This study presented a new time-series forecasting model, wavelet-based Fourier-enhanced
network model decomposition (W-FENet), for time-series modelling and prediction. In the
W-FENet, we introduced a new feature extractionmodule called the Fourier-enhanced feature
extraction module (FEMEX). This module uses a Fourier transform to transform time–fre-
quency information to highlight the frequency-domain features of the data and make these
featuresmore prominent and identifiable. Comparedwith previous studies, it can fully capture
the local details, overall trends, nonlinear relationships, and frequency domain characteristics
of sequence information and improve the performance of time series modelling and predic-
tion. The effectiveness of our model was demonstrated by its ability to exhibit state-of-the-art
predictive performance under various experimental settings on different benchmark datasets.

In the future, we plan to propose more effective methods to obtain global features to
improve the prediction performance of our model in long-series forecasting. In addition, we
consider that ensemble learning may help mitigate extreme cases such as model collapse
due to structural mismatch. Therefore, we plan to use ensemble learning methods in future
studies to compensate for the shortcomings of a single model and improve the prediction
performance of the model.
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