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Abstract
Recommender systems are a popular solution for the problem of information overload, offer-
ing personalized recommendations to users. Recent years, research has aimed to enhance
recommender systems by employing knowledge graphs in conjunction with Graph convo-
lutional network (GCN) to extract user and item features. Although GCN possess a great
potential, they are still far from reaching their full capability in recommender systems.
This paper introduces a novel approach—knowledge-aware recommendations under bi-layer
graph convolutional networks (BIKAGCN) that combines attention and bi-layer GCNs to
improve performance. The first layer of the BIKAGCN model trains embedding representa-
tions of users and items based on user-item interaction graphs. The second layer introduces
a novel knowledge-aware layer of attention and graph convolutional network (KAGCN)
layer that leverages both the first layer’s user-item embeddings and item knowledge graph
embeddings. Experimental results on three publicly available datasets (MovieLens-20M,
Last-FM, and Book-Crossing) demonstrate that BIKAGCN leads to significant performance
improvements in recall@20 metric (14.41%, 8.86%, and 20.90%, respectively) compared to
currently available state-of-the-art approaches. Moreover, the model maintains satisfactory
performance in cold-start cases.The research provides some guidance for the direction of
subsequent research on recommender systems.

Keywords Knowledge graph · Recommender systems · Graph convolutional network ·
Collaborative filtering

1 Introduction

With the geometric growth of multimedia information, driven by the growth of Internet
technology, has surpassed humans’ capacity to effectively process and utilize information
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within a brief period. To address this challenge, Recommender systems (RS) have emerged
as a valuable tool to assist users in obtaining the relevant information they need. RS have
been applied in various fields, such as news [1], movies [2], and products [3].

The core of a recommender system is to estimate the probability that a user is interested in
an item based on his or her historical interaction behavior with the item. Most of the existing
recommendation techniques use embedding techniques to simulate the interaction between
user and item, such as using inner product [4] and neural networks [5]. Collaborative filtering
(CF) uses past user-item interactions to make recommendations and has received significant
attention in recent years [4, 6–11]. However, collaborative filtering based recommendation
methods suffer from data sparsity and cold-start.

Recently, knowledge graph (KG) has been successfully integrated into recommender sys-
tems to optimize the vector representation of entities through relational connections in the
knowledge graph to improve recommendation performance [12, 13]. Knowledge graph is a
heterogeneous graph, which represents the graphical structure of knowledge and information
in the real world, composed of nodes and their relationships. Introducing KG into recom-
mender systems provides several benefits [14]: (1) Leveraging the rich feature attributes of
items in KG can improve recommendation performance while uncovering potential connec-
tions between items; (2) Using the different relationships in KG, the potential interests of
users can be explored and the diversity of recommended items is improved.

Graph convolutional network (GCN) have garnered considerable attention in recent
years, with applications in several domains [15–17]. Therefore, GCN are widely used in
recommender systems [18–20]. GCN extracts synergistic information of items and users
through aggregated propagation to get more suitable user-item embeddings for recommen-
dations. Moreover, higher-order connectivity signals can be captured by overlaying multiple
embedded propagation layers. Knowledge graph attention network (KGAT) [21] improves
recommendation performance by training a global knowledge graph and iteratively propagat-
ing vector representations of adjacent nodes while updating the node representations through
GCN. LightGCN [22] simplifies the application of GCN in recommender systems, while
improving the performance of the recommender systems and reducing model complexity.
The recommender methods based on GCN employ aggregation and propagation techniques
to extract collaborative information between users and items. Leveraging the nodes and edges
within the graph, these methods infer user interests and item attributes, thereby generating
user-item embeddings that are better suited for recommendation purposes. This enhances the
accuracy and efficacy of personalized recommendations. Although GCN can enhance rec-
ommendation performance, further research is needed to investigate its component methods
and structures.

Despite the noteworthy successes of KG-based and GCN-based recommendation
approaches, three major problems persist: (1) Solely considering the connections between
users or items and entities in the knowledge graph overlooks the high-order semantic infor-
mation related to the relationships between users or items and entities. (2) Focusing solely
on extracting item feature information from the knowledge graph with GCN may neglect
the collaborative signals between users and items. (3) The direct application of GCN’s
complex design elements (such as feature transformations and nonlinear activations) in rec-
ommendation leads tomarginal improvements in recommendation performance and increases
computational overhead [23].

Given the limitations of the aforementioned methods, it is imperative to create a method
that can effectively unearth informative data from interaction graphs and item knowledge
graph in an intuitive and efficient manner. This research aims to tackle this challenge by
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introducing a knowledge-aware recommendations under bi-layer graph convolutional net-
works (BIKAGCN). The model in this paper consists of two main components:

•Light graph convolution (LGC). In LGC, self-connection, feature transformations, and
non-linear activation functions are removed, which simplifies GCN to a large extent and
enhances its ability to extract collaborative signals from the user-item matrix.

•KAGCN. This research improves the aggregation layer of KGCN [24] into a knowledge-
aware layer of attention and graph convolutional networks (KAGCN). It uses the attention
mechanism designed in this paper to mine the importance between specific users and node
relationships in the information aggregation process, by which the personalized interests
of users can be captured. In addition, we incorporate a user self-attention mechanism that
captures the user’s differences and enhances their semantic information.The incorporation
of a knowledge graph into recommendation systems is particularly crucial for addressing
the needs of cold-start users. These users lack sufficient or any historical behavioral data in
the system, making it challenging for traditional personalized recommendation methods to
provide accurate suggestions. In recent years, a substantial body of research and methods has
been dedicated tomitigating the cold-start problem. This effort ensures that even new users or
new items can receive valuable recommendations, thereby enhancing the comprehensiveness
and utility of recommendation systems [25–27].

In summary, our research’s contributions can be outlined as follows:

1. In this paper, we propose the BIKAGCN model, which uses the first layer of GCN to
learn the synergistic information of user and item, and update the user-item embeddings,
and then uses the user and item embeddings as the input of the second layer of GCN.

2. By integrating bi-layer GCN to obtain the final representation of user-item embeddings,
our approach effectively alleviates the cold-start problem caused by relying solely on
user-item interactions and the lack of collaborative information in the item knowledge
graph.

3. Experimental results on three publicly available datasets (MovieLens-20M, Last-FM,
and Book-Crossing) demonstrate that BIKAGCN improved the recall recall@20 by
14.41%, 8.86%, and 20.90%, respectively, while the normalized discounted cumulative
gain (NDCG@20) improved by 15.07%, 18.82%, and 22.79%, respectively.

2 State of the art

In this section, we review and summarize related work, including collaborative filtering-
based, knowledge graph-based, and GCN-based recommendations.

Collaborative Filtering is among the earliest and widely adopted recommendation meth-
ods in predicting and suggesting new items based on user preferences [28]. MF [6] achieves
good performance in recommendation by mapping user and item related features to embed-
dings. Moreover, FM [29] and Field-aware factorization machine (FFM) [30] utilize multiple
features and blend linear combinations to enhance the performance, but they solely consider
low-order feature combinations. Advancedmethodsmust therefore integrate deep neural net-
works to model feature combinations for improved performance. Some distinguished models
[31, 32] utilize deep neural networks and exhibit excellent recommendation performance.
However, these methods only use the user-item matrix to define the loss function, failing to
explicitly encode the user and item, which leads to insufficient utilization of collaborative
signals.

123



20 Page 4 of 21 G. Li et al.

Collaborative filtering-based recommendationmethods exhibit issues involving data spar-
sity, cold-start, and interpretability. To address these problems, knowledge graph-aware
recommendation methods have emerged, which are mainly divided into two categories: rec-
ommendation based on knowledge graph embedding (KGE) and recommendation based on
knowledgegraphpath.The recommendation algorithmbasedonknowledgegraph embedding
utilizes the knowledge graph embedding [33] to directly link the obtained item embedding
to the recommender systems, thereby improving the recommendation performance and alle-
viating cold-start problems. However, these KGE may prove insufficient for the purposes of
recommendation, as they lack intuitiveness and effectiveness in representing item relation-
ships. Conversely, the knowledge graph path-based method [34, 35] endeavors to explore
higher-order latent entity relationships within a knowledge graph by designing special-
ized meta-paths or graphs that can be applied to recommendation. Although the path-based
approach enhances the interpretability of the recommender systems and provides corre-
sponding methods to explore the feature information present in the knowledge graph, the
meta-paths/graphs it designs may only be applicable to specific domains and have limited
generality.

LightGCN [22] presents a simplified design of a graph convolutional neural network
that enhances its applicability for recommendation purposes. The recommendation model of
GCN considers user and item as well as their corresponding comments [36] and interaction
social networks [20] to enhance the accuracy and interpretability of recommendations. In
addition, KGCN [24] uses GCN to extract the attributes between items in the knowledge
graph with the aim of enhancing recommendation performance. Conversely, KGNN-LS [37]
applies label smoothing to solve the overfitting problem associated with KGCN. KGAT [21]
embeds a high-level knowledge graph for modeling, while the recent KLGCN [38] explores
the interactions between users and relations in the knowledge graph, as well as interactions
between items and relations. Although GCN-based approaches have improved recommen-
dation performance, they still inadequately exploit the knowledge graph for personalized
item-relationship mining and neglect user semantics. In this research, the user-item interac-
tionmatrix and item knowledge graph are used as inputs and relevant features are extracted by
a bi-layer GCN, while accelerating model convergence and improving recommendation per-
formance. For further comparison, we summarize our proposed model in Table 1 alongside
some of the relevant methods.

The full article is organised as follows: Sect. 1 presents the current research dilemma and
outlines the research methodology employed in this paper. Section2 introduces related tech-
nologies and backgrounds. Section3 describes the recommendation problem and presents
model details and the computation process. Section4 analyzes the experimental results,
and through ablation experiments, validates the reasonableness of the model parts and the
outstanding performance of the model in alleviating cold-start problems. Finally, Sect. 5
summarizes the paper and analyzes future possible improvements.

3 Methodology

3.1 Description of the Problem

In the context of recommendations, a set of k users, denoted as m = {u1, u2, . . . uk}, and a
set of n items, denoted as p = {v1, v2, . . . vn}, are considered. A set R = {

ru,i
}
represents

the interactions between user and item, where ru,i = 1 indicates the existence of interactions
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Table 1 Comparison of BIKAGCN with related methods

Input data Use of technology
Method W-M UI KG GNN Att KGE

FM [6] �
NeuMF [39] �
NGCF [40] � � �
LightGCN [22] � �
CKE [41] � � �
RippleNet [14] � � � �
KGCN [24] � � � �
KGNN-Ls [37] � � � �
KGAT [21] � � � � � �
KLGCN [38] � � � �
LighterKGCN [42] � � � �
BIKAGCN � � � �

In the table, ’W-M’ represents theweightmatrix, ’UI’ represents user-item interaction graph, ’GNN’ represents
graph neural networks, ’Att’ stands for attention mechanism

Fig. 1 A bipartite graph of a user-item constructed from the U-I matrix

between users u and items i . A user-item bipartite graph G={E, V} is then constructed
based on the historical data of user-item interactions, as depicted in Fig. 1. Each user and
item is viewed as a node of the bipartite graph, while edges with interaction records are
established between user nodes and item nodes. Here, Mm×n refers to the adjacency matrix
of the bipartite graph. The recommendation task is to predict the probability of user interaction
with all items, and generally select the Top-N items with the highest predicted probability as
the recommendation result.

3.2 Overall Model Description

The overall framework of the BIKAGCN model is shown in Fig. 2, which consists of three
parts: an initialization layer, a bilayer graph convolution information propagation layer, and
a prediction layer.

The recommender model in this research comprises several operational steps. Firstly, user
nodes, item nodes, entity nodes, and relationship nodes are initialized with low-dimensional
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Fig. 2 The architecture of BIKAGCN comprises three primary layers: an embedding layer, a bi-layer graph
convolutional informationpropagation layer, and aprediction layer. Figure displays a recommendation scenario
between i2 and u2

dense embedding representations. Next, through the LGC layer, utilizing information prop-
agation rules, the initial embedding representations of users and items are updated to extract
collaborative information between them. Subsequently, the KAGCN layer aggregates the
initialized entity and relationship embedding representations with the updated user-item
embedding using aggregation functions to obtain entirely new user-item embedding. Unlike
many GCN-based recommendation methods, the KAGCN layer employs different attention
mechanisms to separately update the embeddings for users and items, thus acquiring biased
user-item embedding representations. Thirdly, by stacking the aforementioned operations
multiple times,multiple high-order embeddings for users and items are obtained. The purpose
of this multiple stacking is to enhance the model’s representation capacity and abstraction
levels, enabling it to better capture complex relationships and features in recommendations.
Then, the final user-item embedding are generated by weighting these high-order embedding
representations. Finally, the model employs a simple dot product between vectors to gen-
erate the ultimate recommendation prediction probabilities. The bi-layer graph convolution
structure of the BIKAGCN is shown in Fig. 3.

3.3 Initial Embedding Layer

To attain the suitable, final representation, an initial embedding vector is assigned to each
user denoted by eu ∈ R

d . Additionally, initial embedding vectors ee and er are designated
for the entities and relations, where ee, er ∈ R

d :

E = { eu1 , . . . , euN︸ ︷︷ ︸
users embeddings

, ei1 , . . . , eiM︸ ︷︷ ︸
items embeddings

, eeM+1 , . . . , eeK︸ ︷︷ ︸
non-items/entities

, er1 , . . . , erQ
}

︸ ︷︷ ︸
relations embeddings

(1)

The method proposed in this paper achieves end-to-end optimization of the initial embed-
ding. Compared with traditional methods, the method in this paper directly passes the
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Fig. 3 An illustration of the bi-layer GCNs architecture, in the information aggregation process, first uses
LGC to mine synergistic information between user-item interaction matrices and update user-item embedding
representations, and then uses KAGCN to mine item knowledge graph information and update user-item
embedding representations again

embedding to the information aggregation part and mines the synergistic signals in the
user-item graph by LGC, thus improving the performance of the recommender systems.
In addition, the problem of cold-starts was mitigated by aggregating information from the
item’s knowledge graph through KAGCN.

3.4 Information Aggregation Layer

We introduce the LGC layer, followed by the KAGCN layer proposed in this paper, and we
will focus on the KAGCN part.

3.4.1 The First Layer of GCN–LGC

LightGCN streamlines the architecture of the GCN model by removing the feature trans-
formation and nonlinear activation function propagation processes. Instead, a summation
aggregator generates target node embeddings at each layer utilizing the Formula 2:

e(l+1)
u =

∑

i∈Nu

1√|Nu ||Ni |e
(l)
i

e(l+1)
i =

∑

u∈Ni

1√|Nu ||Ni |e
(l)
u (2)
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In this case, e(l)
u and e(l)

i depict the lth layer embedding. |Nu | indicates the number of items
interacted by user u. Similarly, |Ni | indicates the number of users interacting with item i .
The goal of the symmetric normalization term 1√|Nu ||Ni | is to prevent vector scale explosion.

3.4.2 The Second Layer of GCN–KAGCN

Generally, users possess distinct and individualized interests when it comes to relationships.
The attention mechanism, through dynamic adjustment of recommendation results and high-
lighting the most relevant content to a user’s interests, can better cater to a user’s unique
needs [43–46]. This, in turn, enhances the precision and personalization of recommenda-
tions.For instance, one user may be more inclined towards a movie’s genre, while another
usermay prioritize its cast. Consequently, ourmodel incorporates a specifically tailored atten-
tion mechanism that takes into account each user’s unique interests during the aggregation
process.

To account for the varying importance of different relations to different users, we introduce
an attention function, denoted as g : Rd×R

d → R, as shown inEq. (3). The attention function
evaluates the relative importance of each relation that is associated with the central node, e(l)

u

and e(l)
i are both outputs from LGC.

ωu
rei = g

(
e(l)
u , rei

)

ωi
rei = g

(
e(l)
i , rei

)

ωui
rei = αωu

rei + βωi
rei (3)

where rei represents the relationship between entity e (e ∈ Ni ) and item i , andNi represents
the neighboring entities of item i in the knowledge graph. We use a strategy similar to
GraphSage [47] to maintain computational efficiency and rigidity due to the large number
of entities and connections in real-world knowledge graph. Specifically, we use a technique
where uniform and randomly sampled fixed-size neighbor nodes K are employed as local
neighbors in place of full neighbors. This results in a new set of neighbors, Si , whose size is K ,
with the potential for duplicate entries when |N i |<K. The final attention score is calculated
by taking the sum of the attention weights ωu

rei and ωi
rei , and setting α = β = 0.5 in the

experiment.
We generate representations of the target entity eSi by aggregating neighbor embeddings,

as shown in Formula 4.
e(l+1)
Si

=
∑

e∈Si
ω̃ui
rei e

(l)
e (4)

Where ω̃ui
re represents the normalized use-item relational attention score, which indicates

that the target node will value neighbouring nodes with higher relational attention scores,
where ω̃ui

re is defined by the following Formula (5):

ω̃ui
rei = exp

(
ωui
rei

)

∑
e′∈Si exp

(
ωui
re′i

) (5)

The self-attention mechanism stands as a widely applied technique in deep learning an
natural language processing [48]. Its fundamental concept revolves around the allocation of
weights to each position within an input sequence based on their respective importance and
subsequently amalgamating the information from all positions. Self-attentionmechanism has
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the capacity to capture interdependencies among data, facilitating enhanced user perception
and information fusion. This paper adds a self-attention mechanism on the user side. Firstly,
according to the user embedding calculation:

Q(l)
u = Wq · e(l)

u

K (l)
u = Wk · e(l)

u

V (l)
u = W v · e(l)

u (6)

In this step, the attention score for the Q(l)
u query and K (l)

u is calculated.

ωu
u′u = F

(
Q(l)

u , K (l)
u

)
(7)

The next step involves calculating the similarity of Q(l)
u with K (l)

u , which is usually
achieved by utilizing the softmax function in the attention mechanism.

ω̃u
u′u = exp

(
ωu
u′u

)

∑
u′∈Su exp(ω

u
u′u)

(8)

The final computed attention weights are weighted and summed over V (l)
u .

e(l+1)
Su

=
∑

u′∈Su
ω̃u
u′uV

(l)
u (9)

3.4.3 Aggregation Functions

The phase of information propagation comprises the process of aggregating entity repre-
sentations e(l)

i and their corresponding domain representations e(l)
Si

to obtain a novel entity
representation l. In order to integrate additional domain semantic information, we explore
two approaches to aggregate e(l)

i and e(l)
Si

to obtain the ultimate entity representation:
(1) GCN-s aggregator. We remove the feature transformation and non-linear activation

function of the original GCN aggregator [49] to obtain the final entity representation, as
shown in Formula (10):

fGCN−s = e(l)
i + e(l)

Si
(10)

(2)Neighbor-s aggregator.We remove the feature transformation and non-linear activation
function of the original Neighbor aggregator [50] to get the final entity representation. As
shown in Formula (11):

fNeighbor-s = e(l)
Si

(11)

InAlgorithm1,we summarize the entire flowofKAGCN, including the inputs and outputs,
as well as the intermediate steps.

3.5 Prediction Layer

After stacking thebi-layerGCNL times, vector representations ofL+1 item (
{
e(1)
i , · · · , e(L)

i

}
)

are obtained, as well as those of L+1 users (
{
e(1)
u , · · · , e(L)

u

}
). The embeddings of the L layers

are merged in a weighted sum to obtain the final vector representations of user and item, as
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Algorithm 1 Embedding generation process of KAGCN
Require: a user-item pair (u, i); itemKGG; LGC embeddingsE; hyperparameters: layer L, sampled neighbor

size K;
Ensure: the user embedding eK AGCN

u ; the item embedding eK AGCN
i ;

1:
{
N l

i

}L

l=0
,
{
N l

u

}L

l=0
← GetNeighbors(i(u), G, L, K ) � generate H-hop neighbors of user u and item

i ;
2: for l = 1, 2, · · · , L do
3: for e inN l

i do

4: e(l)Se = ∑
e′∈Se ω̃ui

re′ee
(l−1)
e � aggregate the (L-1)-hop neighbor features of item i ;

5: e(l)Su = ∑
u′∈Su ω̃u

u′uV
(l−1)
u � aggregate the (L-1)-hop neighbor features of user u;

6: end for
7: e(l)i = agg

(
e(l−1)
i , e(l)Si

)
� agg represents an aggregation function[3.4.3];

8: e(l)u = agg
(
e(l−1)
u , e(l)Su

)
� agg represents an aggregation function[3.4.3];

9: end for
10: eK AGCN (l)

i = e(l)i � get KAGCN embedding of item i ;

11: eK AGCN (l)
u = e(l)u � get KAGCN embedding of user u;

12: return eK AGCN
u , eK AGCN

i
13:
14: function GetNeighbors (i(u), G, L, K )

15: N L
i = i

16: for l = L − 1, · · · , 0 do
17: N l

i = ∅
18: for e inN l+1

i do
19: Ne ← e, G � get neighbors of entity e;
20: Se ← K ,Ne � sample K neighbors from the entire neighbors;
21: N l

i = N l
i ∪ Se � update the (L-1)-hop neighbors of item i ;

22: end for
23: end for

24: return
{
N l

i

}L

l=0

shown in the following Formula (12):

e∗
u =

L∑

l=0

αl e
B I K AGCN (l)
u

e∗
i =

L∑

l=0

αl e
B I K AGCN (l)
i (12)

Where, αl represents the weight of the lth layer vector in generating the final vector, and
in the experiment it is set as a constant 1/ (l + 1).

Finally, we perform inner product operations on the representations of the user and the
item to predict the scores of their interactions:

ŷ (u, i) = e∗
u
T ei

∗ (13)

The expression ŷ (u, i) represents the probability that the user u will interact with the item
i . When the probability is greater than or equal to 0.5, we consider that the user will interact
with the item.
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3.6 Loss Function

The BIKAGCN model includes a large number of training parameters, leading to a potential
overfitting problem. To alleviate this problem, L2 regularization techniques can be used to
some extent.

The network parameters of the whole model are learned with the help of the BPR loss
function [51]. The loss function is defined as follows:

L = −
∑

(u,i, j)∈O
ln σ

(
ŷui − ŷu j

) + λ‖�‖22 (14)

where (u, i) ∈ R+ represents positive samples and (u, j) ∈ R− represents negative samples,
where � is the set of all model parameters and λ‖�‖22 represents the normalized term of L2.

To describe the computational process of BIKAGCN visually, it is summarized in Algo-
rithm 2.

Algorithm 2 The overall recommendation process of BIKAGCN
Require: a user-item pair (u, i); User interaction matrix with item Y; item KG G; initial embeddings E;

hyperparameters: layer L, sampled neighbor size K, {αl }Ll=0;
Ensure: Predictive Function F(u, i | Y , G, θ);
1: while BIKAGCN not converge do
2: for l = 1, 2, · · · , L do
3: for (u, i) in Y do

4: eLGC(l)
u , eLGC(l)

i = LGC
(
(u, i),Y ,E, L, {αl }Ll=0

)
� The L-layer embedding of the

LGC generated by the algorithm LGC[22];

5: eBI K AGCN (l)
u , eBI K AGCN (l)

i = KAGCN((u, i), G, (eLGC(l)
u , eLGC(l)

i ), L, K ) �
Generate new user-item embeddings using the algorithm 1;

6: end for
7: end for
8: e∗u = ∑L

l=0 αl e
B I K AGCN (l)
u � generate the final BIKAGCN embedding of user u;

9: e∗i = ∑L
l=0 αl e

B I K AGCN (l)
i � generate the final BIKAGCN embedding of item i ;

10: Calculate predicted probability ŷ(u, i) = e∗uT e∗i ;
11: Update parameters, i.e., initial embeddings E, by gradient descent;
12: end while
13: return F;

4 Experimentation and analysis

This section presents the recommended performance of BIKAGCN in three real recommen-
dation scenarios (MovieLens-20M, Last-FM, and Book-Crossing), including comparative
experimental performance, performance to mitigate the cold-start problem, and ablation
experiments.

4.1 Experimental Data andMetrics

The performance of all models was evaluated on three real recommendation datasets
(MovieLens-20M,Book-Crossing andLast-FM). These datasets havewidespread availability
and are extensively employed by researchers. With their variability in both size and sparsity,
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Table 2 Statistics of datasets MovieLens-20M Last-FM Book-crossing

User 124,649 1251 1248

Item 16,910 3846 14965

Interactions 7,814,478 16,669 39,755

Sparsity 0.9963 0.9979 0.9965

Entities 102,569 9366 77,903

Relations 32 60 25

KG triples 3,399,048 58,554 367,478

these datasets are deemed appropriate for conducting comprehensive and robust evaluations
of the performance of BIKAGCN across varying dataset sizes.

MovieLens-20M 1 is a widely used benchmark dataset. It includes nearly 20 million
explicit historical rating records on the MovieLens website.

Last-FM 2 consists of nearly 93,000 musician listens from 2,000 users of the Last.fm
online music system.

Book-crossing 3 is a dataset containing book ratings and reviews. This dataset contains 1
million book item rating records.

In view of the datasets’ explicit feedback nature, we converted them into implicit feedback
by categorizingpositive ratings as 1 andnegative ratings as 0. For theMovieLens-20Mdataset,
we considered ratings of 4 or higher as positive, while for the other datasets, we did not set
any specific threshold. Our selection criterion for each dataset required the inclusion of users
with a minimum of ten interactions to ensure data quality.

In addition to the records of user-item interactions, we also require a corresponding item
knowledge graph. We utilize project knowledge graphs provided by KGCN [24], which have
been constructed using Microsoft Satori.4 The summary statistics of the three datasets and
the knowledge graphs associated with them are shown in Table 2.

Recall: the proportion of correctly recommended Top-N items that are of real interest to
the user out of the total number of items that the user interacted with, with the formula shown
in Formula (15):

recall@k =
∑

u∈U |R(u) ∩ T (u)|
∑

u∈U |T (u)| (15)

where R(u) represents the element recommendation list generated by the model for user u,
while T (u) denotes the set of elements with which user u has genuinely interacted in the test
dataset.

NDGC: It not only considers the percentage of correctly recommended items but also
takes into account the position of recommended items that are of interest to the user within
the recommendation list. A higher numerical value indicates better performance, as shown
in Formula (16).

ndcg@k = 1

n

N∑

i=1

2reli − 1

log2(i + 1)
(16)

1 https://grouplens.org/datasets/movielens/
2 https://grouplens.org/datasets/hetrec-2011
3 http://www2.informatik.uni-freiburg.de/~cziegler/BX/
4 https://searchengineland.com/library/bing/bing-satori
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reli represents the user’s rating for the i-th item, and log2(i + 1) is a position-dependent
decreasing weight.

In this paper, our dataset will be partitioned into a train set and a test set in an 8:2 ratio.
To generate negative samples, items without any positive ratings will be chosen at random
and paired with each positive interaction. Our metrics will be recall@N and ndcg@N to
assess the performance of the item recommendation and user preference ranking models. To
determine the hyperparameters, we will optimize recall@20 on the test set, with a default
value of N=20.

4.2 Baselines

We compared BIKAGCN with the following baselines on the same dataset and metrics to
demonstrate its superiority. The details are as follows:

• MF [6]: The model is a common recommender systems algorithm that performs recom-
mendations by decomposing the user-item interaction matrix into two low-rank matrices.

•CKE [41]: Themodel a typical regularisation-based approach that uses semantic embed-
dings obtained from TransR to enhance the matrix decomposition.

•NGCF [40]: Themodel uses standard GCN to capture synergistic signals from user-item
interaction graphs, effectively placing synergistic signals in the representation of user and
item.

•KGCN [24]: Themodel is a recommender systems algorithm based on knowledge graph,
which embeds the entities and relationships in the knowledge graph into the recommendation
model to improve the accuracy and effectiveness of recommendations.

• KGAT [21]: The model alternates between training recommendations and knowledge
graph embedding. All structural and semantic information is obtained from a combination
of the user-item graph and the item knowledge graph.

• LightGCN [22]: The model is an efficient GCN-based model that abandons the fea-
ture transformation and non-linear activation operations in the GCN that are not useful for
recommendations.

4.3 Hyperparameters Settings

Hyperparameters play a crucial role in influencing the results of the experiment. For the
embedding size, we analyzed all models within a given dataset using a fixed size 64. We
initialized trainable parameters using the Xavier initialization method. To avoid local opti-
mization issues during training, we employed the mini-batch Adam optimizer. The batch
size for MovieLens-20M was set to 2048, while for other datasets, it was set to 1024. We
fine-tuned the following parameters with grid search: the learning rate was tested within
a range of {0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001}; the L2 regularization factor, λ,
was varied between 10−1 and 10−5; the number of layers in GCN recommendation models
(KGCN, KGAT, NGCF, LightGCN, and BIKAGCN) was adjusted between {1, 2, 3, 4} for
layer size, and between {4, 8, 16, 32} for neighbor sampling size in KGCN and BIKAGCN.
For KGCN, the hidden dimension is set to the same size as the initial embedding dimen-
sion, and for KGAT and NGCF, the size of the first hidden dimension is the same as the
initial embedding dimension, but the subsequent hidden dimension is half of the previous
one. KGAT and NGCF use a 0.1 dropout ratio. Furthermore, owing to the vast scale of the
MovieLens-20M dataset, we deployed an early stopping, whereby if the recall@20 metric
on the test set did not exhibit any progress within ten epochs, we resorted to early stopping.
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Table 3 Comparison of the recommended performance with the baseline method

MovieLens-20M Last-FM Book-crossing
recall@20 ndcg@20 recall@20 ndcg@20 recall@20 ndcg@20

MF 0.3392 0.2820 0.3742 0.2303 0.0978 0.0756

CKE 0.3321 0.2756 0.3882 0.2362 0.0955 0.0753

KGCN 0.3352 0.2794 0.3843 0.2199 0.0998 0.0787

KGAT 0.3419 0.2900 0.3924 0.2411 0.1190 0.0904

NGCF 0.3389 0.2833 0.3954 0.2417 0.1001 0.0829

LightGCN 0.3643 0.2914 0.4264 0.2587 0.1450 0.1009

BIKAGCN 0.4168 0.3353 0.4642 0.3074 0.1753 0.1239

Bold values indicate the emphasize the experimental results of our model

4.4 Experimental Results

4.4.1 Comparison of Recommended Performance with Baseline

From Table 3, we can conclude the following:
Among all the recommendation models based on graph neural networks, KGCN exhibits

the weakest performance across all three datasets. This could be attributed to KGCN produc-
ingmore links between itemswhile overlooking the links betweenuser and item.Additionally,
KGCN’s large number of trainable parameters may cause overfitting, diminishing its gener-
alization ability and restricting its performance.

In comparison with NGCF, the KGCN model’s performance was relatively poorer across
the three datasets, indicating the limited strength of semantic informationobtained exclusively
from the item knowledge graph and emphasizing the significance of synergistic informa-
tion between user and item. When comparing NGCF and LightGCN, the latter exhibiting
enhanced recommendation performance across all three datasets, emphasizing the advantages
of eliminating feature transformation and nonlinear activation in recommendations. Further-
more, BIKAGCN performs better than KGAT across all three datasets, implying that it is not
essential to train the entire knowledge graph simultaneously for recommendation purposes.

A comparative analysis of all baselines showed that BIKAGCN has a clear advantage on
all datasets. This suggests that BIKAGCN’s bilayer graph convolutional neural network layer
possesses the ability of LGC to extract synergistic information and KAGCN to selectively
and preferentially aggregate item neighbourhood information.BIKAGCN is adept at merging
complementary information from item knowledge graph into item vector representations
and gaining insight into the unique requirements and potential interests of different users;
as a result, it produces better recommendations, thereby improving the performance of the
recommender systems.

4.4.2 Comparison of Model Cold-Start Scenarios

By conducting a joint analysis of the experimental results from Last-FM and Book-Crossing,
we can derive some meaningful conclusions, which are presented in Fig. 4.

In scenarios where data is sparse, adding the item KG as additional information into the
recommender system can mitigate the cold-start problem, especially in cases of extreme data
scarcity. When the training set ratio drops to 0.2, three recommendation models based on
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Fig. 4 Performance comparison of training sets with different scales on the three datasets. The training set
ratio indicates the ratio of the current training set to the original training set

GCN and KG (BIKAGCN, KGAT, and KGCN) perform the best, indicating the effectiveness
of incorporating knowledge graphs in alleviating the cold-start problem. Possible reasons are
that, in cold-start scenarios, the KG provides additional high-order item correlations and
preference relationship information between users and items. Introducing this information
can mitigate data sparsity, compensate for the lack of item information, and maintain the
performance of the recommender systems.
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Table 4 Performance of BIKAGCN with different aggregation functions

MovieLens-20M Last-FM Book-crossing
recall@20 ndcg@20 recall@20 ndcg@20 recall@20 ndcg@20

GCN 0.3714 0.2931 0.4208 0.2735 0.1639 0.1186

GCN-s 0.4168 0.3353 0.4642 0.3074 0.1753 0.1239

Neighbor 0.3556 0.2871 0.3817 0.2572 0.1351 0.0932

Neighbor-s 0.3744 0.3091 0.3975 0.2627 0.1438 0.0955

Bold value indicate the optimal results under different experimental conditions

Table 5 Performance of BIKAGCN with different layer number

MovieLens-20M Last-FM Book-crossing
recall@20 ndcg@20 recall@20 ndcg@20 recall@20 ndcg@20

layers_L = 1 0.4168 0.3353 0.4245 0.2852 0.1569 0.1172

layers_L = 2 0.4015 0.3299 0.4642 0.3074 0.1753 0.1239

layers_L = 3 0.3860 0.3353 0.4108 0.2716 0.1714 0.1271

layers_L = 4 0.3445 0.2897 0.4090 0.2611 0.1632 0.1215

Bold value indicate the optimal results under different experimental conditions

BIKAGCN excels in cold-start scenarios. The recommendation results across three
datasets demonstrate that it outperforms other models at all levels of sparsity. This suggests
that BIKAGCN can effectively address the cold-start problem, leading to the conclusion that
the model is a reliable solution for the cold-start problem.

4.5 Ablation Study of BIKAGCN

The graphical convolution layer is a key component of the GCN-based model. The effects of
different aggregation functions, different aggregation depths, different sampling neighbor-
hoods and different attention mechanisms on the model performance are explored.

4.5.1 Impact of BIKAGCN Aggregators

Table 4 summarizes the results of our experimental evaluation of four aggregation functions,
from these findings, several noteworthy conclusions can be drawn:

The results of our experiments comparing GCN-s with GCN and Neighbor-s with Neigh-
bor have demonstrated that the elimination of feature transformation and non-linear activation
functions contributes positively to enhancing the performance of recommender systems. Rep-
resenting item features solely via aggregated vectors of neighboring nodes is insufficient for
fully exploiting user and item information. Notably, we have found that incorporating self-
connection to item features can further boost the performance of the recommender systems.

4.5.2 Impact of BIKAGCN Layer Number

To explore the impact of the number of layers on performance, analyzing the Table 5 we have
the following observations:
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Table 6 Performance of BIKAGCN with sampled neighbor number

MovieLens-20M Last-FM Book-crossing
recall@20 ndcg@20 recall@20 ndcg@20 recall@20 ndcg@20

neighbor_K = 4 0.3801 0.3129 0.3850 0.2228 0.1392 0.0983

neighbor_K = 8 0.4168 0.3353 0.4642 0.3074 0.1548 0.1096

neighbor_K = 16 0.3954 0.3183 0.4075 0.2642 0.1753 0.1239

neighbor_K = 32 0.3638 0.3031 0.4092 0.2689 0.1431 0.0934

Bold value indicate the optimal results under different experimental conditions

In all three datasets, the best performance was achieved at layersL of 1 or 2. The reason
is that increasing the number of layers enhances the amount of surrounding neighbor infor-
mation that can be acquired, which leads to a richer information context and improves the
performance of the recommender systems. It is evident that increasing the number of prop-
agation layers does not necessarily enhance the performance of the recommender systems
model. This is because deeper layers may lead to the problem of overly smooth neighboring
nodes, i.e., the vector representations of nodes become increasingly similar, resulting in the
inability of the network to identify items of interest to users. Moreover, deeper layers also
mean that more negative information is aggregated. Therefore, it is necessary to select an
appropriate number of layers based on practical requirements.

4.5.3 Impact of BIKAGCN Sampled Neighbor Number

Table 6 shows the results of changing the size of the neighbors, and we can find that:
When K equals 8 or 16, BIKAGCN achieves the best performance. In the MovieLens-

20M and Last-FM datasets, the best number of neighbors is 8, whereas in the Book-Crossing
dataset, the optimal number of neighbors is 16. This is because theMovieLens-20Mdataset is
large enough to obtain sufficient semantic information with 8 neighbors. In contrast, increas-
ing the number of neighbors can introduce more noise. In the Last-FM dataset, the model
can be easily fitted due to its small size, and a large number of neighbors can introduce
excessive noise. For the Book-Crossing dataset, which is both sparse and small, the optimal
number of neighbors is 16. Beyond the neighbor threshold, the performance of BIKAGCN
rapidly decreases as the number of neighbors increases, indicating that more item noise is
aggregated, and the negative impact gradually exceeds the positive impact.

4.5.4 Impact of BIKAGCN Attention Mechanism

The attention mechanism is a critical factor that significantly influences model performance.
Table 7 presents the experimental results, from which several noteworthy observations can
be made.

In most cases, the performance of the recommender systems improves with an increase in
the number of attention mechanisms, except for ndcg@20 on the MovieLens-20M dataset.
Additionally, "ur+ir+self" consistently yields the best model performance. Notably, using
"ur" mechanisms outperforms "ir" on in all cases, which underscores the indispensable role
of personalized interest in recommendation and its importance exceeding that of neighbors.

Comparison between "ur+ir+self" and "ur+ir" reveals that the former outperforms the
latter. One possible reason for this superior performance is that considering user attention
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Table 7 Performance of BIKAGCN with attention mechanism

MovieLens-20M Last-FM Book-Crossing
recall@20 ndcg@20 recall@20 ndcg@20 recall@20 ndcg@20

no 1 0.3456 0.2861 0.3850 0.2155 0.1291 0.0934

ur 2 0.3775 0.3088 0.3975 0.2243 0.1533 0.1154

ir 3 0.3649 0.2943 0.3887 0.2192 0.1428 0.1021

ur+ir 4 0.3786 0.3071 0.4223 0.2587 0.1674 0.1198

ur+ir+self 5 0.4168 0.3353 0.4642 0.3074 0.1753 0.1239

1 Not using attention mechanism
2Only using user relation attention mechanism
3Only using item relation attention mechanism
4Using both user and item relation attention mechanisms at the same time
5Using user relation and item relation attention along with user self-attention mechanism
Bold value indicate the optimal results under different experimental conditions

enables the model to leverage user semantic information fully and enhance the performance
of the recommender systems. On the other hand, the reason "ur+ir" outperforms "ur" may be
that the former thoroughly explores the connections and relationships between user and item,
thus promoting the aggregation of item neighboring nodes and improving the recommenda-
tion algorithm’s performance. However, when the result without an attention mechanism is
used (i.e., using "no"), it is shown that treating all neighbors equally introduces noise and
misleads the embedding propagation process, indicating the important role of graph attention
mechanism.

5 Conclusions

In this paper, we propose a new model—BIKAGCN, which combines the respective char-
acteristic features of LGC and KAGCN. Specifically, LightGCN is used as the first layer
of the model, followed by KAGCN as the second layer, resulting in the integration of two
into a novel bi-layer graph convolutional network. This innovative combination enhances the
feature extraction capability of GCN and accelerates model convergence. Our experimental
results conducted on three real-world datasets demonstrate that incorporating a GCN layer
after LightGCN to learn the embedding representations of users and entities in the knowledge
graph is both effective and feasible, thereby providing insights for the development of graph
neural-based recommender systems in the future.

We identify two key areas for future research. Firstly, regarding the negative sampling
strategy in the model, there are several studies exploring ways to improve upon the current
uniform sampling technique [20, 52–55]. One potential approach involves sampling a differ-
ent number of neighboring entities for each item, whichmay result in enhanced recommender
system performance. Secondly, our experimental results suggest that incorporating item KG
as auxiliary information can improve performance compared to using only the interaction
graph. Thus, research could examine the effectiveness of incorporating additional types of
auxiliary data, such as contextual data [56] or social networks [57]. In social network rec-
ommendation, identifying reliable friends is also a popular research direction [58, 59].
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