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Abstract
This paper introduces a novel approach called Chebyshev mapping and strongly connected
topology for optimization of echo state network (ESN). To enhance the predictive perfor-
mance of ESNs for time series data, Chebyshevmapping is employed to optimize the irregular
input weight matrix. And the reservoir of the ESN is also replaced using an adjacency matrix
derived from a digital chaotic system, resulting in a reservoir with strong connectivity prop-
erties. Numerical experiments are conducted on various time series datasets, including the
Mackey–Glass time series, Lorenz time series and solar sunspot numbers, validating the
effectiveness of the proposed optimization methods. Compared with the traditional ESNs,
the optimization method proposed in this paper has higher predictive performance, and effec-
tively reduce the reservoir’s size and model complexity.

Keywords Echo state network · Time series predicting · Chebyshev mapping · Strongly
connected topology

1 Introduction

Recursive neural network (RNN) has been widely used in chaotic time series prediction [1].
However, it’s structure is relatively complex, and there are problems such as slow conver-
gence, high training complexity, susceptibility to local optima, and vanishing gradients [2].
Although some researchers have proposed corresponding improvement schemes to solve
some problems, they have not solved the essential problem of high training complexity. The
fundamental problem of high training complexity was not solved until the reservoir comput-
ing (RC) [3]. The essential idea of RC is that the reservoir itself remains unchanged with
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random and fixed connections between the neurons, and only the output layer’s neural net-
works can be trained. Based on the idea of RC, Jaeger et al. proposed ESN in 2001 [4, 5].
Different from traditional RNNs, the ESN internally contains a sparse, recursively connected
reservoir, which stores historical information, thereby acting as an echo [6]. The reservoir
replaces the fully connected hidden layer of traditional RNNs. In the ESN, the input weight
matrix and the internal connection weight matrix of the reservoir remain unchanged after
random initialization [7]. The mapping from the reservoir to the output layer is linear, and
only the output weight is obtained through linear regression training, thus overcoming the
disadvantages of slow convergence, susceptibility to local optima, and vanishing gradients
in traditional RNNs. The ESN model is simple and its training speed is fast. It has been suc-
cessfully applied in time series prediction [8–14], time series classification [15–18], speech
recognition [19], non-linear control [20, 21] and other fields.

However, in traditional ESN, the input weight matrix is randomly generated, and the
internal neurons of the reservoir are randomly connected. The input weight matrix defines
how external input influences the internal state of the reservoir. This matrix determines how
external input propagates within the network, thereby affecting the state evolution and output
of the reservoir. The reservoir is the core component of the ESN, comprising a large number
of neurons and generating nonlinear dynamics through internal connections. The complexity,
size, and nonlinear nature of the reservoir profound impact the expressive and generalization
capabilities of ESNs. Larger and more complex reservoirs can better capture features and
patterns in the data but are also prone to overfitting. The randomness of the inputweightmatrix
and reservoir leads to issues in ESNs, including performance instability, unclear dynamic
behavior, difficulty in ensuring the generation of ESN models tailored to specific tasks,
and susceptibility to overfitting. In recent years, domestic and foreign experts and scholars
have made relevant improvements to the problems existing in the ESN, mainly including the
following three aspects: topology structure design, optimization of input layer preprocessing,
optimization of reservoir parameters selection, and selection of neural activation functions
and related training and learning algorithm improvements.

Regarding the design of ESN structures, reference [22] introduces a Fractional Order
ESN for time series prediction. This network utilizes fractional-order differential equations
to describe the dynamic characteristics of the reservoir state, enabling a more accurate repre-
sentation of the dynamic features of a specific class of time series. To enhance the predictive
performance, the paper also presents a fractional-order output weight learning method and a
fractional-order parameter optimization method for training output weights and optimizing
reservoir parameters. Reference [23] introduces an improved ESN with an enhanced topol-
ogy. This improvement involves studying and optimizing echo state properties, designing
smooth activation functions, and constructing a reservoir with rich features. The goal is to
achieve more precise and efficient time series prediction. Through a series of experiments
and comparisons with other models, this approach demonstrates significant performance
improvements in various tasks. In Ref. [24], the authors presented an approach to optimize
the storage reservoir topology of an ESN by using the corresponding adjacency matrix of
the digital chaotic systems. They constructed a chaotic ESN and showed that its prediction
performance is higher than that of traditional ESN. By adjusting the topology structure of
ESN, its predictive performance can be effectively improved while reducing overfitting. Ref-
erences [25–29] have introduced and enhanced deep echo state networks (DESNs) composed
of multiple stacked reservoirs. These layers progressively extract abstract features from the
data. With the addition of intermediate layers, DESNs are capable of addressing more com-
plex time series problems. Experimental results demonstrate the significant impact of DESNs
on improving ESN’s predictive performance.
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In addressing the optimization of reservoir parameters, Ref. [30] proposes the use of
particle swarm optimization (PSO) to optimize the selection of reservoir parameters in ESN.
This pre-training approach effectively reduces the impact of random initialization variables
on the prediction performance of the network. The experimental results demonstrate that the
optimized ESN using PSO algorithm has higher stability and better generalization ability.
Reference [31] introduces a novel model that incorporates logistic mapping and bias dropout
algorithms with the objective of optimizing, the irregular input weight matrix and generate
a more optimal and simplified reservoir structure. Experimental results demonstrate that
the proposed model exhibits significant improvements in reducing testing time, reservoir
size and model complexity, while also enhancing the performance compared to traditional
ESN. In addition, Ref. [32] presents a design method for optimizing the global parameters,
topology and weights of the reservoir using a simultaneous search approach. The internal
neuron state of the reservoir is not solely determined by fixed weights, but is also influenced
by input signals. By optimizing the reservoir parameters, the capability of ESN to handle
input sequences can be enhanced, thereby improving the accuracy of prediction. Employing
different reservoir parameters for different tasks increases the flexibility of ESN applications.

However, adjusting the reservoir parameters can be time-consuming and requires careful
selection to prevent decreased prediction accuracy, reduced robustness of the network model,
and overfitting. Reference [33] proposes a time series prediction model that combines ESN
with adaptive elastic network algorithms for neuron selection and training learning algo-
rithms. The adaptive elastic algorithm is used to solve the linear regression problem of ESN.
Experiments have shown that choosing appropriate neuron activation functions and training
learning algorithms can enhance the nonlinear representation ability of ESN for multivariate
chaotic time series, surpassing the prediction ability of other ESN models. However, using
complex activation functions and training learning algorithms may lead to overfitting of the
network and increase computational costs. Therefore, careful consideration is needed when
selecting activation functions and training algorithms based on specific tasks and datasets.
Additionally, cross-validation and other methods can be employed to evaluate the model’s
performance and avoid overfitting. References [34–36] have employed techniques such as
filtering, reservoir module methods, and probabilistic regularization to optimize the structure
of the reservoir and the training process of ESN, resulting in a significant improvement in
ESN performance.

In order to improve the prediction performance and stability of ESN, this paper proposes
an novel ESN model based on Chebyshev mapping and strongly connected topology. On the
one hand, Chebyshev mapping is utilized to generate an input weight matrix with conver-
gence characteristics and rich chaotic characteristics. On the other hand, strong connected
structures are used to optimize the topology of the reservoir, making it have strong connected
characteristics. This article is arranged as follows: Sect. 2 briefly introduces the ESN, includ-
ing the structure and training prediction algorithm of the ESN. Section 3 describes in detail
the steps of optimizing the ESN, including the algorithm for generating the input weight
matrix and the creation of strongly connected topology. Section 4 demonstrates the excellent
prediction performance and stability of the optimized ESN through simulation of chaotic time
series and real-world time series prediction, and compares it with other prediction models.
Section 5 concludes the paper.
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Fig. 1 Echo state network

2 Echo State Network

Jaeger [4] introduced the ESN, a distinctive type of recurrent neural network that incorporates
a dynamic reservoir of neurons comprising hundreds or thousands of units. The reservoir
is a vast, randomly generated, sparsely connected recursive structure, resembling biological
neural networksmore closely than traditional recurrent networks. ESNhas found applications
in various domains, including time series prediction, time series classification, nonlinear
control and other related areas.

2.1 NetworkMode

The structure of the ESN is shown in Fig. 1, which is a three-layer recurrent neural network
composed of an input layer, a reservoir and an output layer. The reservoir is comprised of
100s–1000s of sparsely connected recursive neurons, with their connection weights being
randomly generated and fixed thereafter.

Let the number of neurons in the input layer, reservoir, and output layer of the ESN are
denoted by K , N and L , respectively.

⎧
⎨

⎩

u(n) = [u1(n), u2(n), . . . , uK (n)]T
x(n) = [x1(n), x2(n), . . . , xN (n)]T
y(n) = [y1(n), y2(n), . . . , yL(n)]T

(1)

where u(n) ∈ R
K×1 refers to a vector consisting of K input neurons, y(n) ∈ R

L×1 refers
to a vector consisting of L output neurons, and x(n) ∈ R

N×1 denotes a vector of N neurons
within the reservoir that are activated.

According to the ESN proposed in Ref. [37], which uses a type of RNN called the leaky
integrated discrete-time continuous-value unit, the update equation is as follows:

x(n) = f (Win[1; u(n)] + Wx(n − 1)) (2)

where Win ∈ R
N×(1+K ) represents the input weight matrix with elements ranging between

[−1, 1], W ∈ R
N×N denotes the sparse internal connection matrix within the reservoir.

[1; u(n)] represents the connection between vector 1 and vector u(n). The input weight
matrix Win and the internal connection matrix W within the reservoir are both randomly
generated and remain fixed during the training phase of the ESN. x(n) is the activation
vector of neurons in the reservoir. f represents the internal neuron activation function, which
is usually a tanh function or sigmod function.
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To ensure that the internal connection matrixW within the reservoir is sufficiently sparse,
we express W mathematically in Eq. 3.

W = R
WR � WS

|λmax| (3)

where R is the spectral radius ofW , and its value interval is (0, 1).WR ∈ R
N×N is a random

matrix in which the values of matrix elements are uniformly distributed over (−0.5, 0.5).
WS ∈ R

N×N is a randomly generated matrix in which the values of elements are 0 or 1. The
symbol � indicates that the elements of the same row and column of the two matrices WR

and WS are multiplied, and λmax is the maximum eigenvalue of matrix WR � WS .
The linear output equation is:

y(n) = Wout [1; u(n); x(n)] (4)

where Wout ∈ R
N×(1+L+K ) is the output weight matrix, [1; u(n); x(n)] represents the con-

nection between vector 1, vector u(n) and vector x(n).

2.2 Training Process

In the ESN, only the output weight matrix Wout needs to be trained. Before training, it is
necessary to initialize the reservoir. Generally, the internal state vector of the reservoir is set
to x(0) = 0, and a certain time point T0 (T0 < T ) is selected as the initialization time point
of the reservoir. All internal state vectors before T0 are discarded. T is the data amount of
the training dataset, and T0 is the initialized data amount.

Since the output weight matrix Wout of the ESN is generally linear, Eq. 4 can be written
as:

Y = Wout H (5)

where Y ∈ R
L×T represents all output vectors y(n), in order to simplify the symbol, H is

used instead of [1;U ; X ], so H ∈ R
(1+k+N )×T .

To find the optimal output weight matrix Wout to minimize the square error between the
actual output y(n) and the target output ytarget (n), this process is equivalent to solving a
typical optimization problem.

min
∥
∥Wout H − Ytarget

∥
∥2
2 (6)

where Ytarget ∈ R
L×T , there are many training algorithms that can solve Eq. 6. Here, the

most conventional ridge regression is selected

Wout = Ytarget H
T (HHT + β I )−1 (7)

where β is the regularization coefficient and I is the identity matrix [38].

2.3 Key Parameter

The core of an ESN is its reservoir, whose performance is mainly related to two important
parameters: reservoir size N , and reservoir spectral radius R.

(1) Reservoir size

The reservoir size N is the number of neurons in the reservoir, and increasing N generally
improves the accuracy of the model. However, when N is too large, it may lead to increased
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computational complexity and even overfitting. On the other hand, when N is too small, the
model may suffer from low accuracy and underfitting.

(2) Reservoir spectral radius

The spectral radius R of the reservoir is one of the central global parameters of the ESN, and
the spectral radius is the absolute value of the maximum eigenvalue of the sparse connection
matrix W within the reservoir. Generally, the value interval of spectral radius R is (0, 1).

According to Ref. [39], if the spectral radius is too large, the reservoir of an ESN may
develop multiple fixed points, periodic, or even chaotic spontaneous attractor patterns (when
the reservoir is sufficiently nonlinear), which violates the characteristic of the ESN. On the
other hand, if the spectral radius is too small, the output weight values become very small,
leading to low prediction accuracy of the network and making it challenging to match the
target system.

3 Echo State Network Based on ChebyshevMapping and Strongly
Connected Topology

In this study, we propose an optimized ESN that uses Chebyshev mapping and strongly con-
nected topology. Firstly, the input connection weight matrixWin is randomly generated using
Chebyshev mapping to construct a Ch–ESN model. Then, a strongly connected topological
structure is incorporated into the reservoir of the ESN to enhance its connectivity and improve
prediction performance, resulting in the construction of an SC–ESN. Finally, we combine
these two techniques to create the Ch–SC–ESN model.

3.1 ChebyshevMapping

The Chebyshev chaotic system [40] belongs to a one-dimensional chaotic system, and the
corresponding Chebyshev mapping equation is

x(n + 1) = cos(k · arccosx(n)) (8)

where k is the control parameter of the Chebyshev mapping. When k is >2, the system has
a positive Lyapunov exponent and is in a chaotic state.

The first phase is the stable phase, where k ∈ [0, 1] and x approaches a fixed value of 1
(x → 1).

The second phase is the critical chaos phase, where k ∈ (1, 2] and x gradually loses its
stability. At this phase, the Lyapunov exponent of the system is negative, but it does not
exhibit chaotic behavior.

The third phase is the chaotic phase, where k ∈ (2, 4) and the Lyapunov exponent of the
system is positive. In this phase, x exhibits chaotic dynamic behavior.

3.2 Optimizing the InputWeight Matrix with a ChebyshevMapping

The fundamental idea of ESN is to transform the original input signal into a high-dimensional
feature space through the inputweightmatrixWin . In traditional ESN, the inputweightmatrix
Win is randomly generated with element values ranging from −1 to 1. In contrast, the input
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Fig. 2 Chebyshevmapping.aBifurcation graphofChebyshevmapping,bLyapunov exponential ofChebyshev
mapping

weight matrix WCh
in of Ch–ESN is generated through Chebyshev mapping iteration.

WCh
in =

⎡

⎢
⎢
⎣

win(1, 1) win(1, 2) · · · win(1, 1 + K )

win(2, 1) win(2, 2) · · · win(2, 1 + K )

· · · · · · · · · · · ·
win(N , 1) win(N , 2) · · · win(N , 1 + K )

⎤

⎥
⎥
⎦ (9)

Each element in input weight matrix WCh
in of Ch–ESN is generated using the following

method.

(1) The initial value of the first row element in input weight matrix WCh
in is set as follows:

win(1, j) = p · sin
(

j

K + 1
· π

q

)

( j = 1, 2, . . . , K + 1) (10)

where adjustable parameters p and q are employed here, j represents the column index of
an element, and K represents the number of input layer neurons [41]. In our experiments,
p was set to 0.3, and q was set to 5.9. By utilizing Eq. 10, the first-row elements of the
input weight matrix for Ch–ESN can be obtained.

(2) Other row elements of WCh
in are iteratively generated using Chebyshev mapping

win(i + 1, j) = cos[k · arccos(win(i, j))] (11)

As shown in Fig. 2, the input weight matrix WCh
in generated iteratively by Chebyshev map-

ping has three different phases. WCh
in is very sensitive to the initial condition of the control

parameter k, which indicates that a slight change in the initial value of the control parameter
k will lead to a great change in the distribution of elements in WCh

in . At the same time, the
distribution of elements in WCh

in will change the “echo” attribute of ESN, which has a great
impact on the prediction performance of Ch–ESN model. How to select the appropriate con-
trol parameter k and the influence of the control parameter k on the final model performance
will be discussed in Sect. 4.6.

(3) Finally, the initial input weight matrix is replaced by input weight matrixWCh
in , which is

generated iteratively by Chebyshev mapping, and the Ch–ESN model is established.

x(n) = tanh
(
WCh

in [1; u(n)] + Wx(n − 1)
)

(12)
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Fig. 3 Strongly connected state transition diagram and strongly connected adjacency matrix corresponding to
Eq. 13 (D=2)

3.3 Digital Chaotic System

Building upon the emerging theory of digital chaotic system, it is possible to directly establish
a digital chaotic system under finite precision conditions and prove its chaotic characteristics.
By making full use of the adjacency matrix associated with the digital chaotic system, we can
construct a reservoir network structure suitable for ESNs, thereby transforming ESN into a
chaotic ESN [24]. In this section, we will introduce the designed digital chaotic system.

For a two-dimensional digital chaotic system with finite precision, denoted as D.
{
x1(n) = x1(n − 1) · s(n) + x1(n − 1) · x2(n − 1) · s(n)

x2(n) = x2(n − 1) · u(n) +
(
x1(n − 1) + x1(n − 1) · x2(n − 1)

)
· u(n)

(13)

where x1(n), x1(n − 1) ∈ {0, . . . , 2D − 1}; s(n) and u(n) are two independent random
sequences. · means and operation, + means or operation, x̄ means inverting x . The corre-
sponding strongly connected topology is shown in Fig. 3.

AM×M is a square matrix of order M = 22×D , where D denotes precision. As demon-
strated in Ref. [24], state transition diagrams associated with AM×M remain strongly
connected at different precision levels. Therefore, by altering the precision level D of the
chaotic system, one can change the size of AM×M .

3.4 Optimizing the Reservoir

In ESN, the reservoir is the core component of the network, comprising a large number of
hidden layer neurons that generate nonlinear dynamics through internal connections. The
introduction of strongly connected state transition diagrams ensures interconnections among
neuronswithin the reservoir, ensuring the existence of one ormore pathways from any neuron
to others. A strongly connected reservoir structure holds significant importance in ESN for
several reasons:

Dynamic Behavior andMemoryCapacity: A strongly connected reservoir can facilitate
complex dynamic behaviors, which are crucial for handling time-series data and capturing
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long-term dependencieswithin the data. This connectivity allows the network to generate rich
internal nonlinear dynamics, thereby endowing it with strong memory capacity and pattern
extraction capabilities.

Stability and Performance: The strong connectivity condition can contribute to the sta-
bility and robustness of the network. When neurons within the reservoir are interconnected,
and information can flow throughout the entire network, the network’s dynamics tend to be
more stable. This is important for maintaining the characteristics of an ESN and enhancing
its predictive performance.

Decoupling and Information Flow: The strongly connected reservoir structure aids in
decoupling the influence between different neurons, allowing information within the network
to propagate among various neuronswithout being constrained by local connectivity patterns.
This facilitates the network in handling complex input patterns more effectively.

Preventing Dead Neurons: Within a strongly connected reservoir, information can flow
throughout the network, mitigating the issue of certain neurons remaining inactive due to
insufficient input, thus preventing the occurrence of so-called “dead neuron” problems.

In summary, the strong connectivity condition contributes to the reservoir’s generation
of rich dynamic behaviors, enhances network stability and performance, and enables the
network to better capture the structure and features of data, particularly when handling tasks
involving time series analysis.

According to Ref. [24], the better the corresponding network performance, the richer the
dynamic characteristics inside the reservoir of the ESN, and the internal dynamic character-
istics of the reservoir are closely related to its internal topological structure. In the traditional
ESN, the internal connection matrix W is generated by two random matrices WR and WS

according to Eq. 3. Since both WR and WS are generated randomly, W usually does not
satisfy the condition of strong connectivity, and it lacks the property of strong connectivity.

The strongly connected adjacency matrix AM×M mentioned in Sect. 3.3 was used to
replace the randomly generated WS in Eq. 3, so that the internal connection matrix W of the
reservoir satisfies the strong connectivity condition and has the strong connectivity charac-
teristic, namely

WSC = R
WR � AM×M

|λmax| (14)

3.5 Ch–SC–ESN

The proposedCh–SC–ESNmodel improves upon the traditional ESN in twoways. Firstly, the
input weight matrix WCh

in is generated through Chebyshev mapping iterations, replacing the
completely random generation of Win in traditional ESN. Secondly, the strongly connected
adjacency matrix AM×M is used to replace the randomly generated WS in the original ESN.
This modification ensures that the internal connection matrix W of the reservoir satisfies the
strong connectivity condition and has the strong connectivity characteristic.

The generation and training process of Ch–SC–ESN is as follows:
Step 1: Determine some basic parameters.
Step 2: Generate WCh

in : use Eq. 10 to generate the first row element of WCh
in , and then

substitute the first row element into Eq. 11 to iteratively generate the other elements ofWCh
in .

Step 3: Generate WSC : Randomly generate a random matrix WR with size M × M where
M = N and N represent the number of neurons in the reservoir, with elements ranging
from (−0.5, 0.5), use the two-dimensional digital chaotic system Eq. 13, let D = log2

M
2

generate strongly connected adjacency matrix AM×M . The randomly generated WR and
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strongly connected adjacency matrix AM×M are substituted into Eq. 14 to generate WSC

with strongly connected characteristics, and let W = WSC .
Step 4: Substitute the generated WCh

in and W into the internal state update Eq. 12.
Step 5: From the linear output Eq. 4, the output weight matrix Wout is solved by ridge
regression method.
At this point, the generation and training process of Ch–SC–ESN was completed.

3.6 Stability Analysis

Echo state property (ESP) refers to the property of an ESN’s reservoir, wherein after a period
of dynamic evolution, it gradually forgets its initial state and becomes relatively insensitive to
changes in input data. In other words, even as the internal state of the network becomes highly
complex over time, it still retains some information from previous input data. This allows the
network to better capture long-term dependencies in time series data. The condition that the
maximum singular value of the reservoir weight matrix is<1 ensures that the ESN possesses
the ESP property.

When employing a strongly connected topology to optimize the internal reservoir structure
of a traditional ESN, the reservoir continues to exhibit the ESP. The presence of ESP in the
reservoir can be validated by examining the reservoir’s state. Specifically, the reservoir retains
the ESP when the maximum singular value of the reservoir weight matrix WSC , denoted as
σ(WSC ) = ‖WSC‖ < 1, remains <1.

Suppose x(n + 1) = tanh(WCh
in [1; u(n)] + WSCx(n)) and x ′(n + 1) = tanh(WCh

in[1; u(n)] + WSCx ′(n)) are two state vectors of the reservoir.
∥
∥x(n + 1) − x ′(n + 1)

∥
∥
2= ‖tanh (

WCh
in [1; u(n)] + WSCx(n)

) − tanh
(
WCh

in

[
1; u(n)] + WSCx ′(n)

) ‖2
≤ ‖WCh

in

[
1; u(n)] + WSCx(n) − (

WCh
in

[
1; u(n)] + WSCx ′(n)

) ‖2
= ∥

∥WSCx(n) − WSCx ′(n)
∥
∥
2≤ ∥

∥WSC
∥
∥
2

∥
∥x(n) − x ′(n)

∥
∥
2

(15)

when the maximum singular value of the weight matrix WSC within the reservoir is <1, the
states of the reservoir neurons tend to approach stability. Furthermore, the reservoir optimized
with a strongly connected topology retains the ESP.

4 Experimental Results and Evaluation

In this section, the prediction performance of the proposed Ch–SC–ESN is verified by pre-
dicting chaotic time series. The proposed Ch–SC–ESN is evaluated by using three tasks of
simulating chaotic time series, namely Mackey–Glass chaotic time series, discrete Lorenz
chaotic time series prediction [14] and Rossler chaotic time series prediction. The use of
two time series of real world problems, respectively, sunspots time series prediction [42] and
solar power generation sequence prediction tasks (open source download link: https://www.
Nrel.gov/grid/solar-power-data.html) to verify performance of the Ch–SC–ESN.

A comparative analysis of predictive performance has been conducted between Ch–SC–
ESN and several other models, including traditional ESN, grouped ESN (GESN) [43], deep
ESN (DESN) [44], and binary grey wolf algorithm-optimized ESN (BGW-ESN) [41]. Addi-
tionally, to assess the impact of Chebyshev mapping optimization on input weight matrices
and strongly connected topology optimization on model performance, Ch–SC–ESN was
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compared with two other models, namely Ch–ESN and SC–ESN. This comparison aimed to
further validate the effectiveness of Ch–SC–ESN.

To ensure experimental fairness, in this study, we standardized the spectral radius (R)
to 0.8 for all ESN models. Considering the positive correlation between reservoir size and
the prediction accuracy of ESNs, we paid particular attention to this factor. To mitigate the
impact of reservoir size on prediction performance, the reservoir size was set to 500 for the
other ESN prediction models. Furthermore, to meet the condition of generating a strongly
connected topology using digital chaotic systems, the reservoir size (N ) employed in the
Ch–SC–ESN model was set to 256, which is smaller compared to the reservoir size used in
the other ESN prediction models. All experiments were conducted on an Intel(R) Core(TM)
i7-8550U CPU @ 1.80GHz, using MATLAB R2021 as the software version.

Normalized mean square error (NMSE), mean absolute error (MAE) and mean absolute
percentage error (MAPE) are used to evaluate the prediction performance. In addition, IM%
is used to represent the performance improvement percentage of different models compared
with the traditional ESN. The following is the definition formula of several errors and IM%:

NMSE =
i∑

n=1

(o(n) − y(n))2

iσ 2 (16)

MAE =
i∑

n=1

|o(n) − y(n)|
i

(17)

MAPE = 1

i

i∑

n=1

∣
∣
∣
∣
o(n) − y(n)

y(n)

∣
∣
∣
∣ × 100% (18)

IM% = NMSEESN − NMSEModel

NMSEESN
× 100% (19)

where ytarget(n) is the target output, y(n) is the actual output, σ 2 represents the variance of
ytarget(n), i represents the length of the output, NMSEESN represents the normalized mean
square error of the traditional ESN, and NMSEModel is the normalized mean square error of
the model used for comparison.

4.1 Selection and Impact of Control Parameters

In this section, the selection of control parameter k is discussed using NMSE as an indicator
of validation error, and the minimum validation error obtained in the validation model is
selected as the parameter for the final test.

In traditional ESN, the element values of the input weight matrix are typically limited to
the range of −1 to 1, which can result in feature loss during the transmission of input signals
from the input layer to the reservoir. As outlined in Sects. 3.1 and 3.2, the control parameter k
has a considerable impact on the bifurcation diagram of the input weight matrix in Ch–ESN.
To determine the appropriate value of the control parameter k, theNMSE is calculated during
verification, as shown in Fig. 4. The value of k that yields the smallest verification error is
selected as the final value of k. Figure 4 illustrates the verification and test NMSE for various
time series tasks with different values of k.

Depending on the different ranges of k between 0 and 4, the Chebyshev mapping can
produce three different dynamic properties, which can be defined as three phases. Figure 5
illustrates the input weight values of the first 100 neurons for both the original ESN and
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Fig. 4 Verification NMSE and test NMSE under different time series tasks and different control parameters k

Ch–SC–ESN with different values of k in three phases. It confirms that input weight matrix
values within the control parameter range of k from 2 to 4 lead to chaotic behavior and exhibit
superior randomness compared to other values.

123



Time Series Prediction of ESN Based on Chebyshev Mapping and. . . Page 13 of 22 30

Fig. 5 When controlling different values of parameter k, input the weight value. a Random weight value; b
the control parameter k is within (0, 1); c the control parameter k is within (1, 2); d the value of the control
parameter k is within (2, 4)

4.2 Experiment onMackey–Glass Chaotic Time Series Task

Mackey–Glass chaotic time series [45] prediction is a typical problem to verify the ability of
ESN to process information. Mackey–Glass chaotic time series is generated by Eq. 20:

dx(t)

dt
= μx(t) + ξ x(t − τ)

1 + x10(t − τ)
(20)

The condition for Mackey–Glass time series to exhibit chaotic characteristics is τ > 16.8.
In order to make Mackey–Glass time series exhibit chaotic dynamic characteristics, each
parameter in the experiment is set as τ = 17, μ = −0.1, ξ = 0.2 and the initial value
x(0) = 1.2. The function dde23 inMatlab tool was used to solve Eq. 20 to generate Mackey–
Glass chaotic time series. Mackey–Glass chaotic time series was divided into initialization
sequence, training sequence and test sequence, the lengths of which were ini t Len = 100,
trainLen = 2000 and test Len = 1000 respectively.

As shown in Fig. 6b, the Ch–SC–ESN model excels in predicting the Mackey–Glass
chaotic time series, with significantly lower prediction errors compared to the ESN model.
This indicates a notable advantage of Ch–SC–ESN in addressing chaotic time series predic-
tion problems. In Table 1, we conducted a comprehensive comparison of Ch–SC–ESN with
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Fig. 6 Mackey–Glass chaotic time series prediction. a comparison of forecast results, b comparison of error

Table 1 Prediction performance ratios of Ch–SC–ESN and other predictionmodels forMackey–Glass chaotic
time series

ESN GESN DESN BGW–ESN Ch–ESN SC–ESN Ch–SC–ESN

NMSE 8.36e−04 9.75e−06 7.17e−06 5.79e−05 8.25e−05 3.04e−05 9.32e−07

MAE 0.0085 0.0021 0.0017 0.0046 0.0019 0.0068 1.89e-04

MAPE (%) 46.15 5.07 4.76 19.47 4.977 35.64 2.19

IM% – 98.83% 99.14% 93.07% 99.01% 63.64% 99.89%

Running time (s) 0.1997 0.2547 0.3659 0.1986 0.0827 0.0638 0.1195

other prediction models regarding their performance in predicting theMackey–Glass chaotic
time series. Through the comparison of these metrics, we gain a clearer understanding of
how different prediction models perform in predicting theMackey–Glass chaotic time series.
The results in Table 1 clearly demonstrate that Ch–SC–ESN outperforms other models in all
performance metrics. Specifically, its NMSE,MAE andMAPE values are significantly lower,
and the performance improvement metric IM% reaches 99.89%, indicating that Ch–SC–ESN
delivers more accurate prediction results.

4.3 Experiment on Lorenz Times Series Task

The Lorenz system is a classic benchmark function for time series prediction [44], and its
formula is as follows: ⎧

⎨

⎩

dx/dt = a1(y − x)
dy/dt = −xz + a2x − y
dz/dt = xy − a3z

(21)

among them, a1, a2 and a3 are system parameters. To ensure that the Lorenz system has
chaotic characteristics, the typical values of these system parameters are a1 = 10, a2 = 28,
a3 = 8/3. x(t), y(t) and z(t)is the three-dimensional space vector of the Lorenz system.
The fourth order Runge Kutta method is used to generate 10,000 sample datasets, and the x
dimension sample x(t) is used as a time series prediction. In the data sample set, the first 500
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Fig. 7 Lorenz chaotic time series prediction. a Comparison of forecast results, b comparison of error

Table 2 Prediction performance ratios of Ch–SC–ESN and other prediction models for Lorenz chaotic time
series

ESN GESN DESN BGW–ESN Ch–ESN SC–ESN Ch–SC–ESN

NMSE 0.00197 0.00156 0.00086 0.00194 0.00167 0.00143 0.00096

MAE 0.00367 0.00278 0.00166 0.00438 0.00315 0.00298 0.00207

MAPE (%) 25.96 19.69 6.77 24.36 22.43 18.66 8.99

IM% – 20.81% 56.35% 1.52% 15.23% 27.41% 51.27%

Running time (s) 0.1758 0.3554 0.4726 0.1635 0.0727 0.0536 0.1169

samples are used for initialization, the next 2500 are used for training, and the next 2000 are
used for testing, namely ini t Len = 500, trainLen = 2500 and test Len = 1000.

Figure 7a, b represent the comparison of prediction results and errors between Ch–SC–
ESN and ESN in forecasting the Lorenz chaotic time series. From these two figures, it is
evident that Ch–SC–ESN significantly outperforms ESN in predicting the Lorenz chaotic
time series. To further quantify the superior performance of Ch–SC–ESN compared to other
prediction models in forecasting the Lorenz chaotic time series, we have listed various eval-
uation metrics in Table 2 for comparing Ch–SC–ESN with other models. Upon analyzing
Table 2, it is apparent that the deep ESN (DESN) excels in predicting the Lorenz chaotic
time series, with a performance improvementmetric (IM%) reaching 56.36%. Ch–SC–ESN’s
prediction performance is close to that of DESN, with an IM% of 51.27%, surpassing other
prediction models and demonstrating outstanding performance.

4.4 Experiment on Rossler Times Series Task

The ordinary differential equation for Rossler time series is:
⎧
⎨

⎩

dx/dt = −z − y
dy/dt = x + ay
dz/dt = b + z(x − c)

(22)

when a = 0.15, b = 0.2 and c = 10, the Rossler system has chaotic characteristics.
The Runge Kutta method is used to generate discrete Rossler chaotic time series on the x
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Fig. 8 Rossler chaotic time series prediction. a comparison of forecast results, b comparison of error

dimension. Generate 10,000 x dimensional sample data x(t) for the prediction task of the
time series. In the data sample set, the first 500 samples are used for initialization, the next
2500 are used for training, and the next 2000 are used for testing, namely ini t Len = 500,
trainLen = 2500 and test Len = 2000.

By observing Fig. 8a, b, it is clearly evident that Ch–SC–ESN exhibits a significant advan-
tage overESN in predicting theRossler chaotic time series,with significantly lower prediction
errors. To provide a clearer comparison of the performance of Ch–SC–ESN against other
models in forecasting the Rossler chaotic time series, we have presented various predic-
tive performance evaluation metrics in Table 3. An analysis of the performance indicators
in Table 3 reveals that Ch–SC–ESN has the lowest NMSE, MAE and MAPE values, and it
achieves a performance improvement metric (IM%) of 59.23%. As a result, Ch–SC–ESN
demonstrates superior performance in predicting the Rossler chaotic time series.

4.5 Experiment on Sunspot Number Times Series Task

Sunspots are a crucial characteristic of solar activity that have a significant impact on Earth.
Accurately modeling sunspots is crucial for predicting solar activity. However, due to the
complexity of solar activity and the lack of appropriate mathematical and statistical models,
predicting sunspot time series is a challenging task. In this study,weused sunspot sequences to
evaluate the predictive ability ofCh–SC–ESNfor real-world time series problems.Thedataset

Table 3 Prediction performance ratios of Ch–SC–ESN and other prediction models for Rossler chaotic time
series

ESN GESN DESN BGW–ESN Ch–ESN SC–ESN Ch–SC–ESN

NMSE 0.0596 0.0473 0.0247 0.0376 0.0297 0.0386 0.0243

MAE 0.0468 0.0320 0.0267 0.0355 0.0335 0.0427 0.0269

MAPE (%) 6.96 5.68 3.52 4.79 3.98 5.13 3.49

IM% – 20.64% 58.56% 36.91% 50.16% 35.23% 59.23%

Running time (s) 0.2672 0.3421 0.5869 0.2245 0.1146 0.0929 0.1419
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Fig. 9 sunspot number time series prediction. a Comparison of forecast results, b comparison of error

used in this study consisted of the average monthly sunspot count from June 1759 to April
2021, with a length of 3142. Specifically, the first 200 samples were used for initialization,
the next 2000 samples were used for training, and the subsequent 800 samples were used for
testing purposes, namely ini t Len = 200, trainLen = 2000 and test Len = 800.

By observing Fig. 9a, b, it is clearly evident that Ch–SC–ESN exhibits a significant differ-
ence in predicting solar sunspot sequences compared to ESN, withmarkedly lower prediction
errors. To provide a more intuitive comparison of the performance of Ch–SC–ESN against
other models in predicting solar sunspot sequences, we have presented various predictive per-
formance evaluation metrics in Table 4. An analysis of the predictive performance evaluation
metrics in Table 4 reveals that Ch–SC–ESN has the lowest NMSE, MAE and MAPE values,
and it achieves a higher performance improvement metric (IM%) compared to other pre-
dictive models. Therefore, Ch–SC–ESN outperforms other predictive models in forecasting
solar sunspot sequences.

4.6 Experiment on Solar power Generation Times Series Task

The experimental dataset used for prediction is the solar power generation capacity in New
York in 2021, with data recorded every 5min. A total of 10,000 data samples were selected
from the New York Power Plant, with the first 500 samples used for initialization, the next
6000 samples used as training data, and the final 1000 samples used for testing. By analyzing

Table 4 Prediction performance ratios of Ch–SC–ESN and other prediction models for sunspot number time
series

ESN GESN DESN BGW–ESN Ch–ESN SC–ESN Ch–SC–ESN

NMSE 0.01569 0.1325 0.1525 0.1403 0.1428 0.1367 0.1208

MAE 0.0945 0.0843 0.0938 0.0890 0.0915 0.0863 0.0765

MAPE (%) 71.68 53.18 70.66 70.02 68.55 57.49 42.36

IM% – 15.55% 2.81% 10.58% 8.99% 12.87% 23.01%

Running time (s) 0.3625 0.4876 0.5866 0.3027 0.1926 0.1857 0.2216

123



30 Page 18 of 22 M. Xie et al.

Fig. 10 Solar power generation time series prediction. aComparison of forecast results, b comparison of error

Table 5 Prediction performance ratios of Ch–SC–ESN and other predictionmodels for solar power generation
time series

ESN GESN DESN BGW–ESN Ch–ESN SC–ESN Ch–SC–ESN

NMSE 0.0237 0.0119 0.0189 0.0161 0.0176 0.0202 0.0124

MAE 0.0386 0.0260 0.0390 0.0313 0.0356 0.0364 0.0289

MAPE (%) 25.96 11.60 13.23 15.88 15.33 21.67 12.68

IM% – 49.37% 20.25% 32.07% 25.74% 14.77% 47.68%

Running time (s) 0.4657 0.5755 0.6979 0.3657 0.2897 0.2465 0.3122

Fig. 10a, b, it is evident that Ch–SC–ESN exhibits significant improvement in forecasting
solar power generation time series compared to ESN, with significantly lower prediction
errors. To provide a clearer illustration of the performance comparison between Ch–SC–ESN
and other models in forecasting solar power generation time series, we have detailed various
predictive performance evaluation metrics in Table 5. In-depth analysis of the predictive
performance evaluation metrics in Table 5 reveals that grouped ESN (GESN) performs best
in forecasting solar power generation time series, achieving a performance improvement
metric (IM%) of 49.37%. Ch–SC–ESN’s predictive performance is close to that of GESN,
with an IM% of 47.68%, and it continues to excel among the various models, significantly
surpassing other predictive models.

4.7 Complexity Analysis

The complexity of ESN primarily manifests in the complexity of the reservoir network
structure, predictive performance, and generalization capability. In the following sections,
the complexity of Ch–SC–ESN will be analyzed from these two aspects.

(1) Reservoir Network Structure Complexity
Ch–SC–ESN significantly simplifies the structure of the reservoir network compared to

traditional ESNs. Figure 11 illustrates the visualization of the reservoir for both ESN and
Ch–SC–ESN, where each point represents a connection between the x th neuron and the yth
neuron. In traditional ESNs, the internal connectionmatrixW within the reservoir is randomly
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Fig. 11 The visualization of the reservoir. a ESN, b Ch–SC–ESN

generated, as shown in Fig. 11a. However, in Ch–SC–ESN, the internal connection matrix
of the reservoir is obtained by multiplying a strongly connected adjacency matrix with a
random matrix. After this optimization, the neuronal connections within the reservoir are
depicted in Fig. 11b. Figure 11 clearly demonstrates that, compared to traditional ESNs,
Ch–SC–ESN exhibits a sparser arrangement of neurons within the reservoir, resulting in a
noticeable reduction in the complexity of the network structure.

(2) Predictive Performance and Generalization Capability
The predictive performance and generalization capability of ESNs are linked to the net-

work’s complexity in various time-series tasks.Amore complex networkmay exhibit superior
predictive performance in certain time-series tasks but may have limited generalization capa-
bility, leading to decreased predictive performance in other time-series tasks. Ch–SC–ESN
utilizes Chebyshev mapping iteratively to generate input weight matrices and employs dif-
ferent control parameters k tailored to specific time series tasks. This adaptability allows
Ch–SC–ESN to excel in various time series tasks, demonstrating high generalization capa-
bility. Simultaneously, through the analysis of predictive results acrossfivedistinct time-series
tasks, Ch–SC–ESN demonstrates superior predictive performance in most time-series tasks
compared to traditional ESNs. It closely competes with the best-performing models in pre-
dicting the Rossler time series and solar power generation time series tasks. Therefore,
Ch–SC–ESN not only exhibits outstanding predictive performance but also possesses a high
degree of generalization capability.

By analyzing the complexity of Ch–SC–ESN, it can be inferred that, relative to traditional
ESNs, Ch–SC–ESN has a lower complexity in terms of its reservoir network structure. Fur-
thermore, it demonstrates significant advantages in predictive performance and generalization
capability.
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4.8 Discussion

The experimental results presented in Sects. 4.1–4.5 demonstrate that the proposed Ch–
SC–ESN achieves improved prediction performance while reducing model complexity and
reservoir size. In comparison to other classical prediction models, Ch–SC–ESN performs
better than most models in various time series prediction tasks, with the exception of the
Rossler time series prediction and solar power generation time series prediction tasks, where
its performance is comparable to the best-performing models.

Chebyshev mapping can generate three different dynamic characteristics based on the
control parameter k within the range of 0–4, which can be defined as three phases and
illustrated in Figs. 2 and 5. Results from Figs. 4 and 5 indicate that Ch–SC–ESNwith chaotic
inputweights generally outperforms the traditional ESN inmost cases.Additionally, as shown
in Fig. 11 Ch–SC–ESN can effectively reduce the size of the reservoir and model complexity
while improving prediction performance compared to traditional ESN.

5 Conclusion

In this paper, an input weight matrix AM×M is generated using Chebyshev mapping for opti-
mizing the one generated by traditional ESN, and a strong connected adjacency matrix Win

is also introduced for replacing in the internal connection matrix W . These two optimiza-
tion steps ensure that the topological structure of the reservoir possesses strong connectivity
characteristics. Building upon these enhancements, predictions were conducted on three
simulated chaotic time series and two real-world time series. Experimental results demon-
strate that the proposed Ch–SC–ESNmodel outperforms other prediction models in terms of
predictive accuracy, exhibits strong generalization capabilities, and displays excellent adapt-
ability across various time series prediction tasks. The Ch–SC–ESN model may not perform
optimally in predicting certain datasets, such as the Lorenz chaotic time series and the solar
power generation time series. Further optimization is required to tailor the model for these
specific sequences.
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