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Abstract
Image anomaly detection and localization perform not only image-level anomaly classifica-
tion but also locate pixel-level anomaly regions. Recently, it has received much research
attention due to its wide application in various fields. This paper proposes ProtoAD, a
prototype-based neural network for image anomaly detection and localization. First, the patch
features of normal images are extracted by a deep network pre-trained on nature images. Then,
the prototypes of the normal patch features are learned by non-parametric clustering. Finally,
we construct an image anomaly localization network (ProtoAD) by appending the feature
extraction network with L2 feature normalization, a 1 × 1 convolutional layer, a channel
max-pooling, and a subtraction operation. We use the prototypes as the kernels of the 1× 1
convolutional layer; therefore, our neural network does not need a training phase and can con-
duct anomaly detection and localization in an end-to-end manner. Extensive experiments on
two challenging industrial anomaly detection datasets, MVTec AD and BTAD, demonstrate
that ProtoAD achieves competitive performance compared to the state-of-the-art methods
with a higher inference speed. The code and pre-trained models are publicly available at
https://github.com/98chao/ProtoAD.

Keywords Image anomaly detection · Image anomaly localization · Non-parametric
clustering · Prototype-based network

1 Introduction

Anomaly detection (AD) [1, 2] aims to detect anomalous samples that are deviated from a set
of normal samples predefined during training. Traditional image anomaly detection adopts
a semantic AD setting [3–6], where anomaly samples are from unknown semantic classes
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Fig. 1 Examples from theMVTec benchmark datasets. From top to bottom: anomaly samples, anomaly mask,
and anomaly score maps predicted by our method

different from the one normal samples belong to. Recently, detecting and localizing subtle
image anomalies has become an important task in computer vision with various applications,
such as anomaly or defect detection in industrial optical inspection [7, 8], anomaly detection
and localization in video surveillance [9–11], or anomaly detection in medical images [12,
13]. In this setting, anomaly detection determines whether an image contains any anomaly,
and anomaly localization, aka anomaly segmentation, localizes the anomalies at the pixel
level. This paper focuses on the second setting, especially industrial anomaly detection and
localization. Some examples from the MVTec AD dataset [8] along with predictions by our
method are shown in Fig. 1.

In the above applications, anomalous samples are scarce and hard to collect. Therefore,
image anomaly detection and localization are often solvedwith only normal samples. In addi-
tion, anomalous regions within images are often subtle (see Fig. 1), making image anomaly
localization a more challenging task that has not been thoroughly studied compared to image
anomaly detection. Recent anomaly localizationmethods can be roughly categorized into two
classes: reconstruction-based methods and OOD-based (out-of-distribution based) methods.

Reconstruction-based methods are mainly based on the assumption that a model trained
only on normal images can not reconstruct anomalous images accurately. They reconstruct
image as a whole [8, 12, 14–21], or reconstruct in the feature space [22–24]. Then anomaly
detection and localization can be performed by measuring the difference between the recon-
structed and original ones. This kind of method always needs cumbersome network training.

OOD-based methods evaluate the degree of abnormality for a patch feature by measuring
its deviation from a set of normal patch features, which is intrinsically a patch-wise OOD
detecting task. Some methods such as PatchSVDD [25] and CutPaste [26] learn feature rep-
resentation by self-supervised learning. On the contrary, some other methods [27–30] simply
extract features bydeepnetworks pre-trainedonnatural imagedatasets such as ImageNet [31],
and achieve promising and even better performances. Since the number of training patches is
much larger than that of training images, the inference time and storage increase remarkably.
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Different strategies have been proposed to tackle this problem. Napoletano et al. [27] used k-
means to learn the dictionary/prototypes for normal patch features, but they evaluated each test
patch independently, resulting in high inference time. SPADE [28] selects k-nearest normal
images for patch-wise evaluation based on the global image features, limiting anomaly local-
ization performance. PaDiM[29]models the normal patches at eachposition by amultidimen-
sional Gaussian distribution andmeasures the anomaly by theMahalanobis distance between
a test patch feature and the Gaussian at the same position. However, both SPADE [28] and
PaDiM [29] are reliant on image alignment. The current state-of-the-art method, PatchCore
[30], uses greedy coreset subsampling to reduce the inference time and storage significantly.

This paper proposes ProtoAD, a prototype-based neural network for image anomaly detec-
tion and localization, to improve OOD-based methods’ inference speed. We assume that all
normal patch features can be grouped into some prototypes, and abnormal patch features
cannot be properly assigned to any of them. Therefore, image anomaly localization can be
performed by measuring the deviation of test patch features from the prototypes of normal
patch features. First, the patch features of normal images are extracted by a deep network
pre-trained on nature images and are L2-normalized. Then the prototypes of the normalized
normal patch features are learned by a non-parametric clustering algorithm. The cosine sim-
ilarity between two L2-normalized vectors is equivalent to the dot product between them.
Therefore the cosine similarity between a normalized patch feature and a prototype can be
implemented by a 1 × 1 convolution. Based on this equivalence, we construct an image
anomaly localization network (ProtoAD) by appending the feature extraction network with
the L2 feature normalization, a 1 × 1 convolutional layer, a channel max-pooling, and a
subtraction operation. We use the prototypes as the kernels of the 1× 1 convolutional layer;
therefore, our neural network does not need a training phase. Compared with previous OOD-
based methods [27–30], ProtoAD can perform the anomaly detection and localization in an
end-to-end manner, which is more elegant and efficient. Extensive experiments on two chal-
lenging industrial anomaly detection datasets, MVTec AD [8] and BTAD [32], demonstrate
that ProtoAD achieves competitive performance compared to the state-of-the-art methods
with a higher inference speed. This advantage of ProtoAD makes it better match the needs
of real-world industrial applications.

2 RelatedWorks

2.1 Image Anomaly Localization

Anomaly detection is an image-level task to determine whether an image contains any
anomaly. On the other hand, anomaly localization is more complex to locate anomalies
at the pixel level. Here, we only introduce the methods that can be directly applied to image
anomaly localization and roughly categorize current methods into two types: reconstruction-
based and OOD-based.

Reconstruction-based methods are mainly based on the assumption that a model trained
only on normal images can not reconstruct anomalous images accurately, and anomaly detec-
tion and localization can be performed bymeasuring the difference between the reconstructed
and original images. Early reconstruction-basedmethods [8, 12, 14, 15, 17] reconstruct image
by auto-encoders (AE), variational autoencoders (VAE) or generative adversarial networks
(GAN).However, the neural networks have high generalization capacities and can reconstruct
anomalies well. Later, different strategies have been proposed to tackle this problem. Differ-
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ent memory-based auto-encoders [16, 18, 20] have been proposed to reconstruct images with
features from memory bank to limit the generalization ability. Student-teacher models [22,
23] have been used to reconstruct pre-trained deep features. RIAD [19] randomly removes
partial image regions and reconstructs the image by image in-painting. Glance [24] trains a
Global-Net to regress the deep features of cropped patches based on their context. DRAEM
[21] combines a reconstructive sub-network and a discriminative network and trains them in
an end-to-end manner on synthetically generated just-out-of-distribution images.

OOD-based methods evaluate the degree of abnormality for a patch feature by measuring
its deviation from a set of normal patch features, which is intrinsically a patch-wise OOD
detecting task. Some methods such as PatchSVDD [25] and CutPaste [26] learn feature rep-
resentation by self-supervised learning. On the contrary, some other methods [27–30] simply
extract features by deep networks pre-trained on natural image datasets such as ImageNet
[31], and achieve promising and even better performances. Since the number of training
patches is much larger than that of training images, the inference time and storage increase
remarkably. Different strategies such as clustering, density estimation, and sampling have
been proposed to tackle this problem. Napoletano et al. [27] learned a dictionary of nor-
mal patches from the training set by k-means, and evaluated each patch of a test image by
measuring its visual similarity with the k-nearest neighbors in the dictionary. SPADE [28]
compares patch features of a test image with the patch features at the same position of k-
nearest normal images selected based on global image features. However, this oversimplified
pre-selection strategy will limit the localization performance. PaDiM [29] models the normal
patches at each position by a multidimensional Gaussian distribution and detect anomaly by
the Mahalanobis distance between a test patch feature and the Gaussian at the same position.
Both SPADE [28] and PaDiM [29] are reliant on image alignment. Recently, PatchCore [30]
constructs the memory bank of locally aware patch features by greedy coreset subsampling,
and localizes anomaly by measuring the distances of test patch features to their nearest nor-
mal patch features in the bank. As a result, PatchCore achieves a new state-of-the-art and
significantly reduces the inference time and storage.

Our method is also an OOD-based method with pre-trained deep features but has several
differences from the previousworks. Ourmethod uses non-parametric clustering instead of k-
means in [27] to learn the prototypes for normal patch features.More importantly, ourmethod
can perform anomaly detection and localization by a network in an end-to-endmanner, which
is more elegant and efficient than the previous methods. Compared to reconstruction-based
methods, our network do not need a cumbersome network training phase.

2.2 Clustering Algorithms

Clustering is a type of unsupervised learning task of dividing a set of unlabeled data points
into a number of groups such that the data points in the same groups are more similar to each
other than they are to the data points in other groups. Clustering provides an abstraction from
data points to the clusters, and each cluster can be characterized by a cluster prototype, such
as the centroid of a cluster, for further analysis. Clustering algorithms can be roughly divided
into four categories: Partition-based cluster, Density-based clustering, Spectral Clustering,
and Hierarchical-based clustering.

Partition-based clustering algorithms divide the data into k groups, where k is the pre-
defined number of cluster. The classical algorithms are k–means [33] and its variations.
Although these algorithms are very fast, they need the number of clusters as a parameter and
are sensitive to the selection of the initial k centroids.
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Fig. 2 An overview of the proposed method. First, the patch features of normal images are extracted by a
deep network pre-trained on nature images. Then, the prototypes of the normal patch features are learned
by FINCH clustering. For inference, an image anomaly localization network (ProtoAD) is constructed by
appending the feature extraction network with the L2 feature normalization, a 1 × 1 convolutional layer,
a channel max-pooling (CMP), and a subtraction operation, and anomaly localization is performed in an
end-to-end manner

Density-based clustering defines a cluster as the largest set of densely connected points
and can find clusters of arbitrary shapes. DBSCAN [34] is the most representative algorithm
of this class. It has two parameters, radius length ε and a parameter MinPts. If there are
MinPts points in the radius of ε of a point, it is regarded as a high-density point.

Spectral Clustering [35] has recently attracted much attention. Most spectral clustering
algorithms need to compute the full similarity graph Laplacian matrix and have quadratic
complexities, thus severely restricting their application to large data sets.

Hierarchical clustering [36] is of two types: bottom-up and top-down approaches. In the
bottom-up approach (aka agglomerative clustering), each data point starts as a cluster, and the
most similar cluster pairs are iteratively merged according to the chosen similarity measure
until some stopping criteria are met. In the top-down approach (aka divisive clustering), the
clustering begins with a large cluster including all data and recursively breaks down into
smaller clusters. Hierarchical clustering produces a clustering tree that provides meaningful
ways to interpret data at different levels of granularity. Recently, Sarfraz et al. [37] pro-
posed FINCH, a high-speed, scalable, and fully parameter-free hierarchical agglomerative
clustering algorithm.

In [27], k-means is used to learn the prototypes from normal patch features. To avoid
choosing the number of clusters ahead, we adopt FINCH to learn the prototypes for normal
patch features.

3 Method

Our method consists of three steps: patch feature extraction, prototype learning, and anomaly
detection and localization. An overview of our method is given in Figure. 2. We describe
them sequentially in the following subsection.
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3.1 Patch Feature Extraction

Since the features extracted bypre-trainednetworks have shown their effectiveness for various
visual applications including anomaly detection [22, 23, 27–30], we also adopt deep networks
pre-trained on ImageNet dataset [31] as the feature extractor, and choose the backbone of
Wide-ResNet [38] as the feature extractor following the previous works [28–30].

ResNet-like deep networks [38, 39] include several convolutional stages. The features
become more abstract when the stage goes deeper, but their resolution gets lower. Thus, the
feature maps from different stages form a feature hierarchy for an input image. Each spatial
position of a feature map has a receptive field and corresponds to a patch/region in an input
image; therefore, the feature vector at a spatial position of feature maps can be considered as
a feature representation for the corresponding image patch. If the feature maps of a stage have
a resolution of H ×W , they contains H ×W patch features. The deep and abstract features
from the ImageNet pre-trained networks are biased towards the ImageNet classification task
and are less relevant to the anomaly detection and localization task. Therefore, we adopt
the low- and mid-level (stage 1–3) feature representations and combine them as the patch
features. Concretely, the feature maps at the higher-level are bilinearly re-scaled to have the
same resolution as the lowest level, then the feature maps at different levels are concatenated
together for handling multi-scale anomalies. The extracted features are then L2-normalized
where each feature vector is divided by its L2 norm.

3.2 Prototype Learning

After feature extraction, the prototypes of the L2-normalized patch features are learned by
a clustering algorithm. Then, the prototypes are used in anomaly detection and localization
instead of all the normal patch features to reduce the inference time and storage. There are
mainly two concerns in choosing a clustering algorithm. First, the number of patch features is
much larger than that of training images. For example, each category of MVTec AD dataset
has several hundreds of images, while it has several hundreds of thousands of patch features
in our implementation. Therefore, the clustering algorithm should be efficient and scalable to
large-scale data. Second, most clustering algorithms have some parameters, e.g., the number
of clusters or distance thresholds, which can not be well set without a priori knowledge of
the data distribution. Thus, these algorithms demand a tedious parameter tuning process to
achieve good performance. To meet the requirements of real applications, we adopt FINCH
[37], a high-speed, scalable, and fully parameter-free hierarchical agglomerative clustering
algorithm.

The core idea of FINCH is to use the nearest neighbor information of each data point
for clustering, which does not need to specify any parameters and has a low computational
overhead. Given the integer indices of the first neighbor of each data point, an adjacency
matrix is defined according to the following rules:

A(i, j) =
{
1, if j = κ1

i or κ1
j = i or κ1

i = κ1
j

0,otherwise
(1)

where κ1
i symbolizes the first neighbor of data point i . This sparse adjacency matrix specifies

a graph where connected data points form clusters. It directly provides clusters without
solving a graph segmentation problem. After computing the first partition, FINCH merges
the clusters recursively by using cluster means to compute the first neighbor of each cluster
until all data points are included in a single cluster or until some stopping criteria is met. In
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this work, we define the stopping criteria as the number of cluster is less than a threshold
and set the threshold to 10,000 to get good results in our experiments. We choose the last
partition as the clustering result, and use the mean vectors of clusters as the prototypes of
normal patch features.

When the features are L2-normalized (making the length of a vector to 1), cosine similarity
and Euclidean distance between the normalized features are equivalent in the sense of nearest
neighbor searching:

1

2
L2(xa, xb)2 = 1

2
(xa − xb) · (xa − xb) = 1− xa · xb = 1− cos (xa, xb) (2)

where L2() is Euclidean distance, xa and xb are two L2-normalized feature vectors, and
cos is cosine similarity. Therefore, we use cosine similarity for clustering and measuring the
deviation of test patch features from norm patch features in the next subsection.

3.3 Neural Network for Anomaly Detection and Localization

When a test image passes through the feature extraction network, H×W patch features have
been extracted. The anomaly score of each patch feature can be computed by measuring its
deviation from the prototypes of normal patch features. We compute the anomaly score of
a test patch as one minus the cosine similarity between the normalized test patch feature
and its nearest prototype. Formally, the anomaly score for the patch at position (i, j) can be
calculated as

si j = 1− max
1�k�K

cos (xi j ,mk) (3)

where xi j is the normalized patch feature at position (i, j),mk is the k-th prototype, and cos
is cosine similarity. In addition, the image-level anomaly score for a test image can be simply
computed by maximizing the anomaly scores of all its patch features.

S = max
1�i�H ,1� j�W

si j (4)

The cosine similarities between a normalized patch feature and a prototype can be com-
puted by a 1 × 1 convolution (dot product) between them. Based on this equivalence, we
construct a neural network (ProtoAD) for anomaly detection and localization. First, the L2
feature normalization and a 1× 1 convolutional layer are appended to the feature extraction
network, and outputs feature maps of size H × W × K , including the cosine similarities
between the H × W normalized patch features and all K prototypes. Then, channel max-
pooling (CMP) is applied to the featuremaps to get the normal scoremap of H×W , including
the cosine similarities between the H ×W normalized patch features and their nearest proto-
types. The anomaly score map can be further obtained by computing one minus the normal
score map. This process is illustrated by Fig. 3. Since the spatial resolution of feature maps
is lower than that of an input image, we resize the anomaly score map to the resolution of
the input image and use a Gaussian filter to smooth it. Finally, anomaly localization can be
achieved by thresholding the anomaly score map, and the anomaly score for the test image
can be obtained by maximizing the anomaly score map.

We use the prototypes of normal patch features as the kernels of the 1× 1 convolutional
layer. Therefore the proposed neural network does not need a training phase. Compared to
previous works [27–30], our method can perform the anomaly detection and localization in
an end-to-end manner, which is more elegant and efficient.
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Fig. 3 Anomaly detection and localization process of ProtoAD

4 Experiments

4.1 Datasets andMetrics

4.1.1 Dataset

MVTec AD dataset [8] is a real-world industrial defect detection dataset which has become a
standard benchmark for evaluating image anomaly detection and localization methods. It has
5354 high-resolution images belonging to 10 objects and 5 texture categories. The images
of each category are split into a training and a testing set. Totally, the training set has 3629
normal images, and the test set has 1725 normal and abnormal images of various defects. The
ground truth of the test set contains anomaly labels for image-level evaluation and anomaly
masks for pixel-level evaluation.

BTAD (BeanTech Anomaly Detection dataset) is a real-world industrial dataset recently
released by [32]. It contains a total of 2830 real-world images of 3 industrial products. The
images of each category are split into a defect-free training set and a testing set, supporting
evaluation of both anomaly detection and localization.

We follow the split of the two datasets for training and testing.

4.1.2 Evaluation Metrics

AUROC (Area Under the Receiver Operating Characteristic curve) is the most commonly
used metric for anomaly detection, which is independent of the threshold. We use image-
level AUROC for evaluating the performance of anomaly detection, pixel-level AUROC for
anomaly localization. Since the pixel-level AUROC is biased in favor of large anomalies,
we also use PRO-score (per-region-overlap) [22] to evaluate anomaly localization, which
weights ground-truth regions of different sizes equally.

4.2 Experimental Setup

We normalize the size of images from all categories of MVTec AD and BTAD dataset to
256× 256, center crop images to 224× 224, and do not apply any data augmentation. The
backbone of Wide-ResNet50 pre-trained on ImageNet is employed as the feature extractor
in our method as in [28–30]. We define the stopping criteria for FINCH clustering algorithm
as the number of clusters is less than 10,000 and choose the last generated partition as the
clustering result. For inference, we up-sample the anomaly score map to image size using
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bilinear interpolation and smooth it with the Gaussian filter with parameter δ = 4 as in [29].
We implemented our models in Python 3.7 [40] and PyTorch [41], and run experiments on
NVIDIA GeForce RTX 2080 Ti.

4.3 Results onMVTec AD

4.3.1 Comparison with the State-of-the-art

We compare ProtoADwith the state-of-the-art methods including both the reconstruction and
OOD-based methods. The compared reconstruction-based methods include Uninformed stu-
dents (U-Student) [22], RIAD [19], MKD [23], Glance [24], DAAD [20] and DREAM [21].
And the compared OOD-based methods include SPADE [28], PatchSVDD (P-SVDD) [25],
CutPaste [26], PaDiM [29], and PatchCore (P-Core) [30]. We directly use their evaluation
results if they have been provided.

We report the evaluation results (pixel-level AUROC and PRO-score) for pixel-level
anomaly localization on MVTec AD dataset in Tables 1 and 2 respectively. From table
1, we can see that the OOD-based methods generally achieve better pixel-level AUROC
than the reconstruct-based methods. Among the OOD-based methods, the methods using the
pre-trained deep features achieve better pixel-level AUROC than the methods based on self-
supervised learning. PatchCore achieves the best pixel-level AUROC, PaDiM the second, and
the reconstruct-based method DREAM the third. The pixel-level AUROC of our method is
very close to those of PaDiM and DREAM.We also notice that our method is more effective
on the texture category and achieves the second best AUROC. Table 2 gives the PRO-score
results for methods which have used this metric. Among them, Glance achieves the best
result, our method is the second best and outperform other OOD-based methods. After all,
our method achieves competitive anomaly localization performance to the state-of-the-art
methods.

Figure4 gives qualitative anomaly localization results of our method on MVTec AD
dataset. We can see that our method can give accurate pixel-level localization regardless of
anomaly region size and type (see supplementary for more qualitative results).

We also report the image-levelAUROCresults for anomaly detection inTable 3. PatchCore
achieves the best AUROC again, DREAM the second. Our method remains competitive and
achieves the third-best AUROC, which is very close to that of DREAM.

4.3.2 Inference Efficiency

Anomaly detection and localization algorithms need high precision and inference speed to
match the requirements of real-world applications. Thus, we also report the inference speed of
our method and previous OOD-based methods using pre-trained deep features [28–30] in the
table 4. In the experiments, all the methods adopt Wide-ResNet50 pre-trained on ImageNet
as the feature extractor, center-cropped 224 × 224 image as input, and run on the same
machine with a NVIDIA GeForce RTX 2080 Ti. For PatchCore, we use the implementation
provided by the authors, which downsamples the normal patch features via greedy coreset
subsampling (PatchCore-x% denotes the percentage x of normal patch features are used in
inference) and uses faiss [42] for nearest neighbor retrieval and distance computations. For
PaDiM, we make extensive optimization via GPU acceleration. Compared with the previous
methods, our model achieves the highest speed, which is 1.2x, 2.7x, and 9.5x faster than
PaDiM, PatchCore, and SPADE, respectively. The high inference speed is mainly because
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Table 2 Anomaly localization performance on MVTec AD (PRO-score)

Category Reconstruction-based OOD-based

U-Student Glance SPADE PaDiM P-Core ProtoAD

Carpet 87.9 97.7 94.7 96.2 96.6 97.0

Grid 95.2 93.2 86.7 94.6 96.0 93.9

Leather 94.5 90.9 97.2 97.8 98.9 98.1

Tile 94.6 88.3 75.6 86.0 87.3 87.2

Wood 91.1 94.1 87.4 91.1 89.4 93.2

Texture 92.7 92.8 88.3 93.1 93.6 93.9

Bottle 93.1 96.8 95.5 94.8 96.2 95.8

Cable 81.8 98.0 90.9 88.8 92.5 93.8

Capsule 96.8 96.0 93.7 93.5 95.5 93.7

Hazelnut 96.5 96.2 95.4 92.6 93.8 95.3

Metal Nut 94.2 96.7 94.4 85.6 91.4 94.2

Pill 96.1 97.8 94.6 92.7 93.2 94.7

Screw 94.2 100 96.0 94.4 97.9 94.7

Toothbrush 93.3 96.1 93.5 93.0 91.5 91.2

Transistor 66.6 99.9 87.4 84.5 83.7 87.9

Zipper 95.1 99.2 92.6 95.9 97.1 93.3

Object 90.8 97.7 93.4 91.6 93.3 93.4

All 91.4 96.1 91.7 92.1 93.4 93.6

The best results of the two classes of methods are bold-faced respectively

Fig. 4 Qualitative anomaly localization results of our method. From top to bottom: abnormal images, ground-
truth, and anomaly score maps produced by our method

our model performs inference in an end-to-end manner, and the main computation added to
the feature extraction network is the 1× 1 convolutional layer. Compared to the reconstruct-
based methods, our method does not need a cumbersome network training process.

4.4 Ablation Study

We report ablations studies on the MVTec AD dataset to evaluate the impact of different
components of our method on the performance.
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Table 4 Comparison of inference speed. Scores includes image-level AUROC, pixel-level AUROC, and PRO-
score

Method Scores Inference Speed (FPS)

SPADE (85.5, 96.0, 91.7) 7.58

PatchCore(25%) (99.1, 98.1, 93.4) 22.30

PatchCore(10%) (99.0, 98.1, 93.5) 24.45

PatchCore(1%) (99.0, 98.0, 93.1) 26.17

PaDiM (95.3, 97.5, 92.1) 60.32

ProtoAD (97.7, 97.2, 93.6) 72.45

The best results are bold-faced

Table 5 Anomaly detection and
localization performance of
ProtoAD with features at
different levels. Each tuple shows
image-level AUROC and
pixel-level AUROC

Feature Level Texture Object All

Level 1 (96.2, 96.6) (85.5, 92.7) (89.0, 94.0)

Level 2 (97.9, 97.3) (97.2, 95.5) (97.4, 96.1)

Level 3 (98.0, 96.7) (95.7, 96.0) (96.5, 96.2)

Level 2+3 (97.9, 97.3) (96.8, 96.9) (97.1, 96.9)

Level 1+2+3 (98.3, 97.5) (97.4, 97.1) (97.7, 97.2)

4.4.1 Feature Layer Selection

ResNet-like deep networks [38, 39] include several convolutional stages. The feature maps
from different stages can compose a feature hierarchy for an image. Since the deepest feature
maps in the hierarchy are biased towards the ImageNet classification task, we only adopt
the features at the low and middle hierarchy levels (stage 1–3) for anomaly detection and
localization. Table 5 gives the performance achieved with the features from different levels
and their combination. It can be observed that the features from hierarchy level 2 can achieve
the best performance among the first three levels, and a combination of the three levels can
further improve the performance. Therefore, our method uses the combination of the first
three feature levels as the patch feature.

4.4.2 Partition Selection from Clustering Hierarchy

FINCH is a hierarchical agglomerative clustering algorithm. It recursively merges clusters
from the bottom up and provides a set of partitions in a hierarchical structure. Each successive
partition is a super-set of its preceding partitions, and the number of clusters in it is smaller
than those in the preceding partitions. Thus, we need select a partition from the clustering
hierarchy as the clustering result.

We report the performance of our methodwith different partitions, from the second (P2) to
the 6-th (P6) partition of FINCH, in Table 6 (see Table 1 in supplementary for more detailed
results). We do not include the first partition because it has a huge number of clusters. The
results in Table 6 indicate the average performance decreases alongwith themerging process.
This may be because, when the number of clusters gets smaller, clusters are less compact and
unsuitable for anomaly detection. On the other hand, if the number of clusters is too large,
there are too many prototypes, and the inference time and storage would increase rapidly. We
also give the “Best” performance, which FINCH can achieve by selecting the best partition
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Table 6 Anomaly detection and localization performance of ProtoAD with different FINCH partitions. Each
tuple shows image-level AUROC, pixel-level AUROC, and average cluster numbers

Partition Texture Object All

P2 (98.9, 97.7, 48132) (98.2, 97.2, 92904) (98.5, 97.3, 77980)

P3 (98.5, 97.6, 7802) (97.8, 97.3, 20616) (98.0, 97.4, 16345)

P4 (98.4, 97.4, 1166) (97.4, 97.1, 3397) (97.7, 97.2, 2653)

P5 (98.1, 97.1, 234) (95.2, 96.6, 902) (96.1, 96.8, 679)

P6 (95.8, 96.4, 56) (92.2, 95.9, 190) (93.4, 96.1, 146)

Best (99.0, 97.7, 17559) (98.2, 97.2, 52844) (98.5, 97.4, 41083)

Ours (98.3, 97.5, 1787) (97.4, 97.1, 4626) (97.7, 97.2, 3680)

Table 7 Anomaly detection and
localization performance of
ProtoAD with different clustering
methods. Each tuple shows
image-Level AUROC and
pixel-level AUROC

Category K-Means K-Means FINCH
(L2) (Norm L2) (Coisne)

Texture (95.0, 95.3) (97.2, 96.6) (98.3, 97.5)

Object (92.9, 95.9) (95.4, 96.1) (97.4, 97.1)

All (93.6, 95.7) (96.0, 96.2) (97.7, 97.2)

Table 8 Anomaly detection and localization performance on BTAD (Image-level and Pixel-level AUROC).
The best results are bold-faced

Category AE(MSE) AE(MSE+SSIM) VT-ADL SPADE PaDiM PatchCore ProtoAD

01 ( -, 49.0) ( -, 53.0) ( -, 99.0) (93.2, 90.2) (100.0, 97.2) (95.4, 96.2) (97.0, 95.5)

02 ( -, 92.0) ( -, 96.0) ( -, 94.0) (74.8, 93.5) (81.5, 95.4) (85.1, 95.2) (85.2, 96.5)

03 ( -, 95.0) ( -, 89.0) ( -, 77.0) (99.4, 96.3) (98.6, 99.6) (99.7, 99.5) (99.8, 99.0)

All ( -, 78.7) ( -, 79.3) ( -, 90.0) (89.1, 93.3) (93.4, 97.4) (93.4, 97.0) (94.0, 97.0)

for each category respectively. This best performance is the upper bound that our method
can achieve. However, selecting partition based on the average performance (from P2 to
P6) or performance for each category (Best) is time-consuming and not suitable for real
applications. In our method, we stop FINCH when the number of cluster is less than 10,000
and use the final partition as the clustering result, and give its results in the last line of Table
6. Our partition selection rule can achieve performance very close to the best one with only
a tenth of clusters. Therefore, our method can reach a good trade-off between effectiveness
and efficiency.

4.4.3 FINCH vs. K-Means

We compare FINCH clustering algorithm with k-means for the prototype-based anomaly
detection. In our method, we choose the partition generated so far by FINCH which having
less than 10,000 clusters as the clustering result. For a fair comparison, we set k to 10,000 for
k-means. The results in table 7 indicate that the method based on FINCH (the third column)
achieves better performance than that based on k-means (the first column). Although it may
achieve better performance for k-means by tuning k, it is time-consuming and not feasible
for real applications.
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4.4.4 Feature Normalization and Cosine Similarity

We also explore the importance of feature normalization for the prototype-based anomaly
detection. As shown in Table 7, k-means with Euclidean distance on the L2-normalized
features (Norm L2) outperforms k-means with Euclidean distance on the original features
(L2) in both anomaly detection and anomaly localization and achieves greater improvements
in anomaly detection.

When the features are L2-normalized, cosine similarity and Euclidean distance are equiv-
alent in the sense of nearest neighbor searching. Therefore, we use cosine similarity for
clustering and measuring the deviation of test patch features from norm patch features. We
further implement cosine similarity with a 1 × 1 convolution and append it to the feature
extraction network. Therefore inference can be performed in an end-to-end manner.

4.5 Results on BTAD

In Table 8, we report the results of our method on the BTAD dataset and compare them
with those of the SOTA OOD-based method (SPADE, PaDiM, and ProtoAD) and the
approaches adopted in [32]. In [32], three reconstruction-based methods have been eval-
uated, auto-encoder (AE) with MSE loss, auto-encoder with MSE and SSIM loss, and
Vision-Transformer-based image anomaly detection and localization (VT-ADL). We report
the image-level and pixel-level AUROC for each category and their average for all categories.
For anomaly detection, ProtoAD achieved the best image-level AUROC. For anomaly local-
ization, ProtoAD achieved the second-best pixel-level AUROC (97.0), very close to the best
one (97.4) achieved by PaDiM. These results show our method’s potential to generalize to
new anomalous scenarios.

5 Conclusion

We propose ProtoAD, a new OOD-based image anomaly detection and localization method.
First, a pre-trained neural network is used to extract features for image patches. Then, a non-
parametric clustering algorithm learns the prototypes for normal patch features. Finally, an
image anomaly detection and localization network is constructed by appending the feature
extraction network with the L2 feature normalization, a 1× 1 convolutional layer, a channel
max-pooling, and a subtraction operation. As a result, ProtoADdoes not need a network train-
ing process and can conduct anomaly detection and localization in an end-to-end manner.
Experimental results on theMVTecADdataset and the BTADdataset show that ProtoAD can
achieve competitive performance compared to state-of-the-art methods. Furthermore, com-
pared to other OOD-based methods, ProtoAD is more elegant and efficient. And compared
to the reconstruct-based methods, ProtoAD does not need a cumbersome network training
process. Therefore, it can better meet the requirements of real applications.
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