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Abstract
Session-based recommendation (SBR) aims to predict the next item of interest in chrono-
logical order based on a given sequence of short-term behaviour of anonymous users. Due
to the limited data available for short-term user interactions, its performance is more sus-
ceptible to data sparsity problems than traditional recommendation methods. Contrastive
learning is often used to solve the data sparsity problem due to its ability to extract general
features from the raw data. Existing session-based recommendation methods based on graph
contrastive learning typically build graph contrastive learning by using information from
other sessions to generate augmented views. While this avoids the problem that the use of
dropout in traditional contrast learning methods can cause damage to the session context,
it inevitably introduces irrelevant item information, which interferes with accurately mod-
elling user interests and leads to sub-optimal model performance. To address these issues,
we propose a new session recommendation method based on multi-layer aggregation aug-
mentation contrastive learning, namely SR-MACL. In SR-MACL we construct a contrastive
view by adding noise to the embedding representation and forming a contrastive embedding
representation by multi-layer aggregation, which not only effectively solves the problem that
traditional graph enhancement methods can destroy the context of the whole session, but also
avoids the interference of irrelevant items. Experimental results on three real datasets have
shown that SR-MACL can improve the accuracy of recommendation results and predict the
user’s next interaction more effectively.

Keywords Session-based recommendation · Graph contrastive learning · Representation
learning

1 Introduction

Recommender systems are widely used for short video recommendations, online shopping
and news recommendations due to their ability to predict users’ interests based on their histor-
ical behaviour. Most existing recommendation systems rely on users’ personal information
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and long-term historical behaviour data as input features, use machine learning and deep
learning related techniques to predict what users are interested in. However, in many modern
online platforms, capturing a user’s historical browsing behaviour results in a performance
loss and the preference of the user’s current session can easily be overwhelmed by the long
history of behaviour. Consequently, session recommendation systems have been created to
improve the user experience. As a sub-task of the recommendation system, the advantage of
the session recommendation system is that it relies only on the user’s click behaviour for the
current session. The only input features that can be used for session recommendation are the
user and item ID information, which makes it more difficult to capture the user’s interest.
Session recommendation aims to predict items of interest to the user in chronological order
based on a given sequence of short-term behaviour of anonymous users.

In early research, Markov chain-based approaches were first proposed for session recom-
mendation [1]. Rendle et al. [1] combinedmatrix factorization withMarkov chains to capture
the interests of users.With the advancement of deep learning techniques,manymethods based
on deep learning have been proposed for session recommendation, which aremainly based on
recurrent neural networks (RNNs), attention networks and their intricate fusion [2–4]. Since
sequences in session recommendation have other more complex transition relationships in
addition to simple time-dependent relationships, extracting the transition relationships in ses-
sion sequences only in temporal order is not sufficient for session recommendation. Methods
based on graph neural networks (GNNs) have demonstrated the effective of capturing the
complex transition relationships of items in a given session [5–8]. GNNs have a strong abil-
ity to model the dependencies between nodes in a graph. The GNN-based recommendation
model differs from previous models in that it models session sequences as session graphs
and employs graph encoders to further mine the rich hidden information between items in
the session graph to obtain good prediction results. Although the graph neural network-based
approach can more accurately model the transformation relationships of items in a session
sequence, the GNN-based recommendation model is not as accurate as the previous model.
However, GNN-based recommendation models still face the problem of data sparsity. Due to
the lack of long-term historical user behaviour data, session-based recommendations can only
be made using user interaction records generated from short-term sessions, but the number of
user interactions in a session is very limited and far less than long-term user behaviour data.
This lack of available data prevents session-based recommendation models from learning
accurate user preferences, resulting in sub-optimal recommendation performance.

Graph comparison learning uses the intrinsic relationships of the data itself and learns
the features of the data itself through different augmented views, without relying on manu-
ally annotated data, which has a great advantage in solving the data sparsity problem. Most
of the current recommendation models based on graph contrastive learning adopt random
node or edge dropping to generate contrast views. However, since the session sequences
in session-based recommendation are extremely sparse, randomly dropping nodes or edges
is likely to disrupt the current session context, therefore, the traditional data augmentation
methods of graph contrastive learning are not suitable for session-based recommendation.
Existing graph contrastive learning methods for session-based recommendation focus on
utilizing information from other sessions to help generate different views [9–12]. S2-DHCN
employed hypergraphs to generate two enhanced views, constructed global graphs to extract
information from other sessions, and utilized contrastive learning as an auxiliary task to
improve the recommendation performance of the main task [9]. COTREC proposed a frame-
work based on contrastive learning to enhance the accuracy of session recommendations
and used information from other sessions to generate session views and item views for con-
trastive learning [10]. SimCGNN increased the diversity of sessionswith the same last itemby
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using them as negative samples and designing a contrastivemodule based on cosine similarity
[11]. While these methods successfully prevent the corruption of session context information
caused by traditional graph augmentation techniques, the incorporation of additional session
information may introduce items that are irrelevant or even contradictory to the user’s cur-
rent interests. This interference impedes the accurate modeling of user interests, ultimately
leading to suboptimal performance. A series of papers in collaborative filtering recommenda-
tion that investigate whether data augmentation in contrastive learning is necessary [13–15].
They believe that the effectiveness of graph contrastive learning in recommendation tasks
is mainly due to the contrastive loss. Therefore, they proposed several simple but effective
data augmentation methods. Although these studies are not specifically tailored to the field
of session-based recommendation, they have great reference value and can provide valuable
insights for further exploration in session-based recommendation.

To address the aforementioned issues, we propose a new session-based recommenda-
tion model, called Session-based Recommendation withMulti-layer Aggregated Contrastive
Learning (SR-MACL). We not only abandon the graph augmentation methods of randomly
dropping nodes or edges that are frequently used in traditional contrastive learning, but also
do not generate enhanced views by introducing information from other sessions. We just use
a simple and effective noise-based multi-level aggregated embedding enhancement to create
contrastive views. In our model, two views share initial embeddings and adjacency matri-
ces. Then, the complex transition patterns of the session sequence are modelled by stacking
Star Graph Neural Networks (SGNN). Based on the Gated Graph Neural Network, a star
node is added to consider non-adjacent items to solve the problem of long-distance transition
information propagation. Uniform noise is added to the learned representations at each layer.
We then generate a new contrastive view by aggregating the representations of each layer,
thereby achieving more effective representation-level data augmentation without disrupting
the context of the session sequence. Through contrastive learning, we maximize the mutual
information between the learned session representations of the two session embeddings to
improve the performance of item/session feature extraction. Then, we unify the recommen-
dation task and self-supervised task under one framework through multi-task learning. By
jointly optimizing these two tasks, we learn more robust embedding representations to accu-
rately predict the next item that the user is interested in. The main contributions of this paper
are as follows:

(1) We introduce noised-based contrastive learning to alleviate the data sparsity problem in
session-based recommendation.

(2) Wepropose a novelmulti-layer aggregated contrastive learningmethod that can avoid the
influence of irrelevant items when introducing information from other sessions, achieve
more effective representation-level data augmentation, and provide a new perspective
on how to apply graph contrastive learning to session-based recommendation.

(3) The experimental results show that our model outperforms the state-of-the-art baseline
models and demonstrates significant performance improvements.

The remaining parts of this paper are organized as follows. Section 2 introduces the related
work of contrastive learning and session-based recommendation. Section 3 details the imple-
mentation of our SR-MACLmodel. Then, Sect. 4 presents a series of experiments, including
performance comparisons between our proposed SR-MACL model and other baseline mod-
els, and demonstrates the effectiveness of our model. At last, we summarize our current work
and looks forward future work in Sect. 5.
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2 RelatedWork

We provide an overview of related research on session-based recommendation, primarily
categorized into four areas: traditional methods, deep learning-based methods, GNN-based
methods, and GCL (graph contrastive learning)-based methods. We then focus on research
related to GNN-based and GCL-based, as these are most closely related to our study.

2.1 Session Recommendation

In earlier studies,Markov chain-based approaches convert the session sequence into aMarkov
chain, and subsequently predict the following action of the user based on their prior action.
FPMC captures sequential patterns and long-term user preferences by combining matrix fac-
torization and first-orderMarkov chains [2]. However, theMarkov chain-based approach only
employs the relationship of adjacent items to model the sequential transformation of session
sequences and does not consider the connection between disjoint items. Subsequent research
has shifted its focus to using deep learning techniques to learn transition relationships between
items. For example, GRU4REC utilized GRU tomodel session sequences. On the other hand,
techniques based on recurrent neural networks possess notable sequential assumptions,which
fail to encapsulate the transitive connections between items that are widely separated in the
session sequence. In addition, the attention mechanism has been widely used in SBR [3],
which can be used to distinguish items in the session based on their importance. It also can
be combined with other methods such as RNN to emphasize user’s main intention [16, 17].
Regardingmodelling sessions as graph structured data, SR-GNNwas the pioneer method [5].
This approach transforms a session sequence into an unweighted directed graph and utilizes
the gated graph neural network (GGNN) to comprehend intricate item transitions within a
session [18]. NISER pointed out the presence of popularity bias in GNN-based recommen-
dation models and provided evidence that this issue is partly associated with the size or norm
of the learned item and session graph representations (embedding vectors). And proposed a
training procedure to alleviate this problem by employing normalized representations [19].
This approach has been employed in a subsequent series of GNN-based models. GCE-GNN
acquires knowledge from two levels of item representations obtained from the session graph
and the global graph correspondingly [6]. The session graph is formed using the current
session, while the global graph is formed by consolidating all item sequences and their adja-
cent items. SGNN-HN argued that previous methods ignore information from items that are
not directly connected and suffer from the commonly observed overfitting problem in graph
neural networks [7]. Therefore, the star graph neural network (SGNN) is used to learn the
complex transition relationships between items in the session sequence. To avoid overfitting,
the highway network (HN) is used to select embeddings from item representations in the form
of weights. GC-HGNN employed hypergraphs to construct global graphs and obtain global
contextual information through hypergraph convolution [8]. The graph attention network is
employed by GC-HGNN to incorporate local information, while the attention mechanism is
utilized to handle merged features and learn the final representation of the session sequence.

2.2 Contrastive Learning in Recommender Systems

Contrastive learning has shown impressive performance in computer vision and natural lan-
guage processing. Recently, it has gained traction in many fields of artificial intelligence,
including graph neural networks, leading to a series of significant advances [20–24]. Due to
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the ability of contrastive learning to learn general features from unlabelled data, contrastive
learning is an effective method to address the problem of data sparsity [25–27], making it a
popular research direction in the field of recommender systems. Currently, many graph con-
trastive learning recommendation models have been proposed, and significant effects have
been achieved [9, 11, 12, 28–31].

SGL generated different augmented views through node or edge dropout and random
walks [28], and then maximized the consistency of the representations learned by the graph
encoder under different views. DCRec proposed a new debiased recommendation contrastive
learning paradigm (DCRec) [29], which incorporates global information into the augmented
views through adaptive perceptual augmentation. The paradigm combines sequence pattern
encoding with modelling of global collaborative relationships through adaptive consistency
perception enhancement. CL4SRec conducted contrastive learning by generating different
data augmentations based on sequence construction through item cropping, masking, and
re-ordering [30]. S2-DHCN used hypergraph to generate two augmented views, constructed
a global graph to extract information from other sessions, and employed contrastive learn-
ing as an auxiliary task to improve the recommendation performance of the main task [9].
COTREC proposed a contrastive learning-based framework to enhance the accuracy of ses-
sion recommendation and utilized information from other sessions to generate session views
and item views for contrastive learning [10]. SimCGNN increased the specificity of sessions
with the same last item by using sessions with the same last item as negative samples and
designed a contrast module based on cosine similarity to enhance the difference between ses-
sions with the same last item [11]. CGL employed the self-supervised module that combines
global and session graphs, decoupled the current session’s intention, enriched item represen-
tations, and designed a label confusion method to prevent overfitting [12]. Existing graph
contrastive learning session-based recommendation methods focus on introducing informa-
tion from other sessions to generate the global graph to construct augmented views. However,
introducing other session informationmay introduce items that are irrelevant or even opposite
to the user’s current interests, which interferes with accurately modelling the user’s interests.

3 Methodology

This section commences by elucidating the fundamental concepts of session-based recom-
mendation and graph construction. Subsequently, we explicate ourmodel in detail, the overall
architecture is shown in Fig. 1.

3.1 Problem Definition

Session-based recommendation primarily aims to provide next-item recommendations for
anonymous users. Therefore, the model needs to accurately capture the user’s general inter-
est based on the session sequence. Session-based recommendation systems aim to provide
attractive recommendations for anonymous users, so themodel must meticulously apprehend
the user’s interests by relying on short sessions rather than the complete historical record of
interactions.

Assuming there are m items and n sessions, let V = {v1, v2, ..., vm} and S ={
s1, s2, ..., sn

}
represent the sets of items and sessions, respectively. si represents the i-th

session. Each session si is an ordered sequence of clicks arranged in chronological order[
vi1, v

i
2, ..., v

i
k

]
, where vij ∈ V represents the j-th clicked item in the i-th session, and k rep-

resents the length of the session. Our goal is to predict the next item vik+1 for any session s
i.

123



3 Page 6 of 20 S. Gao et al.

Fig. 1 Overview of the SR-MACL model

The process involves creating a session representation using the item representations within
the session. From this, probabilities are determined by measuring the similarity between the
session representation and all item embeddings. Finally, the model performs top-N recom-
mendation based on these probabilities.

3.2 Graph Construction

For each session sequence S, we can model it as a session graph G = (V,E), where V
represents the nodes in session S = {{

vs1, v
s
2, ..., v

s
m

}
, vs

}
, vs represents the star node, and

the edge
(
vsi , v

s
i+1

)
represents items clicked at two adjacent time points in a session. First,

we divide the edges into input and output edges and assign a normalized weight, which is
calculated as the occurrence frequency of the edge divided by the out-degree of the starting
node of the edge.An example of the graph construction is shown in Fig. 2. Inspired by [32],we
treat the items in the session sequence as satellite nodes, and we add a star node vs to capture
long-range dependencies between non-adjacent nodes. The edges between satellite nodes are
unidirectional, while the edges between star nodes and satellite nodes are bidirectional. The
construction of the star graph is shown in Fig. 1.

3.3 Model Overview

In this section, we propose SR-MACL, a session-based recommendation model based on
multi-layer aggregation enhanced contrastive learning. The architecture of SR-MACL is
shown in Fig. 2. We divide the model into three modules, namely the session representation
module, multi-layer aggregation contrast module, and multi-task learning module. We first
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Fig. 2 An illustration for the construction of the session graph

give a brief overview, and later sections will describe these three modules in detail. The
session representation module is used to generate the session embedding for the main task.
The contrastive module is used to generate the session embedding for the auxiliary task and
through contrastive learning achieves information exchange between the two session embed-
dings. Finally, the multi-task learning module combines the two tasks to jointly optimize the
model.

3.4 Session RepresentationModule

3.4.1 Initialization

Before learning item representations, we need to encode all items in V into a unified embed-
ding space Rd, where d represents the size of the embedding dimension. We embed each
session S and item vi in the same space. Note that the initialization of satellite nodes and star
nodes is different. We directly use the embedding of the unique item in the session as the
representation of the satellite node:

h0 = [v1, v2, v3, ..., vk] (1)

Here, vi ∈ Rd represents the d-dimensional embedding of the satellite node i in the star
graph. The initial embedding of the star node is obtained by averaging the initial embeddings
of the satellite nodes:

v0s = 1

k

∑k

i=1
vi (2)

3.4.2 Item Embedding Learning

We employ Star Graph Neural Network (SGNN) to learn the satellite nodes in the star graph,
mainly updating the satellite node embeddings by propagating information from neighbour-
ing nodes and star nodes.

First, we consider the information from the neighbouring nodes. For the satellite nodes vi
in the star graph, the update function is shown as follows:

als,i = As,i:
[
v(l−1)
1 , · · · , v(l−1)

k

]T
W + b (3)

zls,i = σ
(
Wza

l
s,i + Uzv

(l−1)
i

)
(4)
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rls,i = σ
(
Wra

l
s,i + Urv

(l−1)
i

)
(5)

ṽli = tanh
(
Woa

l
s,i + Uo

(
rls,i � v(l−1)

i

))
(6)

v̂li = (
1 − zls,i

) � v(l−1)
i + zls,i � ṽli (7)

where W, Wz, Wr, Wo ∈ Rd×2d and Uz, Ur, Uo ∈ Rd×d are trainable parameters. zs,i and rs,i
are the update gate and reset gate, respectively.

[
v(l−1)
1 , · · · , v(l−1)

k

]
is the node embedding

list of session S in the l-1th layer,� denotes element-wise product, and σ represents a Sigmoid
activation function. As ∈ Rk×2k denotes the concatenation of the adjacency matrices of the
input and output edges. For a session s = [v2, v3, v6, v3, v5], corresponding matrix As is
shown in Fig. 1. As,i: ∈ R1×2k corresponds to two columns in the adjacency matrix As of the
node vs,i. zls,i and r

l
s,i are the update gate and the reset gate, respectively, which decide which

information should be kept or dropout. The final state v̂li is a combination of the previous

hidden state v(l−1)
i and the candidate state ṽli. Update gate updates all satellite nodes in the

star graph.
Next, we consider how to integrate the information of the star nodes into the satellite

nodes to capture long-range dependencies. We use gate mechanisms to fuse the information
of adjacent nodes v̂li and star nodes vl−1

s .

vli = (
1 − ali

)
v̂li + aliv

l−1
s (8)

Here, ali is the weight estimated for the importance of adjacent node v̂li and star node v
l−1
s .

Therefore, we implement ali as follows:

ali =
(
W1v̂li

)T
W2vl−1

s√
d

(9)

W1, W2 ∈ Rd×d are the weight matrix, v̂li and vl−1
s are the item representations cor-

responding to the satellite node vi and star node vs, respectively, and
√
d is the scaling

coefficient.
Inspired by XSimGCL [26], we achieve data augmentation by adding noise to the repre-

sentation of the satellite nodes. Formally, for a satellite node vi and its representation in l-th
layer, we can implement the following representation-level augmentation:

vl+n
i = vli + �

′
i (10)

� = X � sign
(
vl+n
i

)
, X ∈ Rd ∼ U(0, 1) (11)

�
′
i is the added scaled noise vector and ‖�‖2 = ε. ε is a small constant. Geometrically, by

adding the scaled noise vector, rotating the original vector at a small angle can be achieved,
as shown in Fig. 3. Each rotation corresponds to a deviation of ei and generates an augmented
representation. Since the angle of rotation is small enough, the representation after adding
noise preserves most of the information from the original representation, while introducing
variation.We choose to generate noise fromauniformdistribution,which provides uniformity
to the augmentation.

After updating the embedding representation of satellite nodes, we also need to update the
embedding representation of star nodes. We use an attention mechanism to distinguish the
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Fig. 3 An illustration for the noise-based representation enhancement

importance of different satellite nodes. The importance of each satellite node is determined
by the similarity between the star node and the satellite node:

βi = softmax

((
W3vli

)T
W4vl−1

s√
d

)

(12)

W3,W4 ∈ Rd×d are the weight matrix. we update the embedding representation of star
nodes by calculating the linear combination of satellite nodes corresponding to each coeffi-
cient:

vls =
k∑

i=1

βiv
l
i (13)

To alleviate the overfitting problem in graph neural networks, we apply the highway
network [33] in the last layer of the SGNN. The highway gate is used to calculate the final
hidden state h f , the weighted sum of the initial embedding h0 of the satellite node and the
embedded vL+n of the last layer. Highway network can be described as follows:

hf = γ � h0 + (1 − γ) � vL+n (14)

γ = σ
(
W5

[
h0||vL+n

])
(15)

where � is the element product, σ is a Sigmoid function, || represents the concatenation
operation, and W5 ∈ Rd×2d is a trainable weight matrix.

3.4.3 Session Embedded Learning

After obtaining the embedding representations of satellite nodes and star nodes, we can get
the item embeddings x ∈ Rd×k from the corresponding satellite nodes hf ∈ Rd×m. Then, we
consider the user’s global and current preferences to generate the final session representation
as the user’s preference. Similar to previous research [5, 6], we take the last item in the session
sequence ie.,Slast = xk as the user recent preference.
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For the user’s global preference, we consider generating a session embedding that repre-
sents the global preference by aggregating the embeddings of all the satellite nodes in the
session sequence. Since different items have different levels of importance for modelling user
preferences, we use a soft attention mechanism to weight the importance of each item. It is
worth noting that the importance of each item in the session sequence is jointly determined
by the star node vs, the current item xi, and the user’s recent preference Slast:

ui = qT0σ
(
q1xi + q2vs + q3Slast

)
(16)

Sg =
k∑

i=1

uixi (17)

q0 ∈ Rd, q1 ∈ Rd×d, q2 ∈ Rd×d and q3 ∈ Rd×d are trainable parameters. We then combine
the user’s global preference Sg with the current interest Slast as the final session presentation.

Sh = q4
[
Sg||Slast

]
(18)

|| represents the concatenation operation and q4 ∈ Rd×2d is a trainable weight matrix.

3.5 Multi-layer Aggregation Contrastive Module

Data augmentation is a key component of contrastive learning, where we abandon traditional
image augmentation methods and instead employ a simple yet effective noise-based embed-
ding augmentation and multi-layer aggregation approach to create views for contrastive
learning. Specifically, both views have the same initial embedding and adjacency matrix. We
employ cross-layer contrastive learning to generate different contrastive views.We aggregate
the embeddings of different layers of the item obtained through multiple SGNN layers as a
new view of the item vc. The aggregation method is mean aggregation:

vci = 1

L

L∑

l=1

vl+n
i (19)

The contrastive module is basically the same as the generating module with only two
differences. One is the different input of the highway network. The other is that we add
position coding to the project in the contrastive module to integrate the sequence information
into the presentation. The highway network of the contrastive module is shown below:

hfc = γc � h0 + (1 − γc) � vc (20)

γc = σ
(
W6

[
h0||vc]) (21)

where � is the element product, σ is a Sigmoid function, || represents the concatenation
operation, and W6 ∈ Rd×2d is a trainable weight matrix. The final session representation Sc
in the contrastive module is generated according to Eqs. (16–18). It should be noted that the
two modules share the same star node vs.

3.6 Multi-Task LearningModule

Graph contrastive learning is a multi-task learning method that can improve the performance
of session recommendation models by simultaneously optimizing multiple objectives. In our
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model, the main task is the next-item recommendation, and contrastive learning serves as an
auxiliary task to help extract general features of items from different contrastive views. We
unify the two tasks and jointly optimize them:

Ltotal = Lmain + λLcl (22)

where λ controls the magnitude of the contrast loss.
For the next-item recommendation task, we have generated the embedded representation

of the session sequence through the session representation generation module, and then
use a prediction layer for next-item recommendation. To alleviate the common popularity
bias problem in recommendation, we apply layer normalization separately to the session
embedding Sh and the item embedding vi, and then calculate the product of the normalized
session embedding S̃h and the normalized item embedding ṽi to obtain the recommendation
score. Finally, we use the Softmax function to obtain the final output probability ŷ for all
items ẑi:

S̃h = LayerNorm(Sh) (23)

ṽi = LayerNorm(vi) (24)

ẑi = S̃h
T
ṽi (25)

ŷ = Softmax(̂z) (26)

ẑi represent the recommended score for all candidate items vi ∈ V. We employed the
cross-entropy loss function as the loss function of the main task, which can be expressed as:

L(̂y) = −
m∑

i=1

yilogŷi +
(
1 − yi

)
log

((
1 − ŷi

))
(27)

where yi represents the probability that the item vi in the next click item.
Contrastive learning can be viewed as maximize the mutual information between two

potential representations.We adopt InfoNCE [34] as our contrastive loss function, and differ-
ent representations of the same session sequence as our positive pair (ie.,

{(
S̃h,i, S̃c,i

)|i ∈ S
}
).

S̃h,iandS̃c,i are the normalized session representations generated by the session presenta-
tion module and the contrastive module, respectively. The negative pairs are other sessions
(ie.,

{(
S̃h,i, S̃c,j

)|i, j ∈ S, i �= j
}
) in the same batch.We simply implement the sim(a, b) func-

tion as the dot product between two vectors:

Lcl = −log
exp

(
sim

(
S̃h,i, S̃c,i

)
/τ

)

∑B
j=1,j�=iexp

(
sim

(
S̃h,i, S̃c,j

)
/τ

) (28)

sim
(
S̃h,i, S̃c,i

) = S̃h,iS̃c,i (29)

whereτ is the temperature parameter andB is the size of the batch.Contrast loss encourages
consistency between S̃h,i and S̃c,i, which are positive samples of each other, whileminimizing
consistency between S̃h,i and S̃c,j, which are negative samples of each other. Optimizing
information loss is actually maximizing the tight lower bound of mutual information. Finally,
the entire training process of SR-MACL is shown in Algorithm 1.
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Algorithm 1 The whole procedure of SR-MACL

4 Experiments

4.1 Datasets and Preprocessing

To thoroughly evaluate the proposed approach, we selected three public datasets containing
user interactions: Diginetica, Tmall, and Nowplaying. These three datasets differ in size,
sparsity, and scenario.

• Diginetica is from the CIKMCup in 2016, which consists of typical transaction data.
• Tmall is from the 2015 IJCAI competition, which contains anonymous users on the Tmall
online shopping platform shopping log.

• Nowplaying describes music listening behaviour extracted from Twitter.

Our processing of the datasets is consistent with previous work [5, 7, 35].
Specifically, sessions of length 1 and entries with less than 5 occurrences were
filtered in all three public datasets. In addition, for each session sequenceS ={
vs1, v

s
2, ..., v

s
m

}
, we process the splits into sequences and the corresponding labels,

i.e.,
([
vs1

]
, vs2

)
,
([
vs1, v

s
2

]
, vs3

)
,…,

([
vs1, v

s
2, ..., v

s
n−1

]
, vsn

)
. The processed dataset statistics are

shown in Table 1.

4.2 EvaluationMetric

As described in [2, 7, 36], the evaluation indicators include: P@20 and MRR @20. P@20
is widely used as a measure of predictive accuracy. It represents the percentage of correctly
recommended items among the top 20 items as defined by Eq. (30) and is used to measure
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Table 1 Statistics of the dataset
Dataset Diginetica Tmall Nowplaying

# click 982,961 818,479 1,367,963

# train 719,470 351,268 825,304

# test 60,858 25,898 89,824

# items 43,097 40,728 60,417

avg.len 5.12 6.69 7.42

the accuracy of the recommendation.

P@20 = 1

N

N∑

i=1

yi (30)

N is the total number of sessions, and yi indicates whether the top 20 recommended results
in the session contain the target item. If the recommended item contains the corresponding
label, the value is 1. Otherwise, it is 0.

MRR@20 (Mean Reciprocal Rank) is calculated based on the average rank of the target
items in the top 20 recommendations. As soon as the rank surpasses 20, the reciprocal rank’s
value is 0. The MRR metric considers the order in which the recommendations are sorted,
where a larger MRR value indicates that the correct recommendation is at the front of the
sorted list. As shown in Eqs. (31) and (32):

MRR@20 = 1

N

N∑

i=1

Rec(i) (31)

Rec(i) =
{

1
Rank(i) , Rank(i) ≤ 20

0, Rank(i) > 20
(32)

where Rank(i) is the rank of tags in session i, Rec(i) is the reciprocal of the rank of target items
in session i. If the rank is greater than 20, the value of Rec(i) is set to 0. Both evaluationmetrics
P@20 and MRR@20 have larger values representing better recommendation performance.

4.3 Baseline Algorithm

We compared our method with ten baseline models, which can be divided into three cate-
gories: (1) traditional deep learning models: GRU4REC, NARM, STAMP; (2) graph neural
network model: SR-GNN, SGNN-HN, GCE-GNN and GC-HGNN; (3) graph comparison
models: COTREC, S2-DHCN, CGL.

• GRU4REC [2]: It applied RNN to SRS for the first time together with GRU, demonstrates
the effectiveness of deep learning methods in SRS

• NARM [3]: It incorporated an attention mechanism that apprehends the user’s primary
goal and integrated it with persistent behavioural features to form a final representation to
predict the next item.

• STAMP [4]: It is an approach that uses a simple multilayer perceptron (MLP) augmented
by an attention mechanism to capture both the general interest of the user and the current
interest of the current session.
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• SR-GNN [5]: It is first application of graph neural networks for SBR,which first introduces
gated graph neural networks (GGNNs) to capture complex item transitions. To generate
the next item for the current session, it employed the same idea as STAMP, and used the
attention mechanism to capture the general and current interests of the user.

• SGNN-HN [6]: It used a star node to capture long-range dependencies and employed
a highway network (HN) to adaptively select embeddings from item representations to
prevent overfitting.

• GCE-GNN [7]: It employed local graph and global utilization graph attention networks
(GAT) to capture item transfer relations from local and global contexts and used reverse
location encoding to generate session representations of SBR.

• GC-HGNN [8]: It constructed global graph and models information from other sessions
using hyper-graph convolution and fused global and local information by pooling.

• S2-DHCN [9]: It employed hypergraph convolution neural networks and graph attention
networks to obtain global contextual and local information and used attention mechanisms
to process fused features to learn the final representation of session sequences.

• COTREC [10]: It proposed a self-supervised collaborative training method based on con-
trastive learning as a secondary task to alleviate the data sparsity problem and retained
the complete session information by generating enhanced intra-session and inter-session
views.

• CGL [12]: It constructed a self-supervised module to enrich item representation using
global graph and decoupling learning and designed the label obfuscationmethod to prevent
overfitting.

4.4 Parameter Settings

For a fair comparison, we employed the same data preprocessing method for all baseline
models. The initial parameters were all initialized using a Gaussian distribution with mean 0
and standard deviation 0.1. All baseline models use L2 regularization as a penalty term with
values of 10–5. All models have an embedding size of 100 and use Adam as the optimizer
with an initial learning rate of 0.001 and decay by 0.1 after every 3 epochs. A search is
performed on the validation set to obtain its optimal value. Randomly selected 10% of the
data in the training set is used as the validation set. The layer of the model is three.

Table 2 shows the overall performance of SR-MACL compared to the baseline models, in
which the best results are highlighted in bold, and the second-best results are italic. We use
the average of the results from five runs as the final result, the values in parentheses represent
the standard deviations. By comparing the experimental results, we can draw the following
three experimental conclusions:

(1) The graph neural network-based models outperform the traditional deep learning-based
models (RNN-based, Attention-based), which show the powerful ability of graph neural
networks in modelling the transduction relations of session sequences and also show
that the graph neural network approach is more suitable for session recommendation.

(2) As shown in Table 2, the performance of existing session recommendationmodels based
on graph contrastive learning is not as good as the session models based on graph neural
networks alone. This indicates that the approach of using other session information to
generate augmented views for comparison learning may introduce information about
irrelevant items resulting in sub-optimal model performance.

(3) SR-MACL outperforms the other baseline models on all three datasets (except for Now-
playing’s P@20 metric), which indicates that our proposed approach of augmenting

123



SR-MACL: Session-Based Recommendation with Multi-layer … Page 15 of 20 3

Table 2 Comparison of the performance of the baseline models

Model Diginetica Tmall Nowplaying

P@20 MRR@20 P@20 MRR@20 P@20 MRR@20

GRU4REC 30.85 8.32 10.93 5.89 7.92 4.48

NARM 48.32 16.03 23.30 10.70 18.59 6.93

STAMP 45.98 14.52 26.47 13.36 17.66 6.88

SR-GNN 51.30 17.80 27.57 13.72 18.87 7.47

GCE-GNN 54.22 19.04 35.09 15.80 22.43 8.40

SGNN-HN 55.34 19.25 37.16 17.78 23.03 8.48

GC-HGNN 54.10 18.64 36.83 17.37 23.65 7.83

S2-DHCN 53.66 18.57 31.42 15.05 23.50 8.18

COTREC 54.18 19.07 36.35 18.04 22.56 7.73

CGL 54.26 19.12 35.73 16.21 22.59 8.32

SR-MACL 55.48(0.13) 19.52(0.09) 37.81(0.23) 18.10(0.15) 23.14(0.06) 8.94(0.08)

item representations for comparison learning by multi-layer aggregation outperforms
the above approach of using other session information to generate augmented views for
comparison learning.

4.5 Ablation Experiments

We further analysed the model by experimentally analysing the impact of each component in
SR-MACL on the model performance. We design two SR-MACL variants: SR-MACL-HW,
SR-MACL-CL and compare these variants with the full SR-MACLmodel on the Diginetica,
Nowplaying, and Tmall datasets. It should be noted that the ablation experiments were all
conducted with the layer number is 3.

• SR-MACL-HW: Removal of high-speed networks
• SR-MACL-CL: Removal of the contrastive learning module

The experimental results are shown in Table 3, in which the best results are highlighted in
bold. The two key components of our model SR-MACL, highway network and contrastive
learning, both contribute to the model performance improvement. Highway network has the
greatest impact on themodel performance because it can solve the overfitting problem caused

Table 3 Impact of different components

Method Diginetica Tmall Nowplaying

P@20 MRR@20 P@20 MRR@20 P@20 MRR@20

SR-MACL-HW 54.61 18.55 35.99 15.23 21.92 7.71

SR-MACL-CL 55.34 19.25 37.16 17.78 23.03 8.48

SR-MACL 55.48 19.52 37.81 18.10 23.14 8.94
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by using three stacked graph encoders. In addition, we also demonstrate the effectiveness of
contrastive learning in our model by the above experiments.

4.6 Effect of the Hyper Parameter

We introduce a hyper parameter λ in SR-MACL to balance the contrast module. We experi-
mentally investigate the performance of SR-MACL at different values to explore the impact
of the contrast module, the values range is [0, 0.1, 0.01, 0.001]. The experimental results
are shown in Fig. 4. We can see that the results on three used datasets are similar. When λ

= 0.001, the model achieved the best results on all three datasets, and there is a significant
decrease in model performance as the value increases, which we believe is due to excessive
contrastive loss that interferes with the learning of the main task. Also, when λ = 0, the
model performance decreases somewhat compared to the best performance, which suggests
that the addition of the contrast module learns the richer representation and thus improves
the model performance.
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Table 4 Effects of different aggregation approaches

Method Diginetica Tmall Nowplaying

P@20 MRR@20 P@20 MRR@20 P@20 MRR@20

Mean-pooling 54.61 18.55 35.99 15.23 21.92 7.71

Max-pooling 55.34 19.25 37.16 17.78 23.03 8.48

SA-pooling 55.48 19.52 37.81 18.10 23.14 8.94

4.7 Impact of Aggregation Operations

We conducted further analysis of the model to investigate the influence of different aggre-
gation methods on its performance. Aggregating item representations within the session
sequence is vital for session-based recommendation. Consequently, we conducted several
comparative experiments to assess the impact of various aggregation methods on the model’s
performance.

• Mean-Pooling: The average pooling is used to aggregate the items represents in the session
sequence to generate session embedding.

• Max-Pooling: The max pooling is used to aggregate the items represents in the session
sequence to generate session embedding.

• SA-Pooling: The soft attention pooling is used to aggregate the items represents in the
session sequence to generate session embedding.

As can be seen fromTable 4, in which the best results are highlighted in bold, the aggregate
methods Meanpooling and Max-Pooling do not achieve satisfactory results. Compared with
the above two aggregation methods, the aggregate methods SA-Pooling can get better results
because it assigns a different weight to each item in the session sequence. This enables the
aggregation of features based on their relative importance, resulting in improved results.

4.8 Data Sparsity

We compare the performance of models trained with different proportions of data and list
them in Table 5, in which the best results are highlighted in bold. The experimental results
show that our model performs significantly better on smaller data sets than other models that

Table 5 Experiment results trained on the sparse

Method Diginetica Diginetica 1/2 Diginetica 1/4

P@20 MRR@20 P@20 MRR@20 P@20 MRR@20

SRGNN 49.30 15.92 44.30 14.12 37.22 11.37

GCE-GNN 54.22 19.04 50.31 17.24 45.23 15.14

SR-MA 55.34 19.25 52.25 18.34 47.15 16.03

SR-MACL 55.48 19.52 55.02 19.21 54.25 18.53

SRGNN 49.30 15.92 44.30 14.12 37.22 11.37
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do not use contrastive learning. This shows that our model helps mitigate the data sparsity
problem.

5 Conclusions and FutureWork

Existing session-based recommendation methods based on graph contrast learning usually
incorporate other session information to generate augmented views to construct graph con-
trastive learning, which inevitably introduces irrelevant item information and interferes with
accurately modelling user interests, resulting in sub-optimal model performance.We propose
a new session-based recommendation method based on multi-layer aggregated augmented
contrast learning, namely (SR-MACL). In SR-MACLwe construct a contrast view by adding
noise to the embedding representation and forming a contrast embedding representation by
multi-layer aggregation, which not only effectively solves the problem that traditional graph
enhancement methods can destroy the context of the whole session, but also avoids the inter-
ference of irrelevant items. The experimental results show that our model outperforms other
session recommendation models and provides a new way of thinking for the application of
graph contrast learning to session recommendation. In the current work, we focus on how to
enhance the item representation, and in future work we intend to further investigate how to
enhance the session representation in session-based recommendation.
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