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Abstract
Kernelized fuzzy C-means clustering with weighted local information is an extensively
applied robust segmentation algorithm for noisy image. However, it is difficult to effec-
tively solve the problem of segmenting image polluted by strong noise. To address this issue,
a reconstruction-aware kernel fuzzy C-mean clustering with rich local information is pro-
posed in this paper. Firstly, the optimization modeling of guided bilateral filtering is given
for noisy image; Secondly, this filtering model is embedded into kernelized fuzzy C-means
clustering with local information, and a novel reconstruction-filtering information driven
fuzzy clustering model for noise-corrupted image segmentation is presented; Finally, a tri-
level alternative and iterative algorithm is derived from optimizing model using optimization
theory and its convergence is strictly analyzed. Many Experimental results on noisy synthetic
images and actual images indicate that compared with the latest advanced fuzzy clustering-
related algorithms, the algorithm presented in this paper has better segmentation performance
and stronger robustness to noise, and its PSNR and ACC values increase by about 0.16–3.28
and 0.01–0.08 respectively.

Keywords Robust image segmentation · Kernelized fuzzy C-means clustering · Local
information · Guided bilateral filtering · Iterative reconstructed data

1 Introduction

Image segmentation [1] is a common theoretical foundation in image understanding [2],
machine vision [3, 4], and image analysis [5]. It divides the image into a certain number of
non-overlapping, homogeneous regions or semantic objects with similar hue, color, intensity,
and other characteristics. Over the past several decades, large numbers of researchers have
put forward various image segmentation algorithms, which have promoted the rapid devel-
opment of image interpretation technology. According to different features, existing image
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segmentation methods are divided into the following categories: thresholding method [6],
watershed transformation [7], region growing method [8], edge detection method [9], neural
network-based learning method [10], and clustering method [11]. Among them, clustering
methods based on fuzzy theory have received widespread attention from many researchers
in recent years due to the fuzziness of image itself.

Fuzzy C-means (FCM) clustering [12] is one of the popular fuzzy clustering techniques,
which adopts membership as a discriminant to divide data. When the image is not contami-
nated bynoise, theFCMalgorithmcanobtain the satisfactory segmented result [13].However,
when the image contains noise with different intensities, FCM is difficult to achieve satis-
factory segmented result. Therefore, to address the susceptibility of FCM to noise in image,
Ahmed et al. [14] presented a robust FCMalgorithm incorporating spatial information (FCM-
S). This algorithm introduces local spatial neighborhood information constraints to provide
continuity between the feature values of the central pixel and its neighborhood pixels, thereby
achieving the utilization of spatial information and improving its robustness to noise to a cer-
tain extent. Although FCM_S incorporates spatial neighborhood information, it is still short
of strong robustness against noise, and its runtime is much longer than that of FCM. There-
fore, to overcome such limitation, Chen and Zhang [15] modified FCM-S and presented two
variants, FCM-S1 and FCM-S2, which reduces the calculation complexity of the algorithm.
However, to effectively resist noise, it is imperative to select the regularization factor for
local spatial information constraints based on experience. Considering the shortcomings of
the above algorithms, Cai et al. [16] further presented a fast generalized FCM algorithm
(FGFCM), which solves the challenge of relying on parameter experience adjustment. This
improved the FGFCM algorithm guarantees anti-noise performance while preserving image
details. However, the FGFCM algorithm is not directly applied to the original image, but
rather balances the relationship between anti-noise robustness and image details preserva-
tion by selecting parameters that require repeated experiments to determine. To solve the
above problem, Krinidis and Chatzis [17] introduced a new local fuzzy factor into the FCM
algorithm and presented a robust FCM with local information constraints (FLICM). This
algorithm can adaptively resist noise to some extent by fuzzy fusion of the spatial distance
and gray information of neighborhood pixels. To further improve the anti-noise ability of the
FLICM algorithm, Gong et al. [18] introduced a kernel method into the FLICM algorithm
and presented a FCM algorithm with local information and kernel metrics to segment noisy
image (KWFLICM). This algorithm uses a nonlinear function to map linearly non-separable
data in lower space to high feature space, enhancing the data linearly separable. Although
kernel method can effectively solve the problem of nonlinear classification, it still poses a
challenge to solve the segmentation problem of strong noise-polluted images.

To reduce the influence of noise on the fuzzy clustering correlation algorithms, we usually
need to resist noisy images. Gaussian filtering (GS) [19] is a classic low-pass filter, which
can usually be used to process high levels of noise or rough textures for image restoration and
reconstruction applications [20].Wan et al. [21] presented an improved FCMalgorithm based
onGaussian filtering (IFCM), butGaussian filteringwill lose part of feature informationwhen
smoothing the image, making the segmented results have obvious loss of details. Tomasi et al.
[22] presented a bilateral filtering (BF) with better filtering performance, but the gradient of
bilateral filtering near the main edge has some distortion. Therefore, He et al. [23] presented
a guided filter (GF) method, which has the same good edge smoothing characteristics as
bilateral filter, and it is not affected by gradient inversion artifacts. Therefore, this method
is widely used in image enhancement [24], high dynamic range compression (HDR) [25],
image extinction [26], and other scenes. Guo et al. [27] presented a new FCM algorithm with
integrating guided filter for noise-polluted image segmentation (FCMGF). This algorithm
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directly uses the guided filter on the membership matrix during the iteration process, but
the guided filter parameters are set to a fixed value, which weakens the noise tolerance
ability of the FCMGF algorithm under different intensity noise conditions. However, guided
filtering often leads to overly smooth edges and distorted appearancewhen processing images
with complex textures and noise. Liu et al. [28] presented a local entropy-based window
perception guided image filter (WGBF) by combining Gaussian entropy filter (GEF) with
guided filtering. This filter has good performance in image de-noising, texture smoothing,
and edge extraction.

Recently, large numbers of researchers have presented a combination of FCM and deep
learning for cluster analysis and image understanding. Feng et al. [29] presented an affinity
graph-regularized deep fuzzy clustering (GrDNFCS) to strength the robustness of deep fea-
tures. Lei et al. [30] presented a deep learning based FCM algorithm based on loss function
and entropy weight learning (DFKM) for image segmentation. This algorithm has good seg-
mentation performance and strong anti-noise robustness, but its time overhead is too high.
Huang et al. [31] presented a fully convolutional learning network guided by fuzzy infor-
mation, which can better handle uncertainty. Gu et al. [32] presented a deep possibilistic
clustering correlation algorithm that optimizes the clustering centers, thereby improving the
efficiency and accuracy of clustering. Pitchai et al. [33] presented a combining framework
method that combines artificial neural networks and fuzzy k-means to increase segmentation
accuracy. Chen et al. [34] presented an FCM-based deep convolutional network to complete
fast and robust segmentation of SPECT/CT images. However, these algorithms also have
the following clear problems: (1) due to the randomness of noise, the construction of train-
ing datasets for noisy image segmentation has a certain degree of uncertainty; (2) excessive
training time makes the real-time application of these algorithms very challenging; (3) due
to the randomness and diversity of noise, the generalization learning ability of these algo-
rithms significantly decreases, resulting in weaker noise-resistant performance; (4) due to the
difficulty in fully utilizing the local spatial information of pixels in deep learning networks,
they are unable to effectively segment high noisy images; (5) due to their high hardware
resource overhead, these algorithms are difficult to apply in embedded systems. Therefore,
robust FCM-related algorithms with abundant local information constraints still have signifi-
cant advantages in intelligence transportation, industrial automation monitoring, and moving
target tracking.

Compared with existing algorithms that combine deep learning with fuzzy clustering, the
segmentation algorithm of fuzzy clustering does not require too much prior knowledge, has
low time complexity, fast processing speed, and is widely applied. Therefore, this paper will
continue to explore kernel based FCM with richer local information. To address the issue of
high noise-polluted images, a reconstruction-aware kernel based fuzzy clustering algorithm
incorporating adaptive local information is presented in this paper.

2 ResearchMotivation

A good segmentation algorithm with strong robustness and adaptability will be able to effec-
tively process complex images with noise of various types and intensities. In these classic
denoising algorithms [17, 18], the similarity between neighbourhood pixels is constantly
used to enhance the denoising ability of the algorithm, and local self-similarity and struc-
tural redundancy on the image can be used to enhance the adaptability of the algorithm to
different noisy images. We also believe that reasonable utilization of the local spatial and
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Fig. 1 Workflow of this paper

gray information in noisy image may effectively preserve the details of the image. In sum-
mary, improving the anti-robustness of the algorithm not only exploits local information of
neighborhood pixels, but also relies on current pixel information of original information in
noisy images.

In this paper, the main work can be divided into the following modules as shown in Fig. 1.

(1) The noisy image is preprocessed by the local entropy-based Gaussian filter and the
corresponding filtered information is used to drive the bilateral filter.

(2) The guided bilateral filter model is integrated into fuzzy C-means clustering with kernel
metric and local information to construct the proposed algorithm.

(3) The tri-level alternating iteration algorithm with adaptive information reconstruction is
used to segment noisy images from standard datasets.

(4) Evaluation and analysis of the segmentation results confirm progressiveness and advan-
tages of the proposed algorithm.

The major contributions of this paper are emphasized as below:

• Guided bilateral filter is embedded into robust kernelized fuzzy local information C-means
clustering, and a robust kernel based fuzzy local information clustering model motivated
by information reconstruction is originally proposed.

• Robust iterative algorithm for optimalmodel is strictly derived throughLagrangemultiplier
method, so that the algorithm has a solid mathematical theoretical foundation.

• The algorithm presented in this paper is rigorously proved to be locally convergent using
Zangwill theorem, providing a sound theoretical support for its widespread application.

• Extensive experiments indicate that the presented algorithm outperforms many existing
robust fuzzy clustering correlation algorithms and addresses the issue of KWFLICM not
being fully suitable for high noise-polluted image segmentation.

The remaining contents of this paper are structured as follows. Section 2 briefly intro-
duces bilateral filtering and guided filtering methods, and robust FLICM-related algorithms.
Section 3 puts forward the presented algorithm and rigorously analyzes its local convergence.
Section 4 validates the effectiveness, robustness, and advantages of the presented algorithm
through experimental testing and comparative analysis. Section 5 comes to the conclusions
in this paper.

3 Preliminaries

In this section, we mainly introduce the fundamental theories related to this paper, including
bilateral filtering, guided filtering, FCM and its robust algorithms.
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3.1 Image FilteringMethod

Given image X � {xi |i � 1, 2, · · · , n}, and the size of image is n. The optimizing model of
bilateral filtering [22] is formulated as follows.

min J ( Î ) �
∑n

i�1

∑
j∈Ni

gr (||i − j ||)gσ

(||xi − x j ||
)||x̂i − x j ||2 (1)

where gσ (·) and gr (·) are the grayscale Gaussian function and spatial information Gaussian
function respectively.

By using the classic least square method, the optimal output of this filter is given as
follows.

x̂i � 1

ki

∑
j∈Ni

gr (||i − j ||)gσ

(||xi − x j ||
)
x j (2)

where ki � ∑
j∈Ni

gr (||i − j ||)gσ (||xi − x j ||), x j is the intensity value of the image at a pixel
j , Ni is a local neighborhood window around pixel i , and the radius of local neighborhood
window is r .

Generally, bilateral filtering has better edge preserving performance than Gaussian filter-
ing, but it cannot effectively solve the problem of image denoising in the presence of strong
noise.

To find a better filtering effect and solve the problem that there is no gradient deformation
near the main edge of bilateral filtering, He et al. [23] presented guided filtering. Given a
guided image G � {Gi |i � 1, 2, · · · , n}, and noisy image I � {Ii |i � 1, 2, · · · , n}. The
optimizing model of guided filtering is formulated as follows.

min J (A, B) �
∑n

i�1

∑
j∈Ni

((aiG j + bi − I j )
2 + εa2i ) (3)

where A � {ai |i � 1, 2, · · · , n} and B � {bi |i � 1, 2, · · · , n}.ε is a regularization parameter.
By using the least square method, the formulas of parameters ai and bi can be obtained

as follows.

ai � |Ni |−1∑
j∈Ni

G j I j − |Ni |−1∑
j∈Ni

G j · |Ni |−1∑
j∈Ni

I j

|Ni |−1
∑

j∈Ni
G2

j − (|Ni |−1 ∑
j∈Ni

G2
j

)
+ ε

(4)

bi � 1

|Ni |
(∑

j∈Ni
I j − ai ·

∑
j∈Ni

G j

)
(5)

The final output of this filter is as follows.

Oj � âi G j + b̂i ,∀ j ∈ Ni (6)

where âi � |Ni |−1·∑ j∈Ni
a j and b̂i � |Ni |−1·∑ j∈Ni

b j .
Guided filtering has been widely applied in image processing. However, when handling

complex texture images and high noise-polluted images, it often leads to overly smooth edges
and distorted appearance. Therefore, the combination of guided image filtering and bilateral
filtering is an important approach to address the issue of noisy image restoration.
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3.2 FCM and Its Robust Variants

The FCM algorithm is an unsupervised fuzzy partition clustering technique. The optimizing
model is given as follows.

min JFCM (U , V ; X) �
∑n

i�1

∑c

j�1
umi j d

2
i j (7)

s.t. 0 ≤ ui j ≤ 1, 1 ≤ i ≤ n, 1 ≤ j ≤ c;
∑c

j�1 ui j � 1, 1 ≤ i ≤ n; 0 <
∑n

i�1 ui j < n, 1 ≤
j ≤ n.

where d2i j � ||xi − v j ||2 represents the squared Euclidean distance of sample xi to the
clustering center v j ,m is the fuzzy weighted exponent (also called fuzzifier) and is constantly
selected between 1.5 and 2.5.

The iterated expressions of membership and the clustering center for FCM are as follows.

ui j � 1

∑c
l�1

(
d2i j

/
d2il

) 1
m−1

(8)

v j �
∑n

i�1
umi j xi

/∑n

i�1
umi j (9)

The classic FCM algorithm is susceptible to noise and outliers, and it is prone to being
trapped in local optima. Introducing local spatial neighborhood information into the FCM
algorithm enhances the algorithm’s capability to resist noise. However, under various types
and intensities of noise, these spatial fuzzy clustering algorithms [14–16] is short of some
adaptability to image segmentation.

Given that robust spatial fuzzy clustering algorithms make it challenging to choose the
regularized factor constrained by spatial information, Chatzis et al. [17] introduced the local
fuzzy factor in the FCM algorithm and presented a novel FLICM algorithm, which fuses the
spatial and grayscale information of neighboring pixels and suppresses the impact of noise
on image segmentation to some extent. The FLICM algorithm is modelled as follows.

min JFL ICM (U , V ; X) �
∑n

i�1

∑c

j�1
umi j

[
d2i j + Gi j

]
(10)

s.t. 0 ≤ ui j ≤ 1, 1 ≤ i ≤ n, 1 ≤ j ≤ c;
∑c

j�1 ui j � 1, 1 ≤ i ≤ n; 0 <
∑n

i�1 ui j < n, 1 ≤
j ≤ n.

where fuzzy local factor Gi j � ∑
k∈Ni , k ��i

1
dki+1

(
1 − ukj

)m
d2k j .

The iterated expressions of membership and the clustering center for FLICM are as fol-
lows:

ui j � 1

∑c
l�1

((
d2i j + Gi j

)/(
d2il + Gil

)) 1
m−1

(11)

v j �
∑n

i�1 u
m
i j

(
xi +

∑
k∈Ni

(1 + dki )−1(1 − ukj
)m

xk
)

∑n
i�1 u

m
i j

(
1 +

∑
k∈Ni

(1 + dki )−1(1 − ukj
)m) (12)

To reduce algorithm complexity, the clustering center of Eq. (12) can be roughly approx-
imated as

v j ≈
∑n

i�1 u
m
i j xi∑n

i�1 u
m
i j

(13)
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Compared with the FCM algorithm, the FLICM algorithm increases the spatial and
grayscale information of neighborhood pixels and has stronger robustness and adaptabil-
ity to various noises. But the FLICM algorithm cannot effectively handle the segmentation
problem of images with strong noise.

Later, Gong et al. [18] presented the widely applied KWFLICM algorithm based on
FLICM by using a kernel-based learning approach. KWFLICM can use nonlinear mapping
to map linearly non-separable samples in low space to high feature space, enhancing the data
linearly separable. The optimizing model for KWFLICM is as follows.

min JKWFL ICM (U , V ; X) �
∑n

i�1

∑c

j�1
umi j

[(
1 − K

(
Ii , v j

))
+ G ′

i j

]
(14)

s.t. 0 ≤ ui j ≤ 1,∀i, j ; ∑c
j�1 ui j � 1,∀i ; 0 <

∑n
i�1 ui j < n,∀ j .

where weighted kernel local fuzzy factor G ′
i j is

G ′
i j �

∑
k∈Ni ,k ��i

wki
(
1 − ukj

)m(
1 − K

(
Ik, v j

))
(15)

The iterated expressions of membership and the clustering center for KWFLICM are as
follows:

ui j � 1

∑c
l�1

(
1−K (Ii ,v j )+Gi j ′
1−K (Ii ,vl )+Gil ′

) 1
m−1

(16)

v j �
∑n

i�1 u
m
i j

(
K

(
Ii , v j

)
xi +

∑
k∈Ni ,k ��i wki

(
1 − ukj

)m
K

(
xk, v j

)
xk

)

∑n
i�1 u

m
i j

(
K

(
Ii , v j

)
+

∑
k∈Ni ,k ��i wki

(
1 − ukj

)m
K

(
xk, v j

)) (17)

In KWFLICM algorithm, due to Gaussian kernel metric learning, the running time is too
long to meet the needs of many applications. Therefore, the iterative formula for clustering
center v j is constantly approximated as

v j �
∑n

i�1 u
m
i j K

(
Ii , v j

)
xi

∑n
i�1 u

m
i j K

(
Ii , v j

) (18)

So far, KWFLICM algorithm is widely applied in noisy image segmentation. But it is
difficult to effectively restrain high Gaussian noise and speckle noise, and it is not entirely
suitable for widespread application in the case of strong noise.

4 RelatedWork

In this section, we introduce the theory related to the algorithms in this paper, including
guided bilateral filtering and fuzzy C-means clustering with the use of the reconstructed
data. These support the research work of this paper.

4.1 Guided Bilateral Filtering

To effectively reconstruct the original image from noisy image, this paper first uses the local
entropy of neighborhood pixels around the central pixel to construct a local entropy-based
weighted Gaussian filter. Then this weighted Gaussian filter with local entropy is used to
handle noisy image, and the preprocessed image with weak noise is obtained. Finally, the
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bilateral filter is guided by the preprocessed image, and a guided bilateral filter similar to the
image guided filter is obtained.

Given noisy image I � {Ii |i � 1, 2, · · · , n}, a local neighborhood window centered on
pixel Ii is denoted as �i . The local entropy of pixel Ii is defined as

E(Ii ) � −
∑L(�i )

l�1
ξl ln ξl (19)

where L(�i ) is the number of gray levels in local window �i , ξl is the probability of the lth
gray level in �i .

According to the local entropy [35] of the image, we construct the local entropy-based
Gaussian filter, and the optimizing model is.

min J (Ĝ) �
∑n

i�1

∑
k∈�i

gσ1(‖Ii − Ik‖)(−ξk ln ξk)

∥∥∥Ĝi − Ik
∥∥∥
2

(20)

where gσ1(‖Ii − Ik‖) � exp
(
−σ−2

1 · ‖Ii − Ik‖2
)
.

By using the least square method, the optimal solution of Eq. (20) is obtained as follows.

Ĝi �
∑

k∈�i
gσ1 (||Ii − Ik ||)(−ξk ln ξk)Ik∑

k∈�i
gσ1 (||Ii − Ik ||)(−ξk ln ξk)

(21)

Therefore, Ĝ � {Ĝi |1 ≤ i ≤ n} is the filtered image obtained by local entropy-based
weighted Gaussian filter on noisy image I . The preprocessed image Ĝ is used to drive
bilateral filter and a Gaussian filtering image-guided bilateral filtering optimization model is
reconstructed as follows.

min J ( Î ) �
∑n

i�1

∑
k∈�i

gγ (i − k)gσ2 (||Ĝi − Ĝk ||)|| Îi − Ik ||2 (22)

where gr (||i − k||) � exp(−γ −2 · ||i − k||2) is the spatial Gaussian function of pixel position
for two pixels Ii and Ik . gσ2 (||Ĝi −Ĝk ||) � exp(−σ−2

2 ||Ĝi −Ĝk ||2) is the grayscale Gaussian
function of two pixels Ĝi and Ĝk .

By using the least square method, the optimal solution of Eq. (22) is obtained as follows.

Îi �
∑

k∈�i
gγ (i − k)gσ2

(∥∥∥Ĝi − Ĝk

∥∥∥
)
Ik

∑
k∈�i

gγ (i − k)gσ2

(∥∥∥Ĝi − Ĝk

∥∥∥
) (23)

Therefore, Î � { Îi |1 ≤ i ≤ n} is the filtering results of Gaussian filtering image guided
bilateral filter on noisy image I .

On the whole, Gaussian filtering image guided bilateral filter retains the advantages of
bilateral filter in simplicity and parallelism, and has a good denoising effect for images with
high noise.

4.2 Fuzzy C-Means Clustering with the Use of the Reconstructed Data

Zhang et al. [37] presented a new tri-level iterative method for FCM using reconstructed data
(RDFCM). The optimizing model is.

min J (U , V ; X ) �
∑n

i�1

∑c

j�1
umi j ||xi − v j ||2+T

∑n

i�1
||xi − x∗

i ||2 (24)
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s.t. 0 ≤ ui j ≤ 1, i � 1, 2, · · · , n, j � 1, 2, · · · , c; ∑c
j�1 ui j � 1, i � 1, 2, · · · , n; 0 <∑n

i�1 ui j < n, j � 1, 2, · · · , c.
where a set of data X∗ � {x∗

i |i � 1, 2, · · · , n} is clustered, and X � {xi |1 ≤ i ≤ n} is
the constructed data.T is a positive regularization factor.

From Eq. (24), the iterated expressions for the tri-level alternative and iterative algorithm
are as follows.

ui j � 1

∑c
l�

( ||xi−v j ||2
||xi−vl ||2

) 1
m−1

(25)

v j �
∑n

i�1 u
m
i j xi∑n

i�1 u
m
i j

(26)

xi � T x∗
i +

∑c
j�1 u

m
i jv j

T +
∑c

j�1 u
m
i j

(27)

In the RDFCM algorithm mentioned above, the reconstructed data are directly applied to
update the clustering center andmembership degree. Inspired by this RDFCM algorithm, this
paper combines guided bilateral filtering with robust kernel space fuzzy clustering with local
information to construct a new robust clustering algorithms for solving the segmentation
problem of images with strong noise.

5 Proposed Algorithm

Although the widely applied KWFLICM algorithm has better segmentation performance
and stronger robustness to noise than the FLICM algorithm, it is difficult to effectively
handle images with heavy noise. Therefore, this section will research a reconstruction-aware
kernelized FCM with adaptive local information for noise-corrupted image segmentation.
Figure 2 gives the total framework of the algorithm presented in this paper.

To address the issue of segmenting blurred images, Lelandais and Ducongé [36] presented
a segmentationmodel of combing themaximum likelihood expectationmaximization decon-
volution with FCM for blurred image segmentation. Inspired by this combination model for
blurred image segmentation, this paper presents a newsegmentationmodel of combingguided
bilateral filtering andweighted kernelizedFCMwith local information for high noise-polluted
image segmentation. In this presented main framework given in Fig. 2, the noise-corrupted
image is smoothed by a Gaussian filter to obtain a preprocessed image, and it is further

Noisy
image

Guide 
image

Preprocessed 
image

GS

GEF

guided 
bilateral filter

KWFLICM

Filter output 
information

clustering 
center

Membership

Segmented 
image

Data 
reconstruction 

method

Membership
principle

weighting 
coefficient

Fig. 2 The total framework of the algorithm proposed in this paper
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processed by a Gaussian entropy filter to provide filter weights for the guided bilateral filter.
Combining the idea of guided bilateral filter and KWFLCM algorithm, a new robust fuzzy
clustering algorithm is constructed. Reconstructed data, fuzzy membership, and the cluster-
ing centers are solved through alternating iteration until the algorithm converges. Finally, the
noisy image is segmented into different regions based on the principle of maximum fuzzy
membership.

5.1 Optimal Modeling

According to the idea of FCM motivated by the reconstructed data, this paper combines
Gaussian filtering image guided bilateral filtering with the KWFLICM algorithm, and a
reconstruction-aware kernelized FCM algorithm with adaptive local information is put for-
ward for noise-corrupted image segmentation. The optimizingmodel is originally constructed
as

min J (U , V , F ; X ) �
∑n

i�1

∑c

j�1
umi j

[
1 − K

(
fi , v j

)
+ G ′

i j

]

+ τ
∑n

i�1

∑
k∈�i

gγ (‖i − k‖)gσ2

(∥∥∥Ĝi − Ĝk |
∥∥∥
)
|| fi − Ik ||2 (28)

s.t. 0 ≤ ui j ≤ 1, i � 1, 2, · · · , n, j � 1, 2, · · · , c; ∑c
j�1 ui j � 1, i � 1, 2, · · · , n; 0 <∑n

i�1 ui j < n, j � 1, 2, · · · , c.
whereU � [ui j ]n×c denotes fuzzymembership partitionmatrix, F � [ fi ]n×1 denotes the

pixel value obtained after reconstructing pixel i , V � [v j ]c×1 denotes the clustering center, Ĝ
denotes a guided image from Gaussian filtering via local entropy in noisy image I . I denotes

an input noisy image. gγ (‖i − k‖) is a spatial Gaussian kernel function, gσ2

(∥∥∥Ĝi − Ĝk

∥∥∥
)

is a grayscale Gaussian kernel function. Ni denotes the local neighbourhood window with
the radius of r , �i is the local neighborhood window around the current pixel for bilateral
filtering, τ is the positive regularized factor, G ′

i j denotes the weighted kernelized local fuzzy
factor, and is defined as

G ′
i j �

∑
k∈Ni ,k ��i

wki (1 − ukj )
m(1 − K ( fk, v j )) (29)

where K ( fi , v j ) is a Mercer Gaussian kernel function, defined as

K ( fi , v j ) � exp(−|| fi − v j ||2/σ ) (30)

In Eq. (30), the parameter σ is the bandwidth, the size of which has a significant impact
on the image segmentation results.

σ � (
1

n − 1

∑n

i�1
(di − d)2)1/2 (31)

where di � || fi − f ||, d � n−1 ∑n
i�1 di , f � n−1 · ∑n

i�1 fi .
The local weighted coefficient wik is given as follows.

wki � w
(sc)
ki · w

(gc)
ki (32)

where w
(sc)
ki � 1

dki+1
. w(gc)

ki is the local gray-level constraint defined as

w
(gc)
ki �

{
2 + ηki ,Cki < Ci

2 − ηki ,Cki ≥ Ci
(33)

123



Reconstruction-Aware Kernelized Fuzzy Clustering Framework … Page 11 of 55   123 

where ηki � ξki∑
k∈Ni ξki

, ξki � exp(−(Cki − Ci )), Ci � |Ni |−1∑
k∈Ni

Cki , Cki � Var ( fi )
f i

,

Var ( fi ) � |Ni |−1·∑k∈Ni
|| fk − f i ||2, f i � |Ni |−1·∑k∈Ni

fk .

5.2 Model Solution

For Eq. (28), by Lagrange multiplier method, we construct the following unconstrained
objective function.

L(U , V , F, λ) �
∑n

i�1

∑c

j�1
umi j

[
1 − K ( fi , v j ) + G ′

i j

]

+
∑n

i�1

∑
k∈�i

gγ (||i − k||)gσ2 (||Gi − Gk ||)|| fi − Ik ||2

+
∑n

i�1
λi (1 −

∑c

j�1
ui j )

(34)

We calculate the partial derivatives of L(U , V , F, λ) with respect to ui j , v j , λi , and fi
respectively, and set them to zero.

5.2.1 Update U

∂L

∂ui j
� mum−1

i j [1 − K ( fi , v j ) + G ′
i j ] − λi � 0 (35)

∂L

∂λi
� 1 −

∑c

j�1
ui j � 0 (36)

From Eq. (35), it can obtain

ui j � (λi
/
m)

1
m−1

(
1

1 − K ( fi , v j ) + G ′
i j

) 1
m−1

(37)

Equation (37) is substituted into Eq. (36), we can obtain

(λi
/
m)

1
m−1

∑c

j�1

(
1

1 − K ( fi , v j ) + G ′
i j

) 1
m−1

� 1 (38)

So that, we have

(λi
/
m)

1
m−1 � 1

∑c
j�1

(
1

1−K ( fi ,v j )+G ′
i j

) 1
m−1

(39)

Equation (39) is substituted into Eq. (37), and we obtain the iterative expression of fuzzy
membership ui j as follows.

ui j � 1

∑c
l�1

(
1−K ( fi ,v j )+G ′

i j

1−K ( fi ,vl )+G ′
il

) 1
m−1

(40)

123



  123 Page 12 of 55 C. Wu, X. Qi

5.2.2 Update V

According to ∂L
∂v j

� 0, we have

σ−1 ·
∑n

i�1
umi j [K ( fi , v j )( fi − v j ) +

∑
k∈Ni ,k ��i

wki (1 − ukj )
mK ( fk, v j )( fk − v j )] � 0

(41)

So then, the iterative expression of the clustering center is obtained as follows.

v j �
∑n

i�1 u
m
i j [K ( fi , v j ) fi +

∑
k∈Ni ,k ��i wki (1 − ukj )mK ( fk, v j ) fi ]

∑n
i�1 u

m
i j [K ( fi , v j ) +

∑
k∈Ni ,k ��i wki (1 − ukj )mK ( fk, v j )]

(42)

Considering the high computational complexity, according to references [17, 18], Eq. (42)
can be roughly approximated as

v j �
∑n

i�1 u
m
i j K ( fi , v j ) fi

∑n
i�1 u

m
i j K ( fi , v j )

(43)

5.2.3 Update F

According to ∂L
∂ fi

� 0, we have

2σ−1.
∑c

j�1
umi j K ( fi , v j )( fi − v j ) + 2τ

∑
k∈�i

gr (||i − k||)gσ (||Gi − Gk ||)( fi − Ik ) � 0 (44)

Hence,

fi � σ−1 · ∑c
j�1 u

m
i j K ( fi , v j )v j + τ

∑
k∈�i

gr (||i − k||)gσ (||Gi − Gk ||)Ik
σ−1 · ∑c

j�1 u
m
i j K ( fi , v j ) + τ

∑
k∈�i

gr (||i − k||)gσ (||Gi − Gk ||) (45)

According to Eqs. (40), (43), and (45), we can construct the tri-level alternating iteration
algorithm to resolve the optimizing problem of Eq. (28).

From Fig. 3, it can be seen that neighborhood window with the size of 3 × 3 is selected,
the iterative changes of fuzzy membership, pixel reconstruction information, and clustering
centers intuitively reflect that the presented algorithm is a tri-level alternative and iterative
algorithm. In one neighborhood of noisy images, we identify normal pixels with gray values
of 10 and 0, and noisy pixels with gray values of 120, 154, 109, and 85. In the first iter-
ation, the membership of noise pixels is relatively low, and after three iterations using the
RDKWFLICM method, the membership values of noisy pixels are much the same as those

Pixel reconstruct informationFuzzy membership

154

120

10 

85

0

0

109

0

0

(0.9830,
35.2665)

(0.9535,
35.5725)

(0.9712,
34.8330)

(0.9533,
37.5615)

(0.9642,
35.5980)

(0.9552,
35.3430)

(0.9098,
40.3155)

(0.9421,
38.3265)

(0.9315,
39.9840)

V=[32;125;170] V=[32;100;166] V=[32;93;165]

(0.9996,
35.4960)

(0.9997,
34.8075)

(0.9997,
34.9095)

(0.9993,
37.3575)

(0.9996,
35.6490)

(0.9996,
35.5980)

(0.9986,
39.5505)

(0.9989,
38.5815)

(0.9315,
39.9840)

(0.9994,
35.5215)

(0.9996,
34.8075)

(0.9996,
34.9095)

(0.9989,
37.3575)

(0.9994,
35.6235)

(0.9994 ,
35.5980)

(0.9978,
39.5250)

(0.9983,
38.5815)

(0.9981,
39.0405)

Iteration 1 Iteration 2 Iteration 3

Fig. 3 Schematic diagram of tri-level alternative iteration of RDKWFLICM algorithm
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of the surrounding pixels. The testing results demonstrate that the presented RDKWFLICM
algorithm can effectively suppress the effect of noise on the clustering algorithm.

5.3 Tri-Level Alternative Iteration Algorithm

The pseudocode of the presented tri-level alternation and iterativemethod for noise-corrupted
image segmentation is given in Algorithm 1.
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5.4 Analysis of Algorithm Convergence

If the algorithm presented in this paper can locally converge, the tri-level alternative iteration
process needs to meet the constrained conditions in the Zangwill’s theorem [38–40] that
the objective function J (U , V , F) is a decreasing function. As J (U , V , F) is a decreasing
function, the following three propositions for function J (U , V , F) are true. So we construct
the unconstrained Lagrange function as follows.

L(U , V , F, λ) �
∑n

i�1

∑c

j�1
umi j

[
1 − K

(
fi , v j

)
+ G ′

i j

]

+
∑n

i�1

∑
k∈Ni

gr (||i − k||)gσ (||Gi − Gk ||)|| fi − Ik ||2

+
∑n

i�1
λi (1 −

∑c

j�1
ui j ) (46)

Proposition 1 Given V and F , let L1(U , λ) � L(U , V , F, λ), U∗ must be a strict local
minimum point of L1(U , λ) when and only when u∗

i j is calculated by Eq. (40).

Proposition 2 Given U and F , let L2(V ) � L(U , V , F, λ), V ∗ must be a strict local mini-
mum point of L2(V ) when and only when v∗

j is calculated by Eq. (42).

Proposition3 GivenU andV , let L3(F) � L(U , V , F, λ), F∗ must be a strict localminimum
point of L3(F) when and only when f ∗

i is calculated by Eq. (44).

(1) Given V and F , ifU∗ be the local minimum point of L1(U , λ), we have ∂L1(U∗,λ)
∂ui j

� 0,
namely

∂L1(U∗, λ)
∂ui j

� mum−1
i j [1 − K ( fi , v j ) + G ′

i j ] − λi � 0 (47)

So then

(
λi

/
m

) 1
m−1 �

(
1

1 − K ( fi , v j ) + G ′
i j

) 1
m−1

(48)

Equation (48) is substituted into the constrained condition
∑c

j�1 ui j � 1,∀i , we obtain

u∗
i j � 1

∑c
l�1

(
(1−K ( fi ,v j ))+

∑
k∈Ni ,k ��i wik (1−uk j )m (1−K ( fk ,v j ))

(1−K ( fi ,vl ))+
∑

k∈Ni ,k ��i wik (1−ukl )m (1−K ( fk ,vl ))

) 1
m−1

(49)

Therefore, Eq. (49) is a necessary condition for function L1(U , λ) to have a minimum
value.

We find Hessian matrix of function L1(U , λ) with respect to ui j at U � U∗, namely

∂

∂uab
(
∂L1(U∗, λ)

∂ui j
) �

{
m(m − 1)um−2

i j [1 − K ( fi , v j ) + G ′
i j ], a � i and b � j

0 , a �� i or b �� j
(50)

From Eq. (50), this Hessian matrix is positive definite. Therefore, U∗ is a strict local
minimum point of L1(U , λ).
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If some constraints are considered, the bordered Hessian matrix [41–43] related to
Lagrange multipliers method must also be evaluated. If V and F are fixed, the corresponding
bordered Hessian matrix of ui � [ui1 ui2 · · · uic] and λi are given as follows.

HL1 (ui , λi ) �

⎡

⎢⎢⎢⎣

0 ∂2L1/∂λi∂ui1 · · · ∂2L1/∂λi∂uic
∂2L1/∂λi∂ui1 ∂2L1/∂ui1∂ui1 · · · ∂2L1/∂ui1∂uic

...
...

. . .
...

∂2L1/∂λi∂uic ∂2L1/∂uic∂ui1 · · · ∂2L1/∂uic∂uic

⎤

⎥⎥⎥⎦ (51)

where ∂2L1(ui ,λi )
∂λi ∂ui j

� −1, j � 1, 2, · · · , c.
The leading principal minors of this matrix HL1 (ui , λi ) are evaluated as follows.

|H3(u
∗
i , λ

∗
i )|� det

⎡

⎣
0 ∂2L1/∂λi∂ui1 ∂2L1/∂λi∂ui2

∂2L1/∂λi∂ui1 ∂2L1/∂ui1∂ui1 ∂2L1/∂ui1∂ui2
∂2L1/∂λi∂ui2 ∂2L1/∂ui2∂ui1 ∂2L1/∂ui2∂ui2

⎤

⎦

� − (
∂2L1/∂λi∂ui2

)2
∂2L1/∂ui1∂ui1 − (

∂2L1/∂λi∂ui1
)2

∂2L1/∂ui2∂ui2

�−m(m − 1)
∑2

l�1
um−2
il [1 − K ( fi , vl ) + G ′

il ]

∣∣∣∣
ui�u∗

i ,λi�λ∗
i

< 0 (52)

|H4(u
∗
i , λ

∗
i )|� det

⎡

⎢⎢⎣

0 ∂2L1/∂λi∂ui1 ∂2L1/∂λi∂ui2 ∂2L1/∂λi∂ui2
∂2L1/∂λi∂ui1 ∂2L1/∂ui1∂ui1 ∂2L1/∂ui1∂ui2 ∂2L1/∂ui1∂ui3
∂2L1/∂λi∂ui2 ∂2L1/∂ui2∂ui1 ∂2L1/∂ui2∂ui2 ∂2L1/∂ui2∂ui3
∂2L1/∂λi∂ui2 ∂2L1/∂ui3∂ui1 ∂2L1/∂ui3∂ui2 ∂2L1/∂ui3∂ui3

⎤

⎥⎥⎦

� −
∑3

l�1
(∂2L1/∂λi∂uil )

2
3∏

l1�1,l1 ��l

∂2L1/∂uil1∂uil1

∣∣∣∣∣∣
ui�u∗

i ,λi�λ∗
i

< 0

(53)

|H4(u
∗
i , λ

∗
i )|� −

∑c

j�1
(∂2L1/∂λi∂ui j )

2
c∏

j1�1, j1 �� j

∂2L/∂ui j1∂ui j1

∣∣∣∣∣∣
ui�u∗

i ,λi�λ∗
i

< 0 (54)

Hence, L1(U , λ) subject to
c∑

i�1
ui j �1 is locally minimized at U∗ � [u∗

i j ] with

u∗
i j � 1

∑c
l�1

(
(1−K ( fi ,v j ))+

∑
k∈Ni ,k ��i wik (1−uk j )m (1−K ( fk ,v j ))

(1−K ( fi ,vl ))+
∑

k∈Ni ,k ��i wik (1−ukl )m (1−K ( fk ,vl ))

) 1
m−1

(55)

(2) GivenU and F given, if V ∗ be the local minimum point of L2(V ), we have ∂L2(V ∗)
∂v j

� 0,
namely

∂L2(V ∗)
∂v j

� −2σ−1

·
∑n

i�1
umi j [K ( fi , v j )( fi − v j ) +

∑
k∈Ni ,k ��i

wik(1 − ukj )
mK ( fk, v j )( fk − v j )]

� 0

(56)

123



  123 Page 16 of 55 C. Wu, X. Qi

So then

v∗
j �

∑n
i�1 u

m
i j [K ( fi , v j ) fi +

∑
k∈Ni ,k ��i wik(1 − ukj )mK ( fk, v j ) fk]

∑n
i�1 u

m
i j [K ( fi , v j ) +

∑
k∈Ni ,k ��i wik(1 − ukj )mK ( fk, v j )]

(57)

Therefore, Eq. (57) is a necessary condition for function L2(V ) to have a minimum value.
During the iteration process, the clustering center is updated as follows.

v
(t+1)
j �

∑n
i�1 (u

(t)
i j )

m[K ( f (t)i , v
(t)
j ) f (t)i +

∑
k∈Ni ,k ��i w

(t)
ki (1 − u(t)k j )

mK ( f (t)k , v
(t)
j ) f (t)k ]

∑n
i�1 (u

(t)
i j )

m[K ( f (t)i , v
(t)
j ) +

∑
k∈Ni ,k ��i w

(t)
ki (1 − u(t)k j )

mK ( f (t)k , v
(t)
j )]

(58)

Therefore, we have

∂L2(V ∗)
∂v j

� −2σ−1

·
∑n

i�1
umi j [K ( fi , v

+
j )( fi − v j ) +

∑
k∈Ni ,k ��i

wik(1 − ukj )
mK ( fi , v

+
j )( fi − v j )]

(59)

where v+j ∈ Nδ(v j ) � {v∗
j

∣∣∣||v∗
j − v j ||< δ,δ > 0}.

We calculate Hessian matrix of L2(V ) at V � V ∗, that is

(60)

∂

∂vb
(
∂L2(V ∗)

∂v j
)

�
⎧
⎨

⎩
2σ−1

∑n

i�1
umi j [K ( fi , v

+
j ) +

∑
k∈Ni ,k ��i

wki (1 − ukj )
mK ( fk, v

+
j )], b � j

0, b �� j

Equation (60) shows that this Hessian matrix is positive definite. V ∗ is the local minimum
point of L2(V ).

(3) Given U and V , if F∗ be the minimum point of L3(F), we have
∂L3(F∗)

∂ fi
� 0, namely

∂L3(F∗)
∂ fi

� 2σ−1 ·
∑c

j�1
umi j K ( fi , v j )( fi − v j )

+2
∑

k∈Ni
gr (||i − k||)gσ (||Gi − Gk ||)( fi − Ik) � 0

(61)

So then, we obtain

f ∗
i � σ−1 ∑c

j�1 u
m
i j K ( fi , v j )v j +

∑
k∈�i

gγ (||i − k||)gσ2 (||Gi − Gk ||)Ik
σ−1

∑c
j�1 u

m
i j K ( fi , v j ) +

∑
k∈�i

gγ (||i − k||)gσ2 (||Gi − Gk ||) (62)

Therefore, Eq. (62) is a necessary condition for function L3(F) to have a minimum value.
During the iterative process, the reconstructed image F � { fi |1 ≤ i ≤ n} is updated as

f (t+1)i � σ−1 ∑c
j�1 (u

(t)
i j )

mK ( f (t)i , v
(t)
j )v(t)j +

∑
k∈�i

gγ (||i − k||)gσ2 (||Gi − Gk ||)Ik
σ−1

∑c
j�1 (u

(t)
i j )

mK ( f (t)i , v
(t)
j ) +

∑
k∈�i

gγ (||i − k||)gσ2 (||Gi − Gk ||)
(63)
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Therefore, we have

∂L3(F∗)
∂ fi

� 2σ−1 ·
∑c

j�1
umi j K ( f +i , v j )( fi − v j )

+2
∑

k∈Ni
gr (||i − k||)gσ (||Gi − Gk ||)( fi − Ik)

(64)

where f +i ∈ Nδ( fi ) � { f ∗
i

∣∣|| f ∗
i − fi ||< δ , δ > 0}.

We find Hessian matrix of function L3(F) with respect to fi at F � F∗, namely

∂

∂ fa
(
∂L

∂ fi
) �

⎧
⎨

⎩
2σ−1

∑c

j�1
umi j K ( f +i , v j ) + 2

∑
k∈�i

gγ (||i − k||)gσ2
(||Ĝi − Ĝk ||) , b � j

0, b �� j

(65)

Equation (65) shows that this Hessian matrix is positive definite. F∗ is the local minimum
point of L3(F).

Based on the above-mentioned analysis, the objective function J (U , V , F) of the algo-
rithm presented in this paper is a decreasing function, meeting the constrained conditions of
Zangwill’s theorem. Therefore, the algorithm presented in this paper must be convergent.

6 Experiments and Discussion

To test the effectiveness of the algorithm presented in this paper (the source code: http://
github.com/qi7xiao/RDKWFLICM), four kinds of grayscale images and natural color images
are selected for testing, and the testing results of the algorithm presented in this paper are
compared with those of ARFCM [44], FLICMLNLI [45], FCM_VMF [46], DSFCM_N
[47], KWFLICM [18], PFLSCM [48], FCM_SICM [49], FSC_LNML [50], and FLICM
[17]. Additionally, speckle noise, Gaussian noise, Rician noise, and salt and pepper noise are
added to these images respectively, and the corresponding noise-corrupted images are used to
test these fuzzy clustering-related algorithms. Some representative evaluation indicators such
as accuracy (Acc), sensitivity (Sen), Jaccard coefficient, segmentation accuracy (SA), Kappa
coefficient, mean intersection over union (mIoU), peak signal noise ratio (PSNR), and Dice
similarity coefficient (DICE) are adopted to assess the segmented results. During the testing
process, the size of neighborhood window in the algorithm presented in this paper is selected
as 11×11 and its fuzzifierm is 2.0. Experimental environment isMatlab2018a, and hardware
platform is CR7-5700U processor with 16G memory and a clock speed of 1.8GHZ. Among
these comparative algorithms, the size of neighborhood window in ARFCM, FLICMLNLI,
FCM_VMF, DSFCM_N, KWFLICM, PFLSCM, FCM_SICM, FSC_LNML, and FLICM
algorithms is selected as 5 × 5, 3 × 3, 4 × 4, 3 × 3, 3 × 3, 3 × 3, 7 × 7, 7 × 7, and 3 × 3
respectively. The number of clusters in FCM-related segmentation algorithms is determined
according to the clustering validity function toolbox [51]. For ease of exposition, this section
usesμ to denote themean value ofGaussian noise, andσ 2

n represents the normalized variance;
p denotes the intensity level of salt-and-pepper noise, and σ denotes the standard deviation
of Rician noise. For example, Gaussian noise with mean value of 0 and normalized variance
of 0.1 is expressed as Gaussian noise (μ � 0, σ 2

n � 0.1) or GN(0.1), salt-and-pepper noise
with the intensity of 30% is expressed as salt-and-pepper noise (p � 0.3) or SPN(0.3);
speckle noise with the normalized variance of 0.2 is expressed as speckle noise (σ 2

n � 0.2)
or SN(0.2), and Rician noise with standard deviation of 80 is expressed as Rician noise
(σ � 80) or RN(80).
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6.1 Algorithm PerformanceMetrics

To objective confirm the performance of the proposed algorithm, this paper uses the following
performance indexes to evaluate the segmentation performance of different algorithms in the
presence or absence of noise.

6.1.1 Peak Signal Noise Ratio (PSNR) [52]

PSNR is an important evaluation indicator for evaluating the quality of images and also
used to assess the performance of image segmentation algorithms, and the modified PSNR
represents a measure of the ground truth and the segmented image achieved by a given
algorithm.

PSN R � 10 log10(
R2

MSE
) (66)

MSE � 1

M1N1

∑M1

x�1

∑N1

y�1
||I (x, y) − O(x, y)||2 (67)

where R is set to 255, the number of total pixels in image is M1×N1, I (x, y) is the grayscale
value of pixel position (x, y) in the ground truth, O(x, y) is the grayscale value of pixel
position (x, y) in the segmented result achieved by some algorithm.

6.1.2 Segmentation Accuracy (SA) [44]

SA is the ratio of the number of correctly divided pixels to the number of total pixels in
image.

SA �
∑c

j�1

|A j ∩ C j |∑c
l�1|Cl | (68)

In general, the larger the value of SA is, the closer the segmented result is to the ground
truth, indicating that the algorithm has good segmentation performance.

6.1.3 Mean Intersection Over Union (mIoU) [50]

mIoU is defined as the intersection degree between the segmented result achieved by some
algorithm and the ground truth.

mIoU � 1

c

∑c

i�1

|Ai ∩ Ci |
|Ai ∪ Ci | (69)

The larger the value of mIoU is, the higher the matching degree between the segmented
results achieved by a given algorithm and the ideal segmentation image, indicating that the
performance of the algorithm is much better.

6.1.4 Accuracy (Acc), Sensitivity (Sen), and Jaccard Coefficient [53]

Given true negative (TN), true positive (TP), false positive (FP), and false negative (FN). We
define the following evaluation indicators. ACC is an important performance evaluation index
for clustering or segmentation algorithms, which measures the ratio of correctly classified
samples to the total number of samples. When the result achieved through a given algorithm
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is closer to the ground truth, the value of ACC approaches 1, indicating higher accuracy.
ACC is given as follows.

Accuracy

Acc � T P + T N

T P + T N + FN + FP
(70)

Sen refers to the proportion of samples that are truly positive and are correctly predicted
as positive by a given algorithm, also known as recall. Sen is defined as follows.

Sensitivity

Sen � T P

T N + T P
(71)

Jaccard coefficient is a widely applied performance indicator for measuring the similarity
between the ground truth and clustering results obtained through a given algorithm. A value
of 1 means that the test result is the same as the ground truth, indicating high accuracy.
Jaccard coefficient is defined as follows.

Jaccard coefficient

Jaccard � T P

T P + FP + FN
(72)

DICE is commonly used to represent the overlap degree between the result obtained
by a given algorithm and the ground truth. The larger the value of DICE is, the better the
performance of the algorithm is. DICE index is defined as follows.

Dice similarity coefficient [47] (DICE)

DICE � 2T P

2T P + FP + FN
(73)

6.1.5 Kappa Coefficient [54]

Kappa coefficient is an important performance indicator used for consistency evaluation,
which can be used to assess the effectiveness of classification or partition.

Kappa � po − pe
1 − pe

(74)

where po is the sumof the number of correctly classified or clustered samples in each category
divided by the total number of samples, which is the overall classification accuracy.

6.2 Test and Evaluation of Algorithm Anti-noise Robustness

6.2.1 Synthetic image

To verify the anti-noise robustness of various algorithms, four synthetic images are selected
and added different types of noise to test the algorithm presented in this paper and all the
comparative algorithms.

RN (σ � 80) is used to corrupt Fig. 4a, SPN(p � 0.3) is used to corrupt Fig. 4b, GN
(μ � 0, σ 2

n � 0.1) is used to corrupt Fig. 4c, and SN(σ 2
n � 0.2) is used to corrupt Fig. 4d.

These noisy images are segmented using different fuzzy segmentation algorithms, and the
segmented results are displayed in Fig. 5. Table 1 gives the corresponding performance
evaluation results.
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Original image:

Ground truth:

(a)            (b)   (c)   (d) 

Fig. 4 Synthetic images. aRegular image with three categories; b regular image with three categories; c regular
image with four categories; d irregular image with five categories

Fig. 5 Segmented results of various algorithms in noisy synthetic images. a Noisy image; b ARFCM;
c FLICMLNLI; d FCM_VMF; e DSFCM_N; f KWFLICM; g PFLSCM; h FCM_SICM; i FSC_LNML;
j FLICM; k proposed algorithm

From Fig. 5, the image contains strong noise, the segmented results of FCM_VMF and
FLSCM are very poor, indicating that these two comparative algorithms are short of certain
robustness to noise. DSFCM_N, PFLICM, and FLICMLNLI achieve more satisfactory seg-
mented results when handing image contaminated by Rician noise, but when images contain
other types of noise, their segmented results are also poor, so DSFCM_N, PFLICM, and
FLICMLNLI are robust to Rician noise, but lack a certain robustness to other types of noise;
When images contains salt-and-pepper noise, ARFCM appears over-segmentation, but when
images contain other types of noise, it can also achieve good segmented results, so ARFCM
is susceptible to salt-and-pepper noise. The KWFLICM algorithm presented in this paper
can effectively restrain a large amount of noise, but its segmented results are still dissatisfied;
FCM_SICM and FSC_LNML can also restrain lots of noise, but its segmented results have
uneven edges. In summary, The RDKWFLICM algorithm presented in this paper is more
effective than several other comparative algorithms in segmenting synthetic images with
various types of noise. From Table 1, all the evaluation values of the RDKWFLICM algo-
rithm presented in this paper are higher than those of several other comparative algorithms.
Therefore, the RDKWFLICM algorithm presented in this paper outdistances many existing
FCM-related algorithms for strong noise-polluted image.
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6.2.2 Natural Image

To further test the robustness performance of the algorithmpresented in this paper, four natural
images are selected from BSDS500 [55], COCO [56], and VOC2010 [57] for segmentation
testing.

SPN(0.3) is used to corrupt Fig. 6a and b, and GN(0.1) is used to corrupt Fig. 6c and d.
These noise-polluted images are segmented using various FCM-related algorithms, and the
segmented results are displayed in Fig. 7. Table 2 provides the corresponding performance
evaluation indexes.

As shown in Fig. 7, except for FCM_SICM, FSC_LNML, and RDKWFLICM, the seg-
mented results of all other algorithms appear some noise. Among them, FLICMLNLI and
FCM_VMF have the worst segmentation effect, and there are some misclassification in the
segmented results; DSFCM_N achieves more satisfactory segmented results when handling
imageswithGaussian noise, but the segmented effect is still poorwhen images are polluted by
salt-and-pepper noise; the FLICM algorithm can extract targets in images, but the segmented
results appear a large amount of noise; the KWFLICM algorithm can restrain lots of noise,
but the segmented effect is still dissatisfied; FCM_SICM and FSC_LNML can effectively
restrain a large amount of noise, but there are non-uniform edges in their segmented results;

Original image:

Ground truth:

(a)        (b)           (c)           (d)

Fig. 6 Natural images. a 001717 from VOC2010; b 000000156627 from COCO_test2015; c 35,010 from
BSDS500; d 22090from BSDS500

Fig. 7 Segmented results of various algorithms in noisy natural images. a Noisy image; b ARFCM;
c FLICMLNLI; d FCM_VMF; e DSFCM_N; f KWFLICM; g PFLSCM; h FCM_SICM; i FSC_LNML;
j FLICM; k proposed algorithm
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The segmented results of the PFLSCM algorithm appear a lot of noise, which is hardly sat-
isfactory; the RDKWFLICM algorithm presented in this paper is more effective than other
compared algorithms. As shown in Table 2, all the evaluation values of the RDKWFLICM
algorithm presented in this paper are all higher than those of other comparative algorithms
for natural image with high noise.

6.2.3 Remote Sensing Image

To test the anti-noise performance of the algorithm, four remote sensing images are selected
fromUCMercedLandUse dataset [58] and SIRI_WHUdataset [59] for segmentation testing.

SPN(0.4) is used to corrupt Fig. 8a and b, and SN(0.2) is used to corrupt Fig. 8c and d.
These noisy images are segmented using various FCM-related algorithms, and the segmented
results are displayed in Fig. 9. Table 3 provides the corresponding performance evaluation
indicators.

As shown in Fig. 9, FCM_VMF, FLICMLNLI, PFLSCM, KWFLICM, DSFCM_N, and
FLICMhave poor segmented results for remote sensing imageswith high noise.Among them,
ARFCM has under-segmentation when segmenting Fig. 9b and d; FLICMLNLI achieves
more satisfactory segmented results for images in Fig. 9c and d, but cannot segment images
with salt-and-pepper noise; FCM_VMF algorithm has poor segmentation effect, and the
segmented results also contain a lot of noise;DSFCM_N,KWFLICM, andFLICMalgorithms

Original image:

Ground truth: 

(a) (b)       (c)   (d) 

Fig. 8 Remote sensing images. a Urban road map; b building; c 0113 from SIIRI_WHU; d runway from UC
Merced land use

Fig. 9 Segmented results of various algorithms in noisy remote sensing images. a Noisy image; b ARFCM;
c FLICMLNLI; d FCM_VMF; e DSFCM_N; f KWFLICM; g PFLSCM; h FCM_SICM; i FSC_LNML;
j FLICM; k proposed algorithm
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can effectively extract targets in images, but the segmented results also contain a lot of noise;
FCM_SICM and FSC_LNML can restrain a large amount of noise, but there are uneven
edges among their segmented results, and the segmentation results are still dissatisfied. The
RDKWFLICM algorithm presented in this paper can obtain better segmentation effect for
four noisy remote sensing images than other comparative algorithms. In terms of performance
indicators, the index values of the RDKWFLICM algorithm presented in this paper are all
significantly higher than those of other comparative algorithms for remote sensing image
with high noise.

6.2.4 Medical Images

To test the robustness performance of the algorithm for medical image, four MR images are
selected from Brain Tumor MRI data set [60] for segmentation testing.

RN(80) is used to corrupt Fig. 10a and b, and GN(0.1) is used to corrupt Fig. 10c and d.
These noisy images are segmented using various FCM-related algorithms, and the segmented
results are displayed in Fig. 11. Table 4 provides the corresponding performance evaluation
indexes at lengthen.

As shown in Fig. 11, ARFCM algorithm cannot extract targets in images when handling
noisy medical images; FLICMLNLI has lost image details when processing noisy images,
making the segmented results unsatisfactory; FCM_VMF algorithm is difficult to restrain the

Original image:

Ground truth: 

(a) (b)          (c)           (d)

Fig. 10 MR images from Brain Tumor MRI data set. a Te-no_0030; b 37 no; c 28 no; d Te-no_0013

Fig. 11 Segmented results of various algorithms in noisy MRI images. a Noisy image; b ARFCM;
c FLICMLNLI; d FCM_VMF; e DSFCM_N; f KWFLICM; g PFLSCM; h FCM_SICM; i FSC_LNML;
j FLICM; k proposed algorithm
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noise in images, and its segmented results are theworst; the segmented results of FCM_SICM
and FSC_LNML are similar to the ground truth, suppressing almost all noises but some
details are lost; DSFCM_N, KWFLICM, PFLSCM and FLICM can retain image details well
and restrain some noise, but there is still some noise in their segmented results. However,
the presented RDKWFLICM algorithm suppresses almost all the noises in medical images
and can extract targets in images accurately, and achieves satisfactory segmented results,
which are also verified in the evaluation indexes in Table 4. Overall, the RDKWFLICM
algorithm presented in this paper outdistances many existing FCM-related algorithms for
medical images with strong noise.

6.3 Test and Analysis of Algorithm Performance with Noise Intensity

In this section, GN(0.05–0.11) is used to corrupt the synthetic image in Fig. 4a. Ten fuzzy
algorithms are used to segment these noisy images, and the change curves of evaluation
metrics of various algorithms are obtained, as given in Fig. 12. Most of evaluation indexes
of all algorithms decrease as σ 2

n of Gaussian noise increases, among which FCM_VMF
algorithm has the lowest evaluation values; FLICM, FLICMLNLI, KWFLICM, and the
RDKWFLICM algorithm presented in this paper have improved evaluation index values,
and the performance indexes of the RDKWFLICM algorithm presented in this paper are
better than those of all the comparative algorithms. Overall, the performance curves of the
RDKWFLICM algorithm presented in this paper change slowly with σ 2

n of Gaussian noise,
and the RDKWFLICM algorithm presented in this paper outdistances all the comparative
algorithms.

SPN(0.12–0.3) is added to the natural image in Fig. 6c. Using ten fuzzy algorithms to
process the noise-contaminated images, the change curves of evaluation metrics of various
algorithms with p of salt-and-pepper noise are obtained, as displayed in Fig. 13. Most of
the performance indexes of all algorithms decrease as p of salt-and-pepper noise increases.

(a) (b) (c)      (d)

(e) (f)           (g)                                        (h)

Fig. 12 The performance curves of various algorithms varying with σ 2
n of Gaussian noise. a Acc; b Sen;

c Jaccard; d PSNR; e SA; f Kappa; g mIoU; h DICE
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(a)

(e)

(b) (c) (d)

(f) (g)                                        (h)

Fig. 13 The performance curves of various algorithms varying with p of salt-and-pepper noise. a Acc; b Sen;
c Jaccard; d PSNR; e SA; f Kappa; g mIoU; h DICE

The FLICMLNLI algorithm has the lowest evaluation index values; When p of salt-and-
pepper noise is lower than 21%, the PFLSCM algorithm has higher values for all evaluation
indexes than other algorithms, and when p of salt-and-pepper noise is higher than 21%, the
RDKWFLICM algorithm presented in this paper has higher values for all evaluation indexes
than other comparative algorithms. Overall, the RDKWFLICM algorithm presented in this
paper outdistances all the comparative algorithms in the presence of high salt-and-pepper
noise.

SN(0.05–0.23) is added respectively to the remote sensing image in Fig. 8d. Using ten
fuzzy algorithms to segment the noise-contaminated images, the change curves of evaluation
metrics of various algorithms with σ 2

n of speckle noise are obtained, as displayed in Fig. 14.
Most of evaluation indexes of all algorithms decrease as σ 2

n of speckle noise increases.
FCM_VMF has the lowest evaluation values and RDKWFLICM obtains higher evaluation
values than all the comparative algorithms. On the whole, the change of σ 2

n of speckle noise
has the least impact on the performance of the RDKWFLCM algorithm presented in this
paper, and its robustness to noise is stronger than all the comparing algorithms.

RN(50–80) is used to corrupt MRI images in Fig. 10c. Using ten fuzzy algorithms to
segment the noise-polluted medical images, and the change curves of performance indexes
of various algorithms with σ of Rician noise are obtained, as displayed in Fig. 15. The
performance curves of evaluation indexes in most algorithms decrease progressively with the
increase of σ of Rician noise. FLICMLNLI algorithm obtains the lowest values of different
evaluation indexes for MRI image with Rician noise. However, the RDKWFLICM algorithm
presented in this paper has higher values than all the comparative algorithms in all evaluation
indexes, and has stronger stability and robustness against changes in σ of Rician noise.
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(a) (b) (c) (d)

(e) (f) (g)                                          (h)

Fig. 14 The performance curves of various algorithms varyingwithσ 2
n of speckle noise. aAcc;bSen; c Jaccard;

d PSNR; e SA; f Kappa; g mIoU; h DICE

(a)                                        (b)                                       (c)                                       (d)

(e)                                       (f)                                        (g)                                        (h)

Fig. 15 The performance curves of various algorithms varying with σ of Rician noise. a Acc; b Sen; c Jaccard;
d PSNR; e SA; f Kappa; g mIoU; h DICE

6.4 Test and Analysis of Algorithm Complexity

Algorithm complexity is an important index for evaluating algorithm performance. For the
algorithm presented in this paper and all the comparative algorithms related to this paper,
their computational complexity is given in Table 5, where n is the number of total pixels
in image, w is the size of neighborhood window in robust fuzzy clustering, c is number of
categories;, t is iteration times when the algorithm converges, w1 is the size of neighborhood
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Table 5 Computational time complexity of various FCM-related algorithms

Algorithms Computational complexity

ARFCM O(n × c × w × t)

FLICMLNLI O(n × w2 × w3 + c × n × w2 × t)

FCM_VMF O(n × w + n × c × t)

DSFCM_N O(c × n × w × t)

KWFLICM O(n × w + w × n × c × t)

PFLSCM O(n × w2 + n × c × w2 × t)

FCM_SICM O(n × w × log2(n × w) + n + n × c × t)

FSC_LNML O(n × w2 + n × w + n × c × t)

FLICM O(n × c × t × w)

RDKWFLICM O(n × w1 + n × t × w1 + n × w × t + n × c × t × w)

window in Gaussian filtering and guided bilateral filtering, w2 is the size of neighborhood
window in no-local mean filtering, w3 is the size of searching window in no-local mean
filtering.

The computational time complexity of the RDKWFLICM algorithm presented in this
paper includes of three parts: the iteration of the RDKWFLICM algorithm, the update of
the position of local window in guided bilateral filtering, and the update of the position of
neighborhood window. For an image with the size of n, the computational time complexity
of iteration operation of the RDKWFLICM algorithm presented in this paper is O(w × n ×
c× t +n×w1 × t). In the process of filtering, the image is divided into filtering window with
the size ofw1, then the window slides until all pixel points on the image are traversed, and its
computational time complexity is O(n × w1). The size of neighborhood window is w, then
its computational time complexity is O(n × w). Therefore, the RDKWFLICM algorithm
presented in this paper has computational time complexity of O(n × w1 + n × t × w1 + n ×
w × t + n × c × t × w).

As shown in Table 5, the computation time complexity of FLICMLNLI, PFLSCM, and
FSC_LNML algorithms is markedly higher than that of other comparative algorithms. To
verify the computational time complexity of these fuzzy algorithms, we add various types
and intensities of noise to various images for testing. By analyzing of time cost of these
fuzzy algorithms for noise-polluted images, we confirm the computational time complexity
of various FCM-related algorithms related to this paper. RN(80), SPN(0.3), GN(0.1), and
SN(0.2) are used to corrupt two synthetic images in Fig. 4a and b; SPN(0.3) and GN(0.1)
are used to corrupt two natural images in Fig. 6d and e; SPN(0.3) and SN(0.2) are used to
corrupt remote sensing images in Fig. 8a and c; RN(80) and GN(0.1) are used to corrupt
medical images in Fig. 10a and d. A histogram of time cost of various algorithms for these
noise-polluted images is given in Fig. 16, where the parameters of algorithm are selected as
m � 2 and c � 3, RN is Rician noise, SPN is salt-and-pepper noise, GN is Gaussian noise,
and SN is speckle noise.

As seen in Fig. 16, the time cost of the FLICMLNLI and PFLSCM algorithms for all
noisy images is markedly higher than that of other comparative algorithms, and these two
algorithms spend approximately the same time in segmenting these noisy images. However,
the RDKWFLICM algorithm presented in this paper requires less time to handle these noisy
images, but meeting the requirements of large-scale real time image processing remains
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(a) (b)

(c)                                                                        (d)

Fig. 16 The histogramof time cost of various algorithms for noise-polluted images. a Synthetic image;b natural
image; c remote sensing image; d MRI image

challenging. In next work, we will study fast algorithm of the presented RDKWFLICM
algorithm using fast FCM-related method [61, 62], fast bilateral filter [63, 64], and SPARK
platform [65, 66] to meet real time image processing demands.

6.5 Impact of neighbor window size on algorithm performance

To investigate the impact of neighborhood window size on algorithm performance, we select
neighborhood windowwith the size of 3× 3, 5× 5, 7× 7, 9× 9, 11× 11, 13× 13, and 15×
15 to test images with various types of noise and analyze the segmented results to objectively
evaluate the impact of neighborhood window size on algorithm performance.

GN(0.1) is used to corrupt the synthetic image in Fig. 4a, SPN(0.3) is used to corrupt the
natural image in Fig. 6b, SN(0.2) is used to corrupt the remote sensing image in Fig. 8c, and
RN(80) is used to corrupt the MRI image in Fig. 10a respectively. The segmented results of
these noise-polluted images are displayed in Fig. 17.

From Fig. 17, when the neighborhood window size is 3× 3, the segmented result contains
a much noise, resulting in poor segmentation effect; When the neighborhood window size
is 5 × 5, the segmented result contains a small amount of noise, which is dissatisfied; As
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Fig. 17 Segmented results of the presented algorithm varying with the size of neighborhood window for noise-
polluted images. a Noisy image; b ground truths; c 3 × 3; d 5 × 5; e 7 × 7; f 9 × 9; g 11 × 11, h 13 × 13;
i 15 × 15

the neighborhood window size continues to increase, such 7 × 7 and 9 × 9, the algorithm’s
ability to restrain noise has been enhanced, and it can achieve satisfactory segmented results;
However, as the neighborhood window size further increases, such as 13 × 13 and 15 ×
15, the algorithm’s ability to restrain noise has been markedly enhanced, but some details
have been lost in the segmented image, which is dissatisfied. From Table 6, it can be seen
that when the neighborhood window size is 7 × 7, the segmentation evaluation indexes for
synthetic and medical images are the highest, while the neighborhood window size is 11
× 11, the segmentation evaluation indexes for natural and remote sensing images are the
highest. Therefore, it can be concluded that when the neighborhood window size is 7 × 7 to
11 × 11, the presented RDKWFLICM algorithm can obtain satisfactory segmented results.

6.6 Impact of Fuzzifier on Algorithm Performance

Fuzzifier is an important parameter in FCM-related algorithms, which has a certain impact
on the clustering performance. Pal and Bezdek [67] pointed out that from the perspective of
clustering validity, the range of fuzzifier should be between 1.5 and 2.5. This paper selects
fuzzifier as a series of values in [1.5, 2.5] to test the presented algorithm, and objectively
analyzes the impact of fuzzifier on the performance of the presented algorithm.

GN(0.1) is used to corrupt the synthetic image in Fig. 4a, SPN(0.3) is used to corrupt the
natural image in Fig. 6b, SN(0.2) is used to corrupt the remote sensing image in Fig. 8c, and
RN(80) is used to corrupt the MRI image in Fig. 10a respectively. The corresponding noisy
images are used to test the presented algorithm with different fuzzifiers. Figure 18 provides
the variation curves of algorithm performance with fuzzifier.

As shown in Fig. 18, for images with speckle or Rician noise, the presented algorithm is
less sensitive to fuzzifier than images with Gaussian noise or salt-and-pepper noise. Overall,
the performance of the presented algorithm is stable as fuzzifier changes, and it is reasonable
to select a fuzzifier of around 2.0 in the presented algorithm.
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(a) (b)

(c) (d)

Fig. 18 The performance curves of the presented algorithm varying with fuzzifier. a Synthetic image with
Gaussian noise; b natural image with salt and pepper noise; c remote sensing image with speckle noise; dMRI
image with Rician noise

6.7 Algorithm Sensitivity to Initial Clustering Centers

To verify the susceptibility of the presented algorithm to initial clustering centers, the
grayscale levels within the maximum and minimum values of noise-polluted image are
divided equally into c segments, and the grayscale levels with a frequency of 0 are removed.
At each execution, a group of values from the c segments are randomly selected as the initial
clustering centers [68, 69], and six groups of initial clustering centers are selected for segmen-
tation testing. We select the synthetic image in Fig. 4a, and it is corrupted by Gaussian noise
with different normalized variances. Natural image in Fig. 6b is corrupted by salt-and-pepper
noise with different intensity levels. Remote sensing in Fig. 8c is corrupted by speckle noise
with different normalized variances. MRI image in Fig. 10a is corrupted by Rician noise
with different standard deviations. These noise-polluted images are used to test the presented
algorithm. The box plots of algorithm performance varying with initial clustering centers are
shown in Figs. 19, 20, 21, and 22.
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(a) (b)     (c)          (d)

Fig. 19 Algorithm performance varying with initial clustering centers under Gaussian noise with different
normalized variances. a GN(0.05); b GN(0.07); c GN(0.1); d GN(0.12)

(a) (b)            (c)    (d) 

Fig. 20 Algorithm performance varying with initial clustering centers under salt-and-pepper noise with differ-
ent intensity levels. a SPN(0.15); b SPN(0.2); c SPN(0.25); d SPN(0.3)

(a) (b)              (c)          (d) 

Fig. 21 Algorithm performance varying with different initial clustering centers under speckle noise with dif-
ferent normalized variances. a SN(0.05); b SN(0.1); c SN(0.15); d SN(0.2)

(a) (b)         (c)            (d)

Fig. 22 Algorithmperformancevaryingwith different initial clustering centers underRiciannoisewith different
standard deviations. a RN(50); b RN(60); c RN(70); d RN(80)
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As shown in Figs. 19, 20, 21, and 22, the presented algorithm for MRI image with Rician
noise is more sensitive to initial clustering centers compared with images with other types of
noise, but the presented algorithm for Gaussian noise-polluted image is the most insensitivity
to initial clustering centers. Overall, the proposed algorithm is not very susceptible to initial
clustering centers.

6.8 Test and Analysis of the Generalization Performance

To verify the adaptability of the presented algorithm, we select large numbers of images from
BSDS500 dataset to demonstrate the effectiveness and generality of the algorithm presented
in this paper. Considering the limited length of this paper, we only provide 7 images from
BSDS500 and segment them using ten FCM-related algorithms. GN(0.1) is used to corrupt
#2018, #24004, #3063, and #238011, SPN(0.3) is used to corrupt #235098, #8086, and
#56028. The segmented results of these noise-polluted images are displayed in Fig. 23.

From Fig. 23, when natural images contain strong noise, the segmented results of
FCM_VMF and FLICMLNLI are very poor, indicating that these two algorithms are short of
certain robustness to noise. FCM_VMF and FLICMLNLI have the worst segmented results
for noisy image; ARFCM for natural image will lose some details in images, resulting in
poor segmentation effect; The segmented results of DSFCM_N, PFLSCM, and FLICM con-
tain much noise, which are dissatisfied; FCM_SCIM and FSC_LNML can restrain lots of
noise, but the edges of the segmented image are not smooth; the KWFLICM algorithm has
good performance in image segmentation, but its segmented results still contain some noise;
Compared with other comparative algorithms, the segmented results of the RDKWFLICM
algorithm presented in this paper are closer to the ground truth and fully preserve the details
of images. From Figs. 24 and 25, the presented RDKWFLICM algorithm has better perfor-
mance than other comparative algorithms. Therefore, the presentedRDKWFLICMalgorithm
has marked potential advantages in noisy natural image segmentation.

To further verify the effectiveness and adaptability of the presented algorithm,we continue
to select large numbers of images from BSDS500 for segmentation testing, and extensive
experiments demonstrate that the presented RDKWFLICM algorithm has good performance
in noiseless natural image segmentation. Considering the restricted space of this paper, we
only provide the segmented results of eight noiseless natural images in Fig. 26.

As shown in Fig. 26, ARFCM segments noiseless natural images, resulting in partial
details loss in images; FCM_VMF can extract targets from images #2018 and #51084, but it
is difficult to segment other images; DSFCM_N and PFLISCM segment #238011, #235098
and #24004, resulting in obvious misclassification of image background, but it can effec-
tively segment other images; FCM_SICM and FSC_LNML segment #35008, #235,098,
#238011 and #24004, resulting in over-segmentation. DSFCM_N and PFLISCM cannot rea-
sonably segment #238011, #235098, and #24004, but it can effectively segment other images;
FCM_SICM and FSC_LNML segment #35008, #235098, #238011, and #24004, and they
also have a certain over-segmentation; KWFLICM, FLICM, and RDKWFLICM obtained
similar segmented results. From Figs. 27 and 28, the Acc and PSNR indicators of the pre-
sentedRDKWFLICMalgorithmaremuch higher than other comparative algorithms.Overall,
the presented RDKWFLICM algorithm for noiseless images has better generalizability and
adaptability than many existing FCM-related algorithms.
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2018            24004              3063            238011         235098            8086             56028

(a)

(b)

(c)       

(d)       

(e)       

(f)       

(g)       

(h)       

(i)       

(j)       

(k)       

(l)       

(m)       

Fig. 23 Segmented results of all algorithms for noise-polluted images fromBSDS500. aOriginal image;bnoisy
image; c ground truth; d ARFCM; e FLICMLNLI; f FCM_VMF; g DSFCM_N; h KWFLICM; i PFLSCM;
(j) FCM_SICM; (k) FSC_LNML; (l) FLICM; (m) Proposed algorithm

6.9 Test and Analysis of Algorithm for Color Image

To verify the adaptability of the presented algorithm for color images, we select large num-
bers of color images from BSDS500 and UC Merced Land Use remote sensing dataset to
demonstrate the effectiveness and generality of the presented algorithm. Considering the
restricted space of this paper, we only provide eight color images from BSDS500 dataset
and UC Merced Land Use remote sensing dataset for segmentation testing. SPN(0.2) is
used to corrupt #51084 and #3063, GN(0.1) is used to corrupt #124084 and #12003, and
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Fig. 24 Histograms of Acc index for various algorithms in noisy natural images

Fig. 25 Histograms of PSNR index for various algorithms in noisy natural images

SN(0.2) is used to corrupt building 30. These noiseless images and noise-polluted images
are segmented using ten FCM-related algorithms. The corresponding segmented results are
displayed in Fig. 29.

As shown in Fig. 29, for noise-free color images, ARFCM, FLICMLNLI, DSFCM_N,
KWFLICM, FCM_SICM, and FLICM can effectively extract targets in images. However,
FCM_VMF is almost unable to extract targets in images; for noise-polluted color images,
DSFCM_N, PFLSCM, FLICMLNLI and FLICM cannot completely restrain the noise, and
there is still noise in their segmented results. ARFCM, FCM_SCIM, and FSC_LNML can
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2018            35008           235098          51084          238011          24004           56028

(a)      

(b)      

(c)      

(d)      

(e)      

(f)      

(g)     

(h)     

(i)      

(j)      

(k)      

(l)      

Fig. 26 Segmented results of all algorithms for noiseless images from BSDS500. a Original image b ground
truth; c ARFCM; d FLICMLNLI; e FCM_VMF; f DSFCM_N; g KWFLICM; h PFLSCM; i FCM_SICM;
j FSC_LNML; k FLICM; l proposed algorithm

restrain most of noise in images, but the edges of the segmented image are not smooth
and dissatisfied; Compared with other comparative algorithms, the presented RDKWFLICM
algorithm obtain good segmentation results, which are roughly the same as the ground truths
and their details are retained completely. From Figs. 30 and 31, the presented RDKWFLICM
has the higher performance indicators than other comparative algorithms for these noiseless
images.Overall, theRDKWFLICMalgorithmpresented in this paper also has goodgenerality
and adaptability for color image segmentation.
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Fig. 27 Bar charts of Acc indicator for various algorithms in noiseless natural images

Fig. 28 Bar charts of PSNR indicator for various algorithms in noiseless natural images

6.9.1 Statistical Comparisons and Analysis

To systematically evaluate various algorithms, this paper uses Friedman test [70] to measure
the running efficiency (time) and segmentation quality (Acc, PSNR and mIoU) of ten FCM-
related segmentation algorithms for sixteen images in Figs. 4, 6, 8, and 10. More specifically,
in Friedman test process, a significance level is set to α � 0.05. Critical difference (CD)
diagrams are shown in Fig. 32.
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35028          35008         118035          51084          3063          124084        12003      buildings30 

(a)   

(b)   

(c)   

(d)   

(e)   

(f)   

(g)   

(h)   

(i)   

(j)   

(k)   

(l)   

Fig. 29 Segmented results of all algorithms for color images from BSDS500 and UC Merced Land Use
database; a original image with or without noise. b Ground truth; c ARFCM; d FLICMLNLI; e FCM_VMF;
f DSFCM_N; g KWFLICM; h PFLSCM; i FCM_SICM; j FSC_LNML; k FLICM; l proposed algorithm

FromFig. 32, the presented algorithm for sixteen images achieves a statistical advantage in
running efficiency and segmentation quality over FCM_SICM. The FLICMLNLI, PFLSCM,
ARFCM, andFCM_VMFoutperform the presented algorithm in running efficiency, as shown
in Fig. 32a. However, the presented algorithm is not too much higher in running time than
these comparative algorithms. Therefore, the presented algorithm can achieve a good trade-
off between segmentation quality and running efficiency in statistics.

6.9.2 Algorithm Convergence Test

This paper monitors the algorithm by counting the number of iterations corresponding to its
convergence during iteration. The condition used to determine the convergence of the algo-
rithm is whether the deviation between the clustering centers corresponding to the previous
and current iterations is less than a predetermined threshold level. In the iteration of FCM-
related clustering, updating the clustering centers is very important. When the deviation of
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Fig. 30 Histograms of Acc indicator for various algorithms in color images with or without noise

Fig. 31 Histograms of PSNR indicator for various algorithms in color images with or without noise

the clustering centers is less than or equal to a predetermined threshold level, the clustering
centers have reached a stable state, and the clustering algorithm can be considered to have
converged. Usually, we can define an algorithm stopping error or the maximum number of
iterations as the stopping condition for any iterative algorithm, and if the algorithm reaches
the stopping condition, it is considered that the algorithm has converged. To test the conver-
gence speed of various algorithms, three images are selected fromBSDS500 dataset [55], UC
Merced land use dataset [58], and brain tumorMRI dataset [60] for segmentation testing. The
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(b) Acc

(c) PSNR

(d) mIoU

(a) Time

Fig. 32 CD diagrams of Time, Acc, PSNR, and mIoU for ten comparative algorithms in sixteen images
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Table 7 Number of iterations of various algorithms for noise-polluted images

Algorithm #35,008 + SPN(0.3) #35,008 + GS(0.1) #37 no + RN(50) Building + SN(0.2)

ARFCM 50 89 36 100

FLICMLNLI 183 150 286 439

FCM_VMF 34 26 31 92

DSFCM_N 133 86 534 361

KWFLICM 30 27 42 34

PFLSCM 63 28 44 41

FCM_SICM 12 26 11 10

FSC_LNML 92 80 61 48

FLICM 25 40 33 29

Proposed 27 21 27 20

number of iterations of various algorithms for different noise-polluted images are detailed in
Table 7.

From Table 7, the algorithm presented in this paper has fewer iterations than other com-
parative algorithms. By comparing iteration times of different algorithms, the algorithm
presented in this paper is obviously better than other comparative algorithms in aspect of
the rate of convergence. Overall, the algorithm presented in this paper not only has good
segmentation performance, but also has high operational efficiency.

6.9.3 Impact of Cluster Number on the Algorithm

Determining the cluster number in FCM-related algorithms is the problem of clustering
validity, and it is also important topic in fuzzy clustering theory. So far, many clustering
validity functions [51] are constructed to solve the problem of selecting optimal number of
clusters in many unsupervised clustering. Validity functions not only solve the problem of the
number of clusters in FCM-related algorithm, but also uses to guide FCM-related algorithms
for data analysis and image understanding [71].

In this paper, we use the software in reference [51] to determine the number of clusters
for image segmentation. However, if the number of clusters is not selected properly, the
segmented results of FCM-related algorithms will differ significantly from the ground truth,
leading to catastrophic errors in image understanding.

Irregular synthetic image with five classes (abbreviated as SI), medical image with four
classes (abbreviated as CT31), natural image (abbreviated as 24,063), and remote sensing
image with three classes (abbreviated as buildings 69) are selected for segmentation testing.
These four images are corrupted by various types and intensities of noise. The corresponding
noisy images are processed using the RDKWFLICM algorithm presented in this paper. The
segmented results are displayed in Fig. 33, and the evaluation indexes are detailed in Table 8.

As shown in Fig. 33, when the number of classes is small, the details in image cannot
be fully extracted, resulting in inaccurate image segmentation. When the number of classes
is close to the real number of classes in image, various features and details can be better
extracted, thus obtaining higher segmentation accuracy and more accurate other evaluation
indexes inTable 8. Therefore,whenFCM-related algorithms are used for image segmentation,
it is necessary to select an appropriate number of classes according to clustering validity
functions to obtain satisfactory segmented results.
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GN(0.1)   

RN(50)    

SPN(0.3)  

SN(0.1)    

(a)                  (b)                   (c)                    (d)                   (e)                   (f)                    (g)

Fig. 33 Segmented results of the presented algorithm with cluster number for images with various types of
noise. a Original image; b ground truth; c noise image; d two classes; e three classes; f four classes; g five
classes

7 Conclusion and Outlook

This paper presents a reconstruction-aware kernelized FCMwith weighted local information
and guided filtering for image segmentation, which enhances the segmentation performance
of KWFLICM algorithm in the stronger noise. This algorithm first uses local entropy-based
Gaussian filter to process noisy image; Then the filtered image of Gaussian filter is embedded
into bilateral filter and an optimization model of guided bilateral filter is established; Finally,
the guided bilateral filtering is fused into KWFLICM algorithm, and a tri-level alternative
and iterative algorithm of reconstruction data, fuzzy membership and the clustering centers
are presented. This algorithm has a solid mathematical theoretical foundation and good
local convergence, paving the way for its widespread application. Extensive experiments
indicate that the presented algorithm has good segmentation performance and strong anti-
noise robustness, and it outperforms many existing robust FCM-related algorithms such as
KWFLICM. However, there are still the following issues that need to be addressed: (1) the
low contrast images or edge blurred images with complex noise pollution may lead to the
lack of clarity of the image edges, which in turn affects the accuracy of image segmentation
and object recognition. (2) The proposed algorithms need to be manually parameterized
and cannot be adaptively adjusted, which leads to inconvenience in use. (3) The proposed
algorithm takes a long time to process the noisy image and the processing time increases
with the increase of noise, image size and image complexity. Therefore, we have made
further improvements to the algorithm in future work, strengthening its running efficiency
and adaptability.

In near future, we will combine the proposed algorithm with sparse encoding based click
prediction [72] for web noisy image reranking, and deeply integrate the proposed algorithm
with layered deep click feature prediction [73] to solve the problem of noisy image recog-
nition. This has significant value in promoting the widespread application of the algorithm
proposed in this paper.
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