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Abstract
The objective of causal discovery is to uncover the causal relationships among natural
phenomena or human behaviors, thus establishing the basis for subsequent prediction and
inference. Traditional ways to reveal the causal structure between variables, such as interven-
tions or random trials, are often deemed costly or impractical. With the diversity of means
of data acquisition and abundant data, approaches that directly learn causal structure from
observational data are attractingmore interest in academia. Unfortunately, learning a directed
acyclic graph (DAG) from samples of multiple variables has been proven to be a challenging
problem.Recent proposals leverage the continuous optimizationmethod to discover the struc-
ture of the target DAG from observational data using an acyclic constraint function. Although
it has an elegant mathematical form, its optimization process is prone to numerical explosion
or the disappearance of high-order gradients of constraint conditions, making the conver-
gence conditions unstable and the result deviating from the true structure. To tackle these
issues, we first combine the existing work to give a series of algebraic equivalent conditions
for a DAG and its corresponding brief proofs, then leverage the properties of the M-matrix to
derive a new acyclic constraint function. Based on the utilization of this function and linear
structural equation models, we propose a novel causal discovery algorithm called LeCaSiM,
which employs continuous optimization. Our algorithm exploits the spectral radius of the
adjacency matrix to dynamically adjust the coefficients of the matrix polynomial, effectively
solving the above problems. We conduct extensive experiments on both synthetic and real-
world datasets, the results show our algorithm outperforms the existing algorithms on both
computation time and accuracy under the same settings.
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1 Introduction

With the emergence of the big data era, machine learning methods have experienced rapid
development, and artificial intelligence has achieved significant research breakthroughs in
recent years. Its application has rapidly expanded to numerous fields of economic and social
development. However, researchers have recognized that most existing machine learning
models are primarily based on the study of variable correlations, disregarding the underlying
causality in the data. This not only compromises the interpretability of the models but also
diminishes their inference capabilities [17]. Understanding the causality between variables
and leveraging causal relationships for inference is a crucial aspect of human intelligence.
Intelligence that is built upon causal reasoning is a key criterion for assessing the gap between
machine models and human intelligence. The fundamental distinction between causality and
correlation lies in the inherent structural asymmetry of causality [24]. While correlation
primarily focuses on describing the similarity in changing trends between variables, causality
emphasizes the directional cause-and-effect relationship among samples. This distinction
offers the potential for achieving accurate reasoning. Presently, there is a growing interest
among researchers in causal reasoning based on causal relationships. The objective of causal
research is to unveil the causal relationships between variables and construct causal models
(causal discovery), followed by predicting causal effects and estimating variable changes
based on this knowledge (causal inference). Causal research holds wide applicability in
various domains, including social computing [10], policy evaluation [12], medical diagnosis
[19], and financial market forecasting [11].

Causal discovery, as a crucial prerequisite for causal reasoning, has garnered significant
attention in the academic community in recent years [8]. Traditionally, a common approach
to causal discovery is through randomized controlled trials (RCTs), which involve interven-
tions or random experiments to obtain sample data and unveil the causal structure between
variables. However, RCTs often encounter issues such as high costs and limited practicality
[26]. For instance, it is impractical to impose smoking or smoking cessation interventions on
the subjects under investigation to study the impact of smoking on health. With the diversifi-
cation of data acquisition methods and the increasing availability of abundant data, fields like
sociology, biomedicine, economics, and environmental science have amassed large amounts
of observational data. This data consists of direct observations of facts or phenomena and
encompasses the underlying true distribution patterns. Although observational data may con-
tain hiddenvariables and selection biases, researchers still believe that unaltered observational
data can better reflect the true distribution of samples compared to intervention data, mak-
ing them more generalizable. Consequently, the direct exploration of causal relationships
between variables from observational sample data has emerged as a research focal point in
statistics and artificial intelligence [4]. In order to address the challenges posed by observa-
tional data, researchers have developed various causal relationship models based on a series
of fundamental assumptions (such as the sufficiency assumption and Markov assumption)
to characterize the causal relationships between random variables [18, 21]. Among these
models, the Structural Causal Model (SCM) proposed by J. Pearl has gained wide adop-
tion in the field of explainable artificial intelligence. In SCM, a DAG is utilized to depict the
causal relationships between multiple variables, where nodes represent random variables and
directed edges signify causal relationships between variables. The objective of causal struc-
ture discovery is to learn a DAG that accurately represents the causal relationships between
variables from the observed sample data. This task is commonly referred to as DAG structure
learning or the Bayesian network structure learning problem [18].
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Traditional algorithms for causal discovery based on SCM often approach the problem of
learning causal structures as an optimization task involving scoring function values. Acyclic-
ity constraints are introduced on sets of directed graphs, and candidate weight adjacency
matrices are iteratively adjusted to optimize the scoring values and determine the final graph
structure [5]. However, as the number of nodes increases, the exponential growth of the
search space for DAGs makes this problem NP-hard [6], posing a significant challenge for
researchers. In the 2018 NIPS conference, Zheng et al. [31] proposed a novel approach that
employs continuous optimization under acyclicity constraints to solve the graph structure.
This approach cleverly exploits the relationship between the diagonal elements in the kth
power of the adjacency matrix and acyclicity, and by leveraging the convergence properties
of matrix exponentiation, a continuous function is introduced to characterize the features of
DAG structures. Consequently, the problem of DAG structure learning is recast as a contin-
uous optimization problem under acyclicity constraints. This innovative approach has paved
the way for new research directions and has generated considerable interest from researchers,
establishing continuous optimizationmethods as a prominent focus in the field of causal struc-
ture discovery. Although this method exhibits elegant mathematical form, the computation of
acyclicity constraints requires high-order power operations on the weight adjacency matrix,
and the coefficients of high order terms can affect their numerical values. If the coefficients
are too large, it may lead to numerical exploding. Therefore, some research efforts [27, 31]
have attempted to use very small coefficients for high-order terms tomitigate this issue. How-
ever, another study [30] argues that high-order terms contain crucial information about larger
cycles. If the coefficients are too small, there is a higher likelihood for the cycle information
and gradient information within the higher-order terms to disappear. This leads to unstable
convergence conditions and deviations from the true graph structure. Conversely, they argue
that using larger coefficients can help detect larger cycles in the graph.

To address the aforementioned contradiction, this paper introduces the M-matrices [15]
and its properties to propose a new acyclic constraint continuous function. This function
allows for adaptive adjustment of the coefficients of higher-order terms. During the initial
stage of optimization, where a significant disparity exists between the candidate graph and the
target graph (as indicated by a large spectral radius for the candidate graph and a zero spectral
radius for the target DAG), smaller coefficients are assigned to the higher-order terms to pre-
vent numerical instability. As the optimization progresses and the candidate graph approaches
the target graph, with the spectral radius approaching zero, larger coefficients are assigned
to the higher-order terms to prevent numerical instability and facilitate the identification of
larger cycle information in the DAG structure. Based on the aforementioned analysis, the
proposed acyclic constraint with adjustable coefficients addresses both the potential issues
of numerical instability and gradient disappearance during optimization. Building upon this
acyclic constraint, this paper presents a novel causal structure discovery algorithm called
LeCaSiM (learning causal structure via inverse of M-matrices with adjustable coefficients).
Experimental results on both synthetic and real datasets demonstrate that LeCaSiM effec-
tively learns the causal structure between variables from observational data, surpassing the
efficiency and accuracy of existing algorithms.We present the following summary of our
contributions:

• In order to precisely characterize the structural features of DAGs, we present a summary
of seven algebraic representations that are proven to be equivalent to DAGs. Additionally,
concise proofs are provided for each of these representations.

• We present theoretical proofs of the potential issues of numerical exploding and gradient
vanishing that can arise in existing acyclicity constraints. To overcome these challenges,
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the concept of M-matrices is introduced, and a novel acyclicity constraint function based
on the trace of the inverse of M-matrices is proposed. Furthermore, we offer rigorous
theoretical analyses to substantiate the effectiveness of the newly proposed constraint
function in addressing the aforementioned issues.

• Based on the newly introduced acyclic constraint function and linear structural equation
models, we utilize the augmented Lagrangian framework and present the LeCaSiM algo-
rithm to transform the problem of learningDAG structures into a continuous optimization
problem.

• To evaluate the accuracy and efficiency of the LeCaSiM algorithm for DAG structure
learning, we perform extensive experiments on both synthetic and real-world datasets.
The experimental results unequivocally indicate that our proposed algorithm surpasses
existing methods in terms of accuracy and efficiency.

The remaining structure of this paper is organized as follows: Sect. 2 introduces the back-
ground and related work of causal discovery and DAG structure learning. Section3 uses
algebraic graph theory to provide several equivalent conditions and brief proofs for charac-
terizing the structural characteristics of DAG, and it derives a new continuous optimization
constraint function based on the M-matrices. Section4 introduces and analyzes the proposed
causal structure learning algorithm, LeCaSiM. Section5 presents the experimental verifica-
tion and result analysis. Section6 concludes the paper with a brief discussion and outlines
possible future research directions.

2 Background and RelatedWork

2.1 Symbols and Notations

To ensure clarity, we present Table 1, which provides the symbols used throughout this article
along with their corresponding meanings.

2.2 Structural Causal Model

The SCMproposed by J. Pearl comprises two components: the causal graph and the structural
equation model (SEM). The causal graph is a DAG used to represent the causal relation-
ships between variables, denoted as G = (V,E), where |V| = d . For a d-dimensional
random vector x = (x1, x2, . . . , xd ) ∈ R

d , let P(x) represents the joint probability distri-
bution of G. Node i ∈ V corresponds to the random variable xi ∈ x, and a directed edge
(i, j) ∈ E indicates a causal relationship between xi and x j . The set of parent nodes of
node i is denoted as pa (i). Under the assumptions of sufficiency and faithfulness [21], if
all variables satisfy the property of first-order Markov [33], P (x) can be decomposed as

P(x) = ∏d
i=1 p

(
xi

∣
∣
∣xpa(i)

)
. If we consider xi as a specific function of xpa(i), the causal

relationships implied by the DAG correspond to a set of structural equations. Let e be a
noise variable (or exogenous variable), then, the causal relationships between variables can
be represented by the following SEM:

xi = fi
(
xpa(i), ei

)
, ei⊥xpa(i) (1)
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Fig. 1 a The causal graph of the three variables. b SCM corresponding to the three variables. c The corre-
sponding set of structural equations

where i ∈ {1, . . . , d}. As previously mentioned, the faithfulness assumption establishes a
one-to-one correspondence between P (x) and the DAG, which also corresponds to a set of
structural equations. Figure1 illustrates an example of an SCM with three variables.

2.3 DAG Structure Learning

As described in Sect. 2.1, the problem of learning the DAG structure based on SCM can be
defined as follows: Given the data matrix X , the goal is to learn the causal graph G ∈ SG
under the joint probability distribution P (X).

Following prior research, we also employ the linear structural equation model (LSEM) to
depict the causal relationships between variables. Let W ∈ R

d×d as the weighted adjacency
matrix corresponding to graph G (the weight values are used to characterize the causal
strength), where wi ∈ R

d , then in LSEM, x = WT x + e, e = (e1, e2, . . . , ed)T denotes d
i.i.d. noise terms. Correspondingly, the structural equations of the three nodes in the DAG in
Fig. 1 can be expressed as follows (wi j ∈ R represents the weight value of the directed edge
between nodes i and j):

⎛

⎝
x1
x2
x3

⎞

⎠ =
⎡

⎣
0 w12 w13

0 0 w23

0 0 0

⎤

⎦

T ⎛

⎝
x1
x2
x3

⎞

⎠ +
⎛

⎝
e1
e2
e3

⎞

⎠

then

⎧
⎨

⎩

x1 = e1
x2 = w12x1 + e2
x3 = w13x1 + w23x2 + e3

Let G(W) denotes the directed graph corresponding to W , SG indicates the search space
of the DAG, and the scoring function Q(W , X) is utilized to evaluate the similarity between
G(W) and the observed data X . Consequently, the problem of learning the DAG structure
can be formalized as the following optimization problem:

min
W∈Rd×d

Q (W , X) s.t . G (W) ∈ SG (2)

2.4 RelatedWork

Algorithms aimed at learning causal structures between variables from observational data
can generally be classified into two types: constraint-based algorithms and score-based algo-
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rithms. Constraint-based algorithms initiate the process with an undirected complete graph
and systematically examine the conditional independence between variable pairs. Eventually,
they produce a completed partially directed acyclic graph (CPDAG). The CPDAG represents
a Markov equivalence class of the true DAG and does not provide a deterministic causal
relationship. Prominent algorithms in this category include the PC (Peter–Clark) algorithm
[21] and the IC (inductive causation) algorithm [23].

In this research, we adopt a score-based approach for DAG structure learning. The tradi-
tional scoring-function-based algorithms employ combinatorial optimization to optimize the
scoring function while adhering to the acyclicity constraint (such as Eq.2). The scoring func-
tion is employed to evaluates the fit of the weighted adjacency matrix to the observed data. To
enforce the acyclicity constraint, various implementation strategies involving combinations,
search methods, and other techniques are utilized. Commonly used scoring functions include
the Bayesian Information Criterion (BIC) [14], Minimum Description Length (MDL) [3],
and Bayesian Dirichlet equivalent uniform (BDeu) [9]. Search strategies often encompass
the hill climbing algorithm proposed by Heckerman et al. [9], A* search [29], integer pro-
gramming [7], and greedy algorithm [5]. However, Since the search space of DAGs grows
super-exponentially with the number of nodes, the task of learning specific graph structures
using combinatorial optimization-based algorithms is known to be NP-hard [6]. Robinson
[20] gives a recursive formula for calculating the number of DAGs that can be constructed
from d nodes: |Gd | = ∑d

i=1 (−1)i−1 (d
i

)
2i(d−i) |Gd−i |, where |G0| = 1. It is evident from

Fig. 2 that as the number of nodes increases, both the counts of directed graphs and DAGs
exhibit exponential growth, while the proportion of DAGs in the directed graphs decreases
rapidly. As a result, the computational effort required to learn the desired DAG in such a vast
space of directed graphs using the aforementioned combinatorial optimization algorithms is
substantial.

To improve the accuracy and scalability of algorithms for learning directed acyclic graph
(DAG) structures, Zheng et al.[31] discover that the trace of the matrix exponential effec-
tively captures cycle information in a directed graph. Leveraging this finding, they develop
a continuous acyclicity function denoted as h (W) that serves as a replacement for the com-
binatorial constraint G (W) in the optimization process. This transformative step converts
the DAG structure learning problem into a continuous optimization problem, allowing for
iterative solving through the utilization of existing numerical optimization algorithms[2].

Fig. 2 Left The counts of DAGs and directed graphs for specific nodes. Right The proportion of DAGs within
the directed graphs for specific nodes
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However, a challenge arises in the form of high-order information loss during the solution
process.

min
W∈Rd×d

Q (W , X) s.t . h (W) = 0 (3)

Building upon the aforementioned research, Yu et al. [27] introduce a novel acyclicity con-
straint for DAG learning that utilizes matrix binomials. Their approach is based on the
important observation that a directed graph with d nodes does not contain any maximal
cycles exceeding d steps. As a result, it is only necessary to compute powers of the weight
adjacency matrix up to order d . This reduction in computational burden enhances the effi-
ciency of the algorithm. However, this approach does not address the problem of high-order
information loss. Wei et al. [25] introduce a combined polynomial constraint, replacing the
Hadamard product with matrix absolute values, which is utilized for structure learning. Sim-
ilarly, Lee et al. [13] and Zhu et al. [33] propose alternative constraints based on the spectral
radius of the weighted adjacency matrix. These constraints have the notable effect of signifi-
cantly reducing the computational complexity of the algorithm. In the algorithm proposed by
Yu et al. in 2021 [28], there is a departure from previous methods that relied on the relation-
ship between matrix powers and cycles in the graph to enforce acyclicity constraints. Instead,
they employ a set of weighted graph potentials with gradients to describe the space of DAGs,
enabling direct continuous optimization in algebraic space. Other related works include the
extension of Zheng et al.’s work to implement DAG structure learning using time-series data
[16] and the utilization of reinforcement learning methods to search for the optimal DAG
[34], among other approaches.

3 Algebraic Characterization of DAGs

The construction of smooth acyclicity constraint functions plays a crucial role in converting
the problemof learning the structure of aDAG fromcombinatorial optimization to continuous
optimization (Eq.2 → Eq.3). In this section, we present various algebraic characterizations
of DAG from the viewpoint of algebraic graph theory. Utilizing these algebraic character-
izations, our objective is to devise smooth acyclicity constraint functions that facilitate the
creation of continuous optimization algorithms for discovering causal graphs.

Let UG = (V,E) denote an undirected graph defined on a node set V, where |V| = d
and E ⊆ (d

2

)
. The adjacency matrix of UG is represented by A = (

ai, j
)
(i, j ∈ V), where

ai, j = 1 indicates the presence of an edge between nodes i and j , while ai, j = 0 indicates
the absence of an edge. Specifically, ai,i = 0 signifies that there are no self-loops in the graph.
A fundamental observation is that (A)k i j (where k ∈ Z

+) characterizes the number of walks
of length k between nodes i and j , while (A)k ii characterizes the number of closed walks
of length k that start and end at node i . It is important to note that a walk can pass through
the same node multiple times. Correspondingly, in the case of a directed graph G = (V,E),
where |V| = d andE ⊆ V × V, if (A)k ii �= 0, it indicates the existence of at least one closed
walk inG(A) that starts from node i , traverses k − 1 nodes along directed edges, and returns
to node i . Furthermore, the length of the cycle is less than or equal to k. This observation
serves as the foundation for the algebraic characterization of cycles and the derivation of
continuous constraint functions using algebraic methods.
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Fig. 3 Left A directed graph with 6 nodes. Right The diagonal elements of the 6th power of the adjacency
matrix represent the cycle information of length 6 in the graph

As shown in Fig. 3, there are two cycles originating from node v2 and returning to itself
after 6 steps. The cycles are as follows: v2 → v1 → v6 → v5 → v4 → v3 → v2 and
v2 → v4 → v3 → v2 → v4 → v3 → v2.

3.1 Algebraic Equivalence Condition for DAGs

This section provides a summary of six algebraic characterizations of equivalent DAG based
on cycle information obtained from the adjacency matrix powers. The aim is to derive a
continuous function as an acyclicity constraint based on these algebraic characterizations.

Proposition 1 G (A) ∈ SG iff A satisfies one of the following six conditions:

(1)
∑d

k=1 tr(A
k) = 0.

(2) λi (A) = 0, i ∈ {1, 2, . . . , d}, λi (A) denotes the i-th eigenvalue of matrix A.
(3) A is a nilpotent matrix that Am = 0(m ∈ Z

+,m ≤ d).
(4) ρ(A) = 0.
(5) A can be transformed by a similarity transformation into a strictly upper(or lower)

triangular matrix.
(6) (I − A)−1 exists and (I − A)−1 ≥ 0(i.e., all elements of the matrix are greater than 0,

the same as below).

We provide a brief proof of the equivalence of each item in Proposition 1 to G (A) ∈ SG
in the “Appendix A.1”. Researchers in [27, 31] have introduced acyclicity constraints based
on item (1). Similarly, in the study by [1], the acyclicity constraint is grounded in item (2).
Moreover, the acyclicity constraints proposed in the research works [13, 33] are derived from
item (4).

The key to formulating the DAG structure learning problem as a continuous optimization
problem is to find a continuous acyclicity constraint function. However, the current propo-
sitions regarding acyclicity rely on the binary adjacency matrix A (with entries limited to
0 and 1) and cannot facilitate the creation of a continuous acyclicity constraint function.
To overcome this limitation, this paper adopts an approach similar to previous studies [27,
31], replacing A with a weighted adjacency matrix W . W ◦ W ensures the weighted adja-
cency matrix remains nonnegative. This operation also maps W to a positively weighted
adjacency matrix while preserving the same structure. In this formulation, (W ◦ W)i j > 0
indicates the existence of a directed edge from node i to node j in the graph G(W), while
(W ◦ W)i j = 0 indicates the absence of such an edge. Therefore, the problem of learning
DAG structures using continuous optimization methods reduces to constructing a continuous
function h(W) : Rd×d → R that can serve as an acyclicity constraint. h (W) should satisfy
the following conditions:

(1) h (W) quantifies the “distance" or dissimilarity between candidate graphs and the target
DAG;
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(2) G (W) ∈ SG iff h (W) = 0;
(3) The calculation of h (W) and its gradient ∇h (W) is straightforward and convenient.

3.2 Analysis of Acyclicity Constraints in ExistingWork

In Sect. 3.1, we summarize six equivalent conditions for DAGs based on the adjacencymatrix
of directed graphs. In the subsequent discussion, we present three continuous acyclicity
constraint functions that are constructed in recent research, utilizing the aforementioned
propositions. Additionally, we address the associated issues with these functions.

Zheng et al. [31] first define the following continuous acyclicity constraint based on item
(1) of Proposition 1 and the trace function of matrices:

hT I (W) = tr
[
(I − W ◦ W)−1] − d (4)

where ρ(W ◦W) < 1. The power series of (I − W ◦ W)−1 is given by
∑∞

k=0(W ◦W)k , k ∈
Z

+. However, Zheng et al. find that the function hT I (W) suffers from numerical explosion
and other issues. Therefore, they propose a new acyclicity constraint based on the matrix
exponential, which has better convergence properties. The new constraint is as follows:

hNT (W) = tr
(
eW◦W)

− d (5)

where eW◦W is the matrix exponential,which can be expressed as a power series
∑∞

k=0
1
k! (W ◦ W)

k
.

To reduce computational complexity, Yu et al.[27] proposed an improved constraint func-
tion based on item (1) of Proposition 1 and the matrix binomial to the power of d . The
function is defined as follows:

hDG(W) = tr

[(

I + 1

d
W ◦ W

)d
]

− d (6)

The power series expansion of [I + 1
d (W ◦ W)]d is given by

∑d
k=0

(d
k

)
/dk(W ◦ W)k . The

presence of the dth power signifies that in a directed graph with d nodes, there are no cycles
of length greater than d .

However, it should be noted that in order to ensure the convergence of the power series
expansion, the constraints defined by Eqs. 4, 5, and 6 can lead to numerical explosion or
vanishing gradients for higher-order terms. As a result, when these constraints are utilized
in iterative solving, there is a risk of the resulting target graph deviating from the true graph
structure. To further illustrate this problem, we will analyze the power series expansions of
hT I (W), hNT (W) and hDG(W), along with their respective gradient terms as follows:

hT I (W) = tr

[ ∞∑

k=1

(W ◦ W)k

]

(7)

∇hT I (W) = 2
[
(I − W ◦ W)−2]T ◦ W = 2

[ ∞∑

k=0

(k + 1) (W ◦ W)k

]T

◦ W (8)

hNT (W) = tr

[ ∞∑

k=1

1

k! (W ◦ W)k

]

(9)
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∇hNT (W) = 2
(
eW◦W)T ◦ W = 2

[ ∞∑

k=0

1

k! (W ◦ W)k

]T

◦ W (10)

hDG(W) = tr

[
d∑

k=1

(d
k

)

dk
(W ◦ W)k

]

(11)

∇hDG(W) = 2

[(

I + 1

d
W ◦ W

)d−1
]T

◦ W = 2

[
d−1∑

k=0

(d−1
k

)

(d − 1)k
(W ◦ W)k

]T

◦ W

(12)

Applying hT I (W) as the acyclicity constraint in DAG structure learning, the coefficients
of the terms in the expansions of Eqs. 7 and 8 are 1 and (k + 1), respectively. However, when
ρ(W ◦ W) is large, there may be numerical explosion issues when computing (W ◦ W)k

and (k + 1)(W ◦ W)k as k increases. This can adversely affect the convergence stability
of the algorithm. In contrast, hNT (W) and hDG(W), along with their gradient expansions,
have coefficients of 1/k! and (d

k

)
/dk , respectively. As the optimization progresses, ρ(W ◦W)

approaches zero, causing the coefficients of the terms in the expansion to rapidly decrease
with increasing k. Consequently, the k-th order term in the expansion becomes infinitesimal,
leading to the loss of cycle information and gradient information in higher-order terms. This
reduction in accuracy negatively impacts the algorithm.

In fact, hDG (W) is not suitable for discovering DAG structures with a large number of
nodes. For example, if we apply hDG (W) to a DAG with 100 nodes, even for a relatively
small value of k (such as k = 10), the coefficient of the k-th term in the power series expansion
becomes

(100
10

)
/10010. This can result in the failure to detect cycles in the graph with a length

exceeding 10.

3.3 New Acyclicity Constraint

3.3.1 Background andMotivation

The acyclicity constraints hT I (W), hNT (W), and hDG (W) can all be expressed as matrix
polynomials. They share a general form

∑d
k=1 l(k)tr [(W ◦ W)k], where l (k) > 0. As men-

tioned earlier,
∑d

k=1 l(k)tr [(W ◦ W)k] = 0 signifies the absence of cycles of length less
than or equal to d in G (W). While these three functions achieve the acyclicity constraint in
a similar manner, the distinction lies in the coefficient term l (k). As previously discussed,
selecting a relatively “large" coefficient may lead to numerical explosion, while opting for a
relatively “small" coefficient may result in information loss and gradient vanishing. There-
fore, in this paper, we utilize item (6) of Proposition 1 to establish a new equivalent condition
for DAG and propose an acyclicity constraint function with adaptively adjustable coefficient
terms l (k).

Proposition 2 G(W ◦ W) ∈ SG iff (α I − W ◦ W)−1 exists and (α I − W ◦ W)−1 ≥ 0.

Proposition 2 relaxes the constraint condition from ρ(W ◦ W) < 1 to ρ(W ◦ W) < α.
Based on Proposition 2, the premise for defining the continuous acyclicity constraint function
is to find a set of weighted adjacency matrices W , where Proposition 2 holds true for any W
in this set. In fact, ifW is a matrix defined in this set, then α I −W ◦W is characterized as an
M-matrix[15] (first introduced by Swiss mathematician Ostrowski in 1937). The definition
of an M-matrix is as follows:
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Definition 1 (M-matrix) Let B ∈ R
d×d ≥ 0, C ∈ R

d×d , if C = α I − B, where α > ρ (B),
then C is an M-matrix.

If C is an M-matrix, it possesses the following properties:

(1) λi (C) > 0,i ∈ {1, . . . , d};
(2) C−1 ≥ 0.

The mentioned properties are evident: From the equation λi (C) = α − λi (B) and the fact
thatα > ρ(B), it follows that λi (C) > 0.Moreover, from the power series expansion ofC−1,
it is clear that C−1 ≥ 0. Additionally, it is worth noting that B can be equivalently replaced by
W ◦W . Thus, when α > ρ(W ◦W), α I − W ◦ W is an M-matrix, ensuring that Proposition
2 holds true. This clever connection between Proposition 2 and M-matrices allows us to
determine the desired set of matrices W based on the characteristics of M-matrices.

Definition 2 (Wα)Wα =
{
W ∈ R

d×d
∣
∣
∣α > ρ (W ◦ W)

}
.

The set Wα refers to the aforementioned set that we seek to solve for, and it exhibits the
following crucial properties:

Proposition 3 LetW SG be the space of weighted adjacency matrices corresponding to SG ,
when α > 0:

(1) W
SG ⊂ W

α;
(2) W

α ⊂ W
t , where α < t .

For anyW ∈ W
SG , it holds that ρ (W ◦ W) < α. item (1) indicates that feasible solutions

to the DAG structure learning problem must lie withinWα . item (2) suggests that the size of
W

α can be adjusted by changing the value of α. As the optimization progresses, gradually
decreasing α narrows down the search space for feasible solutions, which in turn leads to
faster convergence of the algorithm.

Basedon the analysis above, the proposed continuous constraint functionh (W) : Wα → R

is constructed as follows:

h(W) = tr
[
(α I − W ◦ W)−1] − d/α (13)

3.3.2 Theoretical Analysis

In this section, we will analyze the new acyclicity constraint proposed in the previous section
(Eq.13) from three aspects: acyclicity, continuity, and dynamic parameter adjustment. We
will provide a brief theoretical analysis and offer a concise proof to support our findings.

Corollary 1 For anyW ∈ W
α , it holds that h(W) ≥ 0. Moreover, h(W) = 0 iff G(W) ∈ SG .

See “Appendix A.3” for detailed proof. Corollary 1 states that for any W ∈ W
α , we have

h(W) ≥ 0, which implies that W SG corresponds to the set of local minima of h(W). This
also helps us proveW SG ⊂ W

α from another perspective. During the optimization process,
as the value of h(W) approaches 0, it indicates that ρ(W) tends to 0, which means thatG(W)

is getting closer to the optimal solution, satisfying the first condition mentioned in Sect. 3.1.
h(W) = 0 if and only if G(W) ∈ SG , corresponding to the second condition in Sect. 3.1.

Corollary 2 The gradient of h(W), denoted as ∇h(W), is defined as ∇h(W) = 2[(α I −
W ◦ W)−2]T ◦ W . For any i, j ∈ V, the element ∇h(W)i j shares the same sign as W i j . If
∇h(W)i j �= 0, it indicates the presence of a cycle in G(W).
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See “Appendix A.4” for detailed proof. Corollary 2 states that ∇h(W) satisfies the
third condition in Sect. 3.1. Since 2[(α I − W ◦ W)−2]T ≥ 0, the sign of each element
in ∇h(W) depends on the sign of the corresponding element in W . If ∇h(W)i j �= 0,
it indicates that [(α I − W ◦ W)−2]Ti j �= 0 and W i j �= 0. Here, [(α I − W ◦ W)−2]Ti j =
[∑∞

k=0
k+1
αk+2 (W ◦ W)k]Ti j represents the sum of weights from node j to node i , indicating

the existence of a path (possibly through one or more nodes) from node j to node i in the
graph. Furthermore,W i j �= 0 represents the existence of a directed path from node i to node
j . Therefore, the presence of a cycle in the graph can be inferred as i → j → . . . → i .

Corollary 3 For any W ∈ W
α , let α = ρ (W ◦ W) + ξ , where ξ ∈ R

+. Then, we have
h (W) = tr [(α I − W ◦ W)−1]−d/α = ∑∞

k=1 1/α
k+1(W ◦ W)k . The dynamic adjustment

of Wα and 1/αk+1 in the optimization process ensures that the computation of h (W) and
∇h (W) neither leads to numerical explosion nor loses the cycle information and gradient
information in the higher-order terms.

h(W) shares the same formashT I (W),hNT (W), andhDG(W),which is
∑d

k=1 l(k)tr [(W◦
W)k]. The distinction lies in the coefficient l(k) of the power series in h(W), which depends
on α, enabling it to adjust dynamically during the optimization process. Specifically, in the
initial stages of optimization when ρ(W ◦ W) is large, the computation of hT I (W) and its
gradient may encounter numerical explosion. By setting α = ρ(W ◦ W) + ξ , the coeffi-
cients 1/αk+1 in the power series of h(W) diminish rapidly, effectively avoiding numerical
explosion. As the optimization progresses and ρ(W ◦ W) approaches zero, there is a risk of
losing cycle information and gradients in the higher-order terms of hNT (W) and hDG(W).
To address this, setting α = ρ(W ◦ W) + ξ (where ξ = 1) ensures that s and 1/αk+1 are
approximately 1. This preserves the true values of each term in the power series and resolves
the issue of losing information in the higher-order terms. Additionally, Wα adjusts corre-
spondingly as ρ(W ◦ W) decreases throughout the optimization process, narrowing down
the search space for the DAGs. Consequently, the dynamic adjustment of Wα and 1/αk+1

enhances the efficiency and accuracy of DAG structure learning algorithm.

3.3.3 Computational Complexity Analysis

From the previous discussion, it is evident that the proposed acyclicity constraint function
h(W) shares a similar power series form

∑d
k=1 l(k)tr[(W ◦ W)k] with hT I (W), hNT (W),

and hDG(W). Therefore, the computational complexity of calculating these acyclicity con-
straints and their gradients is O(d3) for each of them. As shown in Fig. 4, h(W) and its
gradient have slightly higher average computation time, this is primarily due to the additional
computation of the spectral radius of the matrix before calculating h(W), which incurs extra
time. However, in Sect. 5, we will demonstrate through experiments that the algorithm based
on h(W) has the shortest average runtime. This indicates that h(W) enables the algorithm to
converge faster to an approximately optimal solution.

Table 2 provides a concise summary of the acyclicity constraint functions mentioned
above, aiming to enhance comparison and comprehension.

4 Structure Learning Algorithm

Based on the newly introduced acyclicity constraint function h(W), this section presents a
causal structure learning algorithm named LeCaSiM.
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Fig. 4 The average computation
time required for calculating the
acyclicity constraints and their
gradients at different node sizes

Table 2 Comparison of acyclicity constraint functions

Constraint Function Gradient Complexity

hT I (W) tr [∑∞
k=1(W ◦ W)k ] 2[∑∞

k=0 (k + 1) (W ◦ W)k ]T ◦ W O(d3)

hNT (W) tr [∑∞
k=1

1
k! (W ◦ W)k ] 2[∑∞

k=0
1
k! (W ◦ W)k ]T ◦ W O(d3)

hDG (W) tr [∑d
k=1

(dk)

dk
(W ◦ W)k ] 2[∑d−1

k=0
(d−1

k )

(d−1)k
(W ◦ W)k ]T ◦ W O(d3)

h(W) tr [∑∞
k=1

1
αk+1 (W ◦ W)k ] 2[∑∞

k=0
k+1
αk+2 (W ◦ W)k ]T ◦ W O(d3)

4.1 LeCaSiM Algorithm

Like previous studies, this paper utilizes the mean squared error (MSE) as the loss function
q(W , X) in the LSEM:

q(W , X) = 1

n
‖X − XW‖2F = 1

n

n∑

i=1

d∑

j=1

(X − XW)2i j (14)

Considering that practical graphs are often sparse, an L1-regularization is incorporated
into Eq.14 to promote sparsity. Thus, the scoring function Q(W , X) is defined as follows:

Q(W , X) = 1

n
||X − XW ||2F + μ||W ||1

where μ > 0 is a constant coefficient. Within this framework, the problem of learning DAG
structures based on h(W) can be formulated as the following optimization problem:

min
W∈Wα

Q (W , X) s.t . h (W) = 0 (15)

To address the optimization problem mentioned above, we utilize the augmented
Lagrangian method (ALM)[2] to transform it into the following unconstrained optimiza-
tion problem:

min
W∈Wα

max
ϕ∈R � (W , ϕ) (16)
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where � (W , ϕ) = Q (W , X) + σ
2 h (W)2 + ϕh (W), σ > 0 represents penalty parameter,

and ϕ denotes the Lagrange multiplier. The dual ascent method is employed to iteratively
solve this unconstrained optimization problem. Assuming we have the solution at the k-th
iteration W k and ϕk , the update process is as follows:

• Substitute ϕ = ϕk into �(W , ϕ) and solve minW∈Wα �
(
W , ϕk

)
. Then, obtain W k+1;

• replace W = W k+1 into �(W , ϕ) and solve maxϕ∈R �
(
W k+1, ϕ

)
. Then, acquire ϕk+1.

ϕk+1 = ϕk + σ · ∂�
(
W k+1,ϕ

)

∂ϕ
|
W=W k+1,ϕ=ϕk .

Repeated iterations of the above process are performed until convergence, resulting in
an approximate optimal solution. Algorithm 1 outlines our proposed LeCaSiM algorithm,
which is based on the analysis mentioned above.

Algorithm 1 LeCaSiM

Require: data matrix X , initialW0, lagrange multiplier ϕ0, penalty parameter σ , L1 coefficient μ, algorithm
precision τ , weight threshold θ , parameter α, maximum number of iterations T .

1: k ← 0
2: while k < T − 1 do
3: compute ρ

(
Wk ◦ Wk

)
, let α ← ρ

(
Wk ◦ Wk

)
+ 1

4: solve W (k+1) ← argminW∈Wα
1
n ‖X − XW‖2F +μ‖W‖1 + σ

2 h(W)2 + ϕkh(W)

5: update using dual ascent: ϕ(k+1) ← ϕk + σh(Wk+1)

6: if h
(
Wk+1

)
< τ then

7: Ŵ ← Wk+1

8: end if
9: end while
10: set the values of elements in Ŵ with absolute values smaller than θ to 0
Ensure: near-optimal solution W∗

To ensure that h(W) = 0, a strategy of gradually increasing σ and ϕ as penalty factors
is employed during the optimization process. However, it is important to note that in the
continuous optimization process, the value of h(W) may approach zero indefinitely without
reaching exactly zero. Therefore, a precision level for the algorithm is set, and the optimization
process terminates when the value of h(W) becomes smaller than this precision.

In practice, due to factors such as machine precision, the iterative process can only guar-
antee convergence to a solution near the optimal solution. However, experimental results
have consistently shown that this approximate solution is already very close to the optimal
solution level.

4.2 Algorithm Implementation Details

In the third step of theLeCaSiM, the parameterα in h(W) is determined. To enforce acyclicity,
α must be greater than ρ(W ◦ W). Thus, we set α = ρ(W ◦ W) + ξ , with ξ taking values
from the set {0.1, 0.5, 1, 1.5, 2}. Experimental results indicate that setting ξ to 1 achieves
the best performance. The reason for choosing ξ = 1 is as follows: during the optimization
process, as ρ(W ◦ W) approaches 0, choosing ξ < 1 leads to α < 1, resulting in a smaller
W

α . In this case, a smaller learning rate is required to ensure algorithm convergence, which
may affect convergence stability. On the other hand, if ξ > 1, it may cause the coefficients
of higher-order terms to approach 0, leading to the loss of information from these terms.
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Similar to existing work, we employ the approximate Quasi-Newton method [32] to solve
the optimization subproblem in the fourth step. In the tenth step, we apply thresholding to
the candidate matrix W to filter out elements with absolute values smaller than the weight
threshold θ . This helps eliminate false causal associations that could induce cycles [31]. The
thresholding approach ensures sparsity of the weight matrix and improves the accuracy of
the algorithm by removing spurious causal edges from the graph.

5 Experiments

This section performs extensive comparative experiments to evaluate the efficiency and accu-
racy of the LeCaSiM algorithm in learning DAG structures.

5.1 Experimental Setup

5.1.1 Comparison Algorithms and Evaluation Metrics

In Sect. 3.2, we analyze the limitations of three acyclicity constraints proposed in existing
work. Among them, hT I (W) is found to be prone to numerical explosion during computation.
To demonstrate that the proposed h(W) can overcome this issue, we replace the h(W)

in the LeCaSiM with hT I (W) to create the LeCaSiM-TI for comparison. To address the
challenges of computing high-order terms in the acyclicity constraint and the problem of
gradient vanishing, we also include the NOTEARS [31] algorithm based on hNT (W) and
the DAG-GNN [27] algorithm based on hDG(W) for comparison. Additionally, to compare
the performance of the matrix polynomial constraint proposed in this paper, we included the
NOCURL algorithm [28] that employs the weighted gradient set.

We utilize the following four metrics [8] to evaluate the accuracy and efficiency of the
algorithm:

• Structure hamming distance (SHD): SHD calculates the standard distance between the
estimated graph and the target graph using their adjacency matrices. A lower value
indicates a higher similarity between the estimated and true graphs.

• True positive rate (TPR): TPR measures the proportion of correctly identified edges in
the predicted graph compared to the total number of edges in the target graph. A higher
value indicates greater accuracy of the algorithm in capturing the true edges.

• False positive rate (FPR): FPR represents the ratio of incorrectly identified edges as true
edges in the predicted graph to the total number of edges missing in the target graph. A
lower value indicates higher accuracy, as fewer false edges are present.

• Runtime: This metric indicates the time required for the algorithm to execute on a com-
puter, reflecting the convergence speed of the algorithm.

5.1.2 Parameter Settings and Environment Configuration

For the LeCaSiM algorithm, the following parameters are initialized: lagrange multiplier
ϕ = 0, quadratic penalty coefficient σ = 1, L1 coefficient μ = 0.1, algorithm precision
τ = 10−6, weight threshold θ = 0.3, maximum number of iterations T = 100.

The experimental environment in this paper was configured with the following hardware:
an 8-core 16-thread AMD Ryzen 7 5800H CPU running at a frequency of 3.20 GHz, paired
with 16GB of memory.
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Fig. 5 The SHD (lower is better) corresponding to different algorithms regarding different random graph
models (ER2, ER3) and noise distributions (gauss, exp and gumbel)

5.2 Experimental Results and Analysis

5.2.1 Synthetic Datasets

The experimental setup in this paper follows the approach used in previous works [27, 31].
The Erdős-Rényi (ER) random graph model is employed to construct random graphsG with
d nodes and an anticipated number of kd edges, known as by ERk. Theweights of the edges in
the graph are uniformly distributed within the ranges of [−2.0,−0.5] and [0.5, 2.0]. To obtain
the data matrix X, we generate 1000 samples according to the equation X = XW + N . The
variable matrix N ∈ R

n×d represents the exogenous variables and is generated using one of
the following distributions: Gaussian distribution (gauss), exponential distribution (exp), or
Gumbel distribution (gumbel).

To ensure consistent and reproducible results, we use the same random seed for each
experiment. By doing so, we generate the same X every time, enabling us to evaluate the
performance of different algorithms based on consistent experimental results. For each con-
figuration, we conduct the experiment 100 times and calculate the mean of the evaluation
metrics to obtain the final result.

As shown in Fig. 5, the LeCaSiM outperforms the other comparison algorithms in terms
of SHD, indicating its superior accuracy in recovering the DAG structure from observed data.
For example, when using ER2 random graphs and three different noise distributions, with
100 nodes (200 edges), LeCaSiM achieves an SHD of less than 10. This corresponds to a
false discovery rate of approximately 5% (10/200). In comparison, the LeCaSiM-TI exhibits
a higher false discovery rate of approximately 7.5%. The NOTEARS displays a significantly
higher false discovery rate of 20%, while the other two algorithms have even higher rates.

The TPR reflects the ability of each algorithm to accurately identify true edges and learn
DAG structure. The results shown in Fig. 6 demonstrate that the LeCaSiM consistently
achieves the highest TPR among the four comparison algorithms in all six experimental
settings. For example, in the case of ER2 random graphs, the TPR of the LeCaSiM remains
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Fig. 6 The TPR (higher is better) corresponding to different algorithms regarding different random graph
models (ER2, ER3) and noise distributions (gauss, exp and gumbel)

consistently above 0.95 for different numbers of nodes, demonstrating that the LeCaSiM has
the highest accuracy in correctly identifying true edges and is capable of learning the true
DAG structure more accurately.

The FPR reflects the rate at which algorithms incorrectly identify false edges in the pre-
dicted graph. From Fig.7, the LeCaSiM has the lowest FPR among the compared algorithms.
This signifies that the LeCaSiM does not blindly learn a large number of edges in an attempt
to achieve a higher TPR. Instead, it accurately learns the true edges without introducing false
edges into the predicted graph. In other words, the LeCaSiM is able to identify more true
edges of the target graph without increasing the number of false edges in the predicted graph.
This capability allows the LeCaSiM to more accurately recover the true graph structure.

As shown in Fig. 4, the calculation time of h(W) is slightly longer compared to other
constraints. However, from Fig. 8, the average runtime of the LeCaSiM is the shortest among
the compared algorithms. This indicates that h(W) possesses certain desirable properties,
such as resolving numerical explosion and vanishing gradients. These properties contribute
to faster convergence of the algorithm and improve its efficiency.

For the above experiments, the performance of the algorithm is significantly better in the
ER2 random graph compared to the ER3 random graph. The reason is that ER3 target graph
has more edges (non-sparse graph), which adds difficulty to the optimization of the objective
function with the L1-regularization, leading to a decrease in the accuracy and efficiency of
the algorithm.

Figure9 shows that the LeCaSiM curve is positioned in the top left part of the other curves,
indicating a higher TPR and a lower FPR, i.e. a higher accuracy and a lower error detection
rate compared to the other algorithms.

In Table 3, it is evident that the LeCaSiM outperforms the other algorithms in terms
of average SHD and average running time. This demonstrates that the LeCaSiM offers the
highest accuracy and efficiency among the considered options.
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Fig. 7 The FPR (lower is better) corresponding to different algorithms regarding different random graph
models (ER2, ER3) and noise distributions (gauss, exp and gumbel)

Fig. 8 The runtime (lower is better) corresponding to different algorithms regarding different random graph
models (ER2, ER3) and noise distributions (gauss, exp and gumbel)

5.2.2 Real Dataset

Similar to previousworks [27, 31],wehave conducted experiments using the protein signaling
networks (PSN) dataset [22], which contains 7466 samples of 11 nodes. There are 20 edges in
the ground-truth graph noted by Sachs. The PSN dataset is a well-known dataset in the field
of Bayesian network structure learning and has been widely used to evaluate the performance
of DAG structure learning algorithms.
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Fig. 9 The average FPR and TPR values plotted for the LeCaSiM and various comparison algorithms with
nodes set to 10, 30, 50, 70, and 100, respectively

The proposed LeCaSiM in this paper is based on a linear model that learns the causal
structure between variables, while algorithms such as DAG-GNN are based on nonlinear
models to learn the causal relationship between variables. In fact, we are unsure whether the
causal mechanisms between variables in the PSN dataset are linear or nonlinear. Therefore,
we conduct extensive experiments for each algorithm on the PSN dataset, measuring the
accuracy of each algorithm’s learning of the causal structure through a comparison of SHD
and predicted edge numbers, as shown in Table 4.

The number of edges in the learned graph structure by the algorithm is referred to as the “#
Predicted edges”. FromTable 4, it can be observed that the predicted edge count for LeCaSiM
is 17, consisting of 10 ground-truth edges, 7 erroneous edges, and 1 reverse edges. LeCaSiM
achieves the lowest SHD compared to the comparison algorithms, indicating the LeCaSiM
can more accurately reconstruct the true causal structure when applied to real-world datasets
like the PSN dataset.

6 Summary and FutureWork

The problemofDAGstructure learning has broad applications across various fields, including
task scheduling, data flow analysis, dependency management, and more. However, the expo-
nential growth of the DAG search space with the number of nodes poses a major challenge.
Recent research has introduced a continuous acyclicity constraint function, which transforms
the DAG structure learning problem into a continuous optimization problem. Motivated by
this approach, this paper employs concepts from algebraic graph theory to summarize seven
equivalent conditions for DAGs and compare existing acyclicity constraints. It is observed
that existing methods may encounter issues such as numerical explosion or gradient vanish-
ing during acyclicity constraint computations and optimization iterations. To address these
challenges, this paper introducesM-matrices and leverages their properties to propose a novel
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Table 3 The average SHD values
and runtimes of LeCaSiM and
various comparison algorithms
with nodes set to 10, 30, 50, 70
and 100, respectively (The
optimal values are shown in bold)

Method Node SHD Runtime(s)

NOTEARS 10 4.48 4.54

30 11.55 87.55

50 19.07 465.2

70 26.88 895.52

100 47.77 4459.58

DAG-GNN 10 3.65 375.76

30 14.77 1140.59

50 27.75 1542.36

70 43.4 2153.25

100 63.78 3798.52

NOCURL 10 6 96.33

30 25.83 613.5

50 37 1280.67

70 51.17 2191.67

100 79.17 5776.17

LeCaSiM-TI 10 3.87 9.63

30 8.52 101.18

50 13.85 857.98

70 19.3 1241.17

100 32.83 1971.92

LeCaSiM 10 3.5 1.75

30 6.4 23.72

50 10.55 590.68

70 14.95 782.78

100 23.18 1689.78

Table 4 Algorithm prediction
results based on the real dataset

Method SHD # Predicted edges

NOTEARS 22 18

DAG-GNN 19 20

NOCURL 22 19

LeCaSiM-TI 21 18

LeCaSiM 17 18

acyclicity constraint function. By adaptively adjusting the coefficients of high-order terms
using the spectral radius of candidate matrices, these issues are effectively addressed. Based
on this foundation, the LeCaSiM is developed to solve the DAG structure learning problem.
Comprehensive comparative experiments are conducted on both simulated and real-world
datasets in this paper. The experimental results demonstrate that the proposed algorithm
outperforms existing algorithms in terms of accuracy and efficiency.

While our work contributes valuable insights and advancements, there are still limita-
tions and opportunities for further improvements. Firstly, the assumption of linear causal
relationships between variables may not always hold true in practical applications. Future
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research should explore the incorporation of deep generative models that can capture nonlin-
ear relationships while adhering to acyclicity constraints. Secondly, our algorithm provides
an approximate solution to the unconstrained optimization problem. Further efforts should
be directed towards improving the efficiency and convergence stability of the algorithm to
enhance its performance in real-world scenarios. Lastly, we intend to explore the seven alge-
braic propositions of DAGs proposed in this paper further. There is scope for developing
acyclicity constraint functions with lower computational complexity while maintaining the
desired accuracy and efficiency. These potential research directions and areas for improve-
ment can help advance the field of DAG structure learning and pave theway formore accurate
and efficient algorithms in practical applications.
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Appendix A Detailed Proofs

A.1 Proof of Proposition 1

Proof Item (1). According to the previous observation, if the summation of the trace of the
powers of the adjacency matrix,

∑d
k=1 tr(A

k) = (Ak
11 + . . . + Ak

dd) = 0, it suggests that
there are no cycles of lengths 1 to d in the G (A). As a result, it can be inferred that G (A)

is a DAG.
Item (2).According to item (1) of Proposition 1,G (A) ∈ SG is equivalent to

∑d
i=1 tr

(
Ai ) =

0. By using the property that the trace of a matrix is equal to the sum of its eigenvalues,
we have

∑d
i=1 λi (A) + ∑d

i=1 λi (A2) + . . . + ∑d
i=1 λi (Ad) = 0. Therefore, we obtain
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∑d
i=1 λi (A) + ∑d

i=1 λi (A)2 + . . . + ∑d
i=1 λi (A)d = 0. Since A is non-negative, we can

conclude that λi (A) = 0 for i ∈ {1, 2, . . . , d}.
Item (3).Wehave that a nilpotentmatrix is amatrixwhose eigenvalues are all zero.According
to item (2) of Proposition 1, we can conclude that item (3) of Proposition 1.
Item (4). From the definition of the spectral radius, ρ (A) = max1≤i≤d |λi (A)|. We can
conclude that ρ(A) = 0 is indeed equivalent to the eigenvalues of A being all zero. This
implies that G(A) ∈ SG .

Item (4) makes a clever relationship between DAGs and the spectral radius of a matrix.
This link permits the application of results from graph theory connected to spectral radius
theory to the task of DAG structure learning. As a result, certain research have successfully
lowered the time complexity of computing the spectral radius to O

(
d2

)
or even O (d),

reducing the computational burden of DAG structure learning methods dramatically.
Item (5). If matrix A can be transformed, via a similarity transformation, into a strictly upper
(or lower) triangular matrix, then it follows that the eigenvalues of A are all 0. Based on item
(2) of Proposition 1, we can conclude that G(A) ∈ SG .

Conversely, if G(A) ∈ SG , we can perform a topological sorting on G(A) to obtain at
least one vertex sequence. By renumbering the vertices following the rule “if there is a path
from vertex i to j , then vertex i has a smaller (or larger) number than vertex j”, we obtain the
isomorphic graph G(A′) of G(A). It is evident that A′ is a strictly upper (lower) triangular
matrix. According to the properties of isomorphic graphs, there exists a permutation matrix
P (where P is an orthogonal matrix, PT = P−1) such that PT AP = A′. This implies that
A and A′ are similar, and both matrices are strictly upper (lower) triangular matrices.
Item (6). If G (A) ∈ SG , according to item (3) of Proposition 1, there exists an integer k
(k ∈ Z

+, k ≤ d) make Ak = 0, let U = I + A+ A2 + A3 + . . . + Ak−1, then (I − A)U =
(I − A)

(
I + A + A2 + A3 + . . . + Ak−1) = I−A+A−A2+A2−. . .−Ak = I−Ak =

I . From this, we can conclude that (I − A)−1 exists and is equal to U (According to the
properties of matrix power series, U strictly converges when ρ (A) < 1). Additionally, since
A is non-negative, we have U = (I − A)−1 ≥ 0.

Conversely, let U = I + A + . . . + Ak−1 (k → ∞), (I − A)U = I − Ak ,
and (I − A)−1 ≥ 0, then (I − A)−1 (I − A)U = (I − A)−1 (

I − Ak),This implies
U = (I − A)−1 − (I − A)−1 Ak . Consequently, U + (I − A)−1 Ak = (I − A)−1,since
(I − A)−1 exists, indicating ρ (A) < 1,we have Ak = 0,meaning that A is a nilpotent
matrix. This implies the existence of some integer m ≤ d

(
m ∈ Z

+)
for which Am = 0.

From item (3) of Proposition 1, we conclude that G (A) ∈ SG . ��

A.2 Proof of Proposition 2

Proof If G(W ◦ W) ∈ SG , according to item (3) of Proposition 1, there exists an integer k(
k ∈ Z

+, k ≤ d
)
such that (W ◦ W)k = 0. LetU = 1

α
I + 1

α2 W ◦W + . . .+ 1
αk (W ◦W)k−1,

then (α I −W ◦W)U = (α I −W ◦W)[ 1
α
I + 1

α2 W ◦W + . . . + 1
αk (W ◦W)k−1] = I − 1

αk

(W ◦ W)k = I . Therefore, U = (α I − W ◦ W)−1, and due to W ◦ W ≥ 0, we have
(α I − W ◦ W)−1 ≥ 0.

Let U = 1
α
I + 1

α2 W ◦ W + 1
α3 (W ◦ W)2 + . . . + 1

αk (W ◦ W)k−1 ≥ 0 (k → ∞),

(α I − W ◦ W)U = I − 1
αk (W ◦ W)k , since (α I − W ◦ W)−1 ≥ 0,

(α I − W ◦ W)−1 (α I − W ◦ W)U = (α I − W ◦ W)−1 [ I − 1
αk (W ◦ W)k]. This implies

U + (α I − W ◦ W)−1 1
αk (W ◦ W)k = (α I − W ◦ W)−1, since (α I − W ◦ W)−1 exists, it

follows that ρ(W ◦ W) < α, which implies (W ◦ W)k = 0. Therefore,W ◦W is a nilpotent
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matrix, and there must exist m ≤ d
(
m ∈ Z

+)
such that (W ◦ W)m = 0. According to item

(3) of Proposition 1, we can conclude that G (W ◦ W) ∈ SG . ��

A.3 Proof of Corollary 1

Proof For any W ∈ W
α, h (W) = tr [∑∞

k=1
1

αk+1 (W ◦ W)k], it is obvious that tr [∑∞
k=1

1
αk+1 (W ◦ W)k] ≥ 0, which means h (W) ≥ 0.

The following paragraph proves that G (W) ∈ SG iff h (W) = 0.
If h(W) = 0, which implies tr [∑∞

k=1
1

αk+1 (W ◦ W)k] = 0, we can conclude that there
are no cycles in the graph G(W) based on the previous analysis. In other words, it means
that G(W) ∈ SG .

If G(W) ∈ SG , then tr [∑∞
k=1

1
αk+1 (W ◦ W)k] = 0. By utilizing the expression tr [(α I −

W◦W)−1]= tr [∑∞
k=0

1
αk+1 (W ◦ W)k], it can be determined that tr [(α I−W◦W)−1] = d/α.

This denotes that h (W) = 0. ��

A.4 Proof of Corollary 2

Proof Based on Definition 2, we can conclude that α I − W ◦ W is an M-matrix, which
implies that (α I − W ◦ W)−1 ≥ 0. Consequently, (α I − W ◦ W)−2 ≥ 0. By considering
the expression ∇h(W) = 2[(α I − W ◦ W)−2]T ◦ W , it is evident that when ∇h(W)i j �= 0,
the sign of the corresponding element in ∇h(W) matches that of the element in W at the
corresponding position. The power series expansion of (α I − W ◦ W)−1 is provided as
follow:

(α I − W ◦ W)−1 =
∞∑

k=0

1

αk+1 (W ◦ W)k = 1

α
I + . . . + 1

αk+1 (W ◦ W)k

(α I − W ◦ W)−2 = 1

α2 I + . . . + k + 1

αk+2 (W ◦ W)k =
∞∑

k=0

k + 1

αk+2 (W ◦ W)k

∇h(W)i j = 2[(α I − W ◦ W)−2]T i j ◦ W i j implies that if ∇h(W)i j �= 0, then
[(α I − W ◦ W)−2]T i j �= 0 and W i j �= 0. Now, consider [(α I − W ◦ W)−2]T i j =
[∑∞

k=0
k+1
αk+2 (W ◦ W)k]Ti j �= 0. This implies that there exists at least one term in the polyno-

mial sum for some m ∈ Z
+, (W ◦ W)m ji �= 0, indicating the presence of a cycle of length

m in the graph, such as i → j → . . . → i . Therefore, if ∇h (W)i j �= 0, it suggests the
presence of a cycle in G (W). ��
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