Skip to main content
Log in

Attention \(U^2Net\): Cascaded UNets with Modified Skip Connection for Breast Tumor Segmentation

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

Amidst of all the tumors, breast tumor is the main source for a high incidence mortality rate among women. In the past decades, this mortality rate has tremendously reduced by early detection and diagnosis of the tumors using different modalities. Mammograms have significantly contributed towards the detection of masses and calcifications which assists radiologists in decision making. With the advent of Artificial Intelligence (AI) techniques, several breast mass segmentation methods are devised to assists radiologists in detection of tumor masses and lesions. UNet and its variants are widely used deep learning techniques for mass segmentation in mammograms. Although, UNet exhibits an outstanding performance, it has certain limitations, where the extraction of the fine-grained features is still resilient. In this paper, a AU\(^{2}\)Net is proposed where two UNets are cascaded and are connected through skip connections. The attention mechanism and Atrous Spatial Pyramid Pooling (ASPP) are introduced to learn more contextual based features for an enhanced tumor segmentation. The proposed model is validated on Curated Breast Imaging Subset of Digital Database for Screening Mammography (CBIS-DDSM). The images are preprocessed and are augmented using conventional and deep convolutional Generative Adversarial Network based approaches. The proposed method achieved a 92.3% dice score and 89.6% Intersection over Union (IoU) on CBIS-DDSM dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sengan S, Priya V, Syed Musthafa A, Ravi L, Palani S, Subramaniyaswamy V (2020) A fuzzy based high-resolution multi-view deep cnn for breast cancer diagnosis through svm classifier on visual analysis. J Intell Fuzzy Syst 39(6):8573–8586

    Article  Google Scholar 

  2. Dhivya S, Anjali RJ, Mohanavalli S, Sripriya N, Srinivasan K (2020) Investigations of shallow and deep learning algorithms for tumor detection. In: 2020 IEEE-HYDCON, pp 1–5. IEEE

  3. Uthayan K, Mohanavalli S, Nivetha B, Dhivya S (2021) Optimised feature selection for early cancer detection. Genetika 53(3):1297–1309

    Article  Google Scholar 

  4. Dhivya S, Mohanavalli S, Kavitha S (2023) Automated carcinoma classification using efficient nuclei-based patch selection and deep learning techniques. J Intell Fuzzy Syst 45(1):521–535

    Article  Google Scholar 

  5. Ponraj DN, Jenifer ME, Poongodi P, Manoharan JS (2011) A survey on the preprocessing techniques of mammogram for the detection of breast cancer. J Emerg Trends Comput Inf Sci 2(12):656–664

    Google Scholar 

  6. LeCun Y, Bengio Y (2015) Deep learning. Nature 521(7553):436–444

    Article  Google Scholar 

  7. Li X, Jiang Y, Liu Y, Zhang J, Yin S, Luo H (2022) Ragcn: region aggregation graph convolutional network for bone age assessment from x-ray images. IEEE Trans Instrum Meas 71:1–12. https://doi.org/10.1109/TIM.2022.3190025

    Article  Google Scholar 

  8. Li X, Lv S, Li M, Zhang J, Jiang Y, Qin Y, Luo H, Yin S (2023) Sdmt: Spatial dependence multi-task transformer network for 3d knee MRI segmentation and landmark localization. IEEE Trans Med Imag

  9. Ren Z, Wang S, Zhang Y (2023) Weakly supervised machine learning. CAAI Trans Intell Technol. https://doi.org/10.1049/cit2.12216

    Article  Google Scholar 

  10. Zhang Y, Deng L, Zhu H, Wang W, Ren Z, Zhou Q, Lu S, Sun S, Zhu Z, Gorriz JM, Wang S (2023) Deep learning in food category recognition. Inf Fusion 98:101859. https://doi.org/10.1016/j.inffus.2023.101859

    Article  Google Scholar 

  11. Ren Z, Zhang Y, Wang S (2022) A hybrid framework for lung cancer classification. Electronics 11(10):1614

    Article  Google Scholar 

  12. Dhivya S, Mohanavalli S, Karthika S, Shivani S, Mageswari R (2020) Gan based data augmentation for enhanced tumor classification. In: 2020 4th international conference on computer, communication and signal processing (ICCCSP), pp 1–5. IEEE

  13. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556

  14. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1–9

  15. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778

  16. Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3431–3440

  17. Badrinarayanan V, Kendall A, Cipolla R (2017) Segnet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans Pattern Anal Mach Intell 39(12):2481–2495

    Article  Google Scholar 

  18. Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: Proceedings of 18th international conference medical image computing and computer-assisted intervention–MICCAI 2015, Munich, Germany, October 5-9, 2015, Part III 18, pp 234–241. Springer

  19. Kadia DD, Alom MZ, Burada R, Nguyen TV, Asari VKR (2021) 2 u3d: recurrent residual 3d u-net for lung segmentation. IEEE Access 9:88835–88843

    Article  Google Scholar 

  20. Huang H, Lin L, Tong R, Hu H, Zhang Q, Iwamoto Y, Han X, Chen Y.-W, Wu J (2020) Unet 3+: a full-scale connected unet for medical image segmentation. In: ICASSP 2020-2020 IEEE international conference on acoustics, speech and signal processing (ICASSP), pp 1055–1059. IEEE

  21. Zhang J, Jin Y, Xu J, Xu X, Zhang Y (2018) Mdu-net: multi-scale densely connected u-net for biomedical image segmentation. arXiv preprint arXiv:1812.00352

  22. Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4700–4708

  23. Zhou S, Nie D, Adeli E, Yin J, Lian J, Shen D (2019) High-resolution encoder-decoder networks for low-contrast medical image segmentation. IEEE Trans Image Process 29:461–475

    Article  MathSciNet  Google Scholar 

  24. Chen L-C, Papandreou G, Kokkinos I, Murphy K, Yuille AL (2017) Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFS. IEEE Trans Pattern Anal Mach Intell 40(4):834–848

    Article  Google Scholar 

  25. Dong H, Yang G, Liu F, Mo Y, Guo Y (2017) Automatic brain tumor detection and segmentation using u-net based fully convolutional networks. In: Valdés Hernández M, González-Castro V (eds) Medical image understanding analysis. Springer, Cham, pp 506–517

    Chapter  Google Scholar 

  26. Zhu W, Xiang X, Tran TD, Hager GD, Xie X (2018) Adversarial deep structured nets for mass segmentation from mammograms. In: 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018), pp 847–850. IEEE

  27. Sun K, Xin Y, Ma Y, Lou M, Qi Y, Zhu J (2022) Asu-net: U-shape adaptive scale network for mass segmentation in mammograms. J Intell Fuzzy Syst 42(4):4205–4220

    Article  Google Scholar 

  28. Sathyan A, Martis D, Cohen K (2020) Mass and calcification detection from digital mammograms using unets. In: 2020 7th international conference on soft computing & machine intelligence (ISCMI), pp 229–232. IEEE

  29. Sun H, Li C, Liu B, Liu Z, Wang M, Zheng H, Feng DD, Wang S (2020) Aunet: attention-guided dense-upsampling networks for breast mass segmentation in whole mammograms. Phys Med Biol 65(5):055005

    Article  Google Scholar 

  30. Lai X, Yang W, Li R, et al (2020) Dbt masses automatic segmentation using u-net neural networks. Comput Math Methods Med

  31. Pi J, Qi Y, Lou M, Li X, Wang Y, Xu C, Ma Y (2021) Fs-unet: mass segmentation in mammograms using an encoder-decoder architecture with feature strengthening. Comput Biol Med 137:104800

    Article  Google Scholar 

  32. Cao H, Pu S, Tan W (2021) A novel method for segmentation of breast masses based on mammography images. In: 2021 IEEE international conference on image processing (ICIP), pp 3782–3786. IEEE

  33. Zhuang Z, Li N, Joseph Raj AN, Mahesh VG, Qiu S (2019) An rdau-net model for lesion segmentation in breast ultrasound images. PLoS ONE 14(8):0221535

    Article  Google Scholar 

  34. Rajalakshmi NR, Vidhyapriya R, Elango N, Ramesh N (2021) Deeply supervised u-net for mass segmentation in digital mammograms. Int J Imaging Syst Technol 31(1):59–71

    Article  Google Scholar 

  35. Soulami KB, Kaabouch N, Saidi MN, Tamtaoui A (2021) Breast cancer: One-stage automated detection, segmentation, and classification of digital mammograms using unet model based-semantic segmentation. Biomed Signal Process Control 66:102481

    Article  Google Scholar 

  36. Abdelhafiz D, Nabavi S, Ammar R, Yang C, Bi J (2019) Residual deep learning system for mass segmentation and classification in mammography. In: Proceedings of the 10th ACM international conference on bioinformatics, computational biology and health informatics, pp. 475–484

  37. Abdelhafiz D, Bi J, Ammar R, Yang C, Nabavi S (2020) Convolutional neural network for automated mass segmentation in mammography. BMC Bioinform 21(1):1–19

    Google Scholar 

  38. Oktay O, Schlemper J, Folgoc LL, Lee M, Heinrich M, Misawa K, Mori K, McDonagh S, Hammerla NY, Kainz B, et al (2018) Attention u-net: Learning where to look for the pancreas. arXiv preprint arXiv:1804.03999

  39. Vakanski A, Xian M, Freer PE (2020) Attention-enriched deep learning model for breast tumor segmentation in ultrasound images. Ultrasound Med Biol 46(10):2819–2833

    Article  Google Scholar 

  40. Lou M, Qi Y, Li X, Xu C, Zhao W, Deng X (2022) Aggregated pyramid attention network for mass segmentation in mammograms. Multimed Tools Appl 81(10):13335–13353

    Article  Google Scholar 

  41. Hai J, Qiao K, Chen J, Tan H, Xu J, Zeng L, Shi D, Yan B, et al (2019) Fully convolutional densenet with multiscale context for automated breast tumor segmentation. J Healthcare Eng

  42. Xu C, Qi Y, Wang Y, Lou M, Pi J (2022) Arf-net: an adaptive receptive field network for breast mass segmentation in whole mammograms and ultrasound images. Biomed Signal Process Control 71:103178

    Article  Google Scholar 

  43. Li S, Dong M, Du G, Mu X (2019) Attention dense-u-net for automatic breast mass segmentation in digital mammogram. IEEE Access 7:59037–59047. https://doi.org/10.1109/ACCESS.2019.2914873

    Article  Google Scholar 

  44. Chen L, Bentley P, Mori K, Misawa K, Fujiwara M (2018) Drinet for medical image segmentation. IEEE Trans Med Imaging 37(11):2453–2462. https://doi.org/10.1109/TMI.2018.2835303

    Article  Google Scholar 

  45. Murugesan M, Kaliannan K, Balraj S, Singaram K, Kaliannan T, Albert JR (2022) A hybrid deep learning model for effective segmentation and classification of lung nodules from ct images. J Intell Fuzzy Syst 42(3):2667–2670

    Article  Google Scholar 

  46. Zhang Y, Deng L, Zhu H, Wang W, Ren Z, Zhou Q, Lu S, Sun S, Zhu Z, Gorriz JM, et al (2023) Deep learning in food category recognition. Inf Fusion 101859

  47. Zhou Z, Siddiquee MMR, Tajbakhsh N, Liang J (2019) Unet++: redesigning skip connections to exploit multiscale features in image segmentation. IEEE Trans Med Imag 39(6):1856–1867

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors equally contributed to this research work. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to S. Dhivya.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhivya, S., Mohanavalli, S., Sundharakumar, K.B. et al. Attention \(U^2Net\): Cascaded UNets with Modified Skip Connection for Breast Tumor Segmentation. Neural Process Lett 55, 11863–11883 (2023). https://doi.org/10.1007/s11063-023-11400-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-023-11400-3

Keywords

Navigation