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Abstract
This essay discusses a potential method for predicting the behavior of various physical pro-
cesses and uses the COVID-19 outbreak to demonstrate its applicability. This study assumes
that the current data set reflects the output of a dynamic system that is governed by a nonlin-
ear ordinary differential equation. This dynamic system may be described by a Differential
Neural Network (DNN)with time-varying weights matrix parameters. A new hybrid learning
scheme based on the decomposition of the signal to be predicted. The decomposition con-
siders the slow and fast components of the signal which is more natural to signals such as the
ones corresponding to the number of infected and deceased patients who suffered of COVID
2019 sickness. The paper results demonstrate the recommended method offers competitive
performance (70 days of COVID prediction) in comparison to similar studies.

Keywords Artificial neural networks · Hybrid learning · Virus evolution · COVID

1 Introduction

1.1 Predictions Based on Neural Networks

This section reviews how neural networks may predict the evolution of signal temporal
evolution.
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1.1.1 Prediction by Static (Feed-Forward) NN

A set of input values are considered by each neuron. Each one is associated with a weight,
which is a varying value that may be determined by supervised or unsupervised training
techniques like data clustering, and a bias. The network selects a neuron’s output depending
on its weight and bias. All such activities in the context of Classification require labeled
datasets. You thus require guided learning. In supervised learning, people verify that the
neural network’s predictions are accurate. This aids the neural network in comprehending how
labels and data related. Face identification, picture recognition and labeling, voice detection,
and speech transcription are a few examples of this. Deep learning can link pixels in a picture
and a person’s name via categorization. The act of grouping or clustering is the identification
of commonalities. Understand that labels are not always necessary for the deep learning
model to detect commonalities. Unsupervised learning is when a system utilizes machine
learning to learn on its own when there are no helping human labels from which to draw.
This keeps the possibility of creating extremely precise models. Customer churn is a type of
clustering.

Aswe are all aware, predictive analytic usesmethods like predictivemodeling andmachine
learning to examine historical data and forecast future patterns [7]. Contrary to conven-
tional forecasting techniques, neural networks are unique. In contrast to a neural network,
the most popular model, linear regression, is actually a pretty straightforward approach to
problem-solving. Because of their hidden layers, neural networks do predictive analytic more
effectively. Only input and output nodes are used in linear regression models to generate pre-
dictions. The hidden layer is also used by the neural network to improve prediction accuracy.
That’s because it learns similarly to how people do. So why isn’t neural network predic-
tion used by everyone? They are prohibitively expensive due to their high computer power
requirements. In addition, massive data sets are required to train neural networks, which
your company might not have. But as IT technology becomes more affordable, the first
obstacle could soon vanish. Soon, there won’t be any more "unpleasant shocks" because to
technologies like Artificial Neural Networks (ANNs).

1.1.2 Prediction by Dynamic (with Feedback) NN

ANNs are often regarded as effective instruments for modeling intricate, nonlinear systems
using hazy dynamic models. ANNs were first utilized as reliable predictors of various pro-
cesses with static reliance on input–output data. The time effect should be included in the
ANN when it must be used to describe a rough model of time-dependent input–output inter-
actions, which necessitates the creation of a dynamic ANN or DNN [11]. In continuous time
modelling we will be refereed to DNN asDifferential Neural Networks. The review [13] lays
forth the different recurrent and differential forms ofDynamic Neural Networks (DNN), their
mathematical construction, and techniques for adjusting the network weights. The character-
istics of DNNs motivate their use to represent the dynamics of decontamination processes.
This review details recent findings on the DNN application for the modelling and controlling
of treatment systems based on either biological or chemical processes. The modeling appli-
cation of DNN for common methods used in the treatment of wastewater, contaminated soil,
and the atmosphere is described. The major benefits of using the approximate DNN-based
model instead of designing the complex mathematical description for each treatment are
analyzed to enhance the efficiency of the decontamination treatment. In this paper, we also
highlight the remarkable efficiency of DNNs as a keystone tool for modelling of epidemics.
[15, 18].
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1.2 OnMathematical Predictions of Epidemics

In the last few years, researchers and government officials have used computer-based models
to try to forecast the course of the coronavirus pandemic (see, for example, [2, 8, 10, 19]). To
predict the future of the coronavirus disease 2019 (COVID-19) outbreaks globally, several
mathematical models have been developed. These forecasts have a significant impact on how
soon and forcefully, governments respond to an outbreak. However, rather than producing
accurate quantitative predictions regarding the magnitude or duration of illness burdens, the
primary and most efficient application of epidemiological models to evaluate the relative
efficacy of different treatments in lowering disease burden.

There are several studies remarking that models are hardly crystal balls when it comes to
making predictions, and according to science journalist Miles O’Brien (PBS News Hour),
"all of them require human assumptions" [1]. The creation of these models and their eventual
goal are more sophisticated than many of us think, according to specific research periodicals.
Our world is complex and has more data than knowledge. The Global Epidemic andMobility
Model, or GLEAM, is curated by a group of bio-statisticians at Seattle’s Fred Hutchinson
Cancer Research Center [3]. They create mathematical models that explain how infections
spread chaotically and exponentially. According to the projection from last month, 17,000
to 29,300 additional fatalities would likely be reported in the US solely for the week ending
February 13, 2021, totaling 465,000 to 508,000 COVID-19 deaths by this time. The accu-
racy of mathematical forecasts in battling epidemics is still being worked on. Nevertheless,
creating such illness prediction models is a crucial issue for scientific societies worldwide. It
necessitates prompt and comprehensive answers, including a potential application for defin-
ing new politics and prevention schemes.

1.3 Main Concepts of This Paper

The results presented here are based on three principle concepts:

• Although we have hundreds of years of theoretical knowledge on how to create mathe-
matical models of infectious diseases, have any of these models ever been put to the test
using all of the data sources at our disposal in real-time?No. Aswe create this automobile
and learn more about these models, it is hurtling down the highway. For a more accurate
model design, it is really difficult to take into consideration all human aspects (social,
informational, climatic, and others) acting during sickness.

• Any recommended model must include the inherent uncertainties associated with the
most recent data. Thus, for instance, we lack sufficient statistical data to accept all of
the conditions that should be satisfied to use any stochastic prediction models that are
accessible (such as the Kalman filter or any of its modifications such as a requirement
for noises to have Gaussian distributions with known covariation matrices, local linearity
of the model, exact knowledge all participating parameters and so on). We only have
one data trajectory (realization), making it complicated to apply statistical concepts like
mathematical expectation (mean value), variance, and confidence interval. We can also
not repeat the experiment to get at least one other data curve. This indicates that a
statistical method for this kind of problem is not applicable!

• Given the previous items, we suppose that the current data-set represents the output
of some dynamic system governed by a nonlinear ordinary differential equation
and may be modeled by a Differential Neural Network with time-varying weights matrix
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parameters whose dynamics is governed by special Learning laws containing slow and
fast components.

All results reported below justify nice performances of the suggested approach.

2 DNNModel with Slow and Fast Learning

2.1 Ideas of a Prediction Algorithm for Models with Complete Information

2.1.1 Non-causal Model

Consider initially an ideal scenario where we know that the following mathematical model
produces the scalar output x (t) ∈ R of any dynamic plant.

x (n) (t) = f
(
t, x (t) , ẋ (t) , . . . , x (n−1) (t)

)

x (r) (0) = x (r)
0 , r = 0, 1, . . . , n − 1

⎫
⎬

⎭
(1)

where the nonlinear function f : R+ × R
n → R and initial condition x0 supposed to be

known exactly. Defining vector x (t) ∈ Rn with components

x1 (t) := x (t) , x2 (t) := ẋ1, . . . , ẋn−2 := xn−1, xn := ẋn−1, (2)

we can represent (1) as

ẋ (t) = F (t, x (t)) = Ax (t) +bv(t)

A =

⎛

⎜⎜⎜⎜⎜
⎝

0 1 0 · · · 0 0 0
0 0 1 0 · · · 0 0
.
.
. 0 0 1 0 · · · 0
0 0 0 0 1 0 · · ·
0 0 · · · 0 0 0 0

⎞

⎟⎟⎟⎟⎟
⎠

∈ R
n×n,b =

⎛

⎜⎜⎜⎜⎜
⎝

0
0
...

0
1

⎞

⎟⎟⎟⎟⎟
⎠

∈ R
n×1

v(t) = f (t, x1 (t) , x2 (t) , . . . , xn−1 (t)) ∈ R

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3)

In the corresponding integral form the differential model (3) can be rewritten as

x (t + T ) = x (t) +
t+T∫

τ=t

F (τ, x (τ )) dτ = x (t) + T r (t, T )

r (t, T ) := 1

T

t+T∫

τ=t

F (τ, x (τ )) dτ

(4)

where the variable r (t, T ) represents the "averaged rate" of changing the considered output
variable x (t) on the time-interval [t, t + T ]. Considering the data set {x (τ )}τ∈[0,t] as the
information on the process available up to the moment t we may conclude that r (t, T ) (4)
contains the information on nearest future {x (τ )}τ∈[t,t+T ] with the horizon T and hence may
be considered as “non-causal”.
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2.1.2 Causal Approximation

Introduce standard operators of delay e−sT and differentiation s acting as

e−sT f (t) = f (t − T ) , s f (t) = f ′ (t)

and using the local approximation

esT � 1 + sT + T 2

2
s2 + T 3

6
s3

for the "forecasting operator" esT , we can obtain the following approximate relation:

r (t, T ) = esT e−sT r (t, T ) = esT r (t − T , T ) �(
1 + sT + T 2

2
s2 + T 3

6
s3

)
r (t − T , T ) = r (t − T , T )+

T ṙ (t − T , T ) + T 2

2
r̈ (t − T , T ) + T 2

2
...
r (t − T , T ) := rcaus (t, T ) ,

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(5)

where

r (t − T , T ) = 1

T

t∫

τ=t−T

F (τ, x (τ )) dτ, (6)

depends on available information {x (τ )}τ∈[t−T ,t]. Given that the new variable rcaus (t, T )

(5) can be treated as the "causal approximation" of variable r (t, T ) and the integral repre-
sentation (4) of the considered dynamics (1) can be locally approximated as

x (t + T ) � x (t) + T rcaus (t, T ) . (7)

Remark 1 Since the right-hand side of (7) contains only information
{x (τ )}τ∈[t−T ,t], available up to time t , we can consider the value x (t + T ) as the " prediction
(or forecasting)" of the process {x (τ )}τ∈[0,t] ahead on horizon T .

3 Prediction Algorithm for Models with Incomplete Information: DNN
Approach

When the original dynamics F (t, x (t)) in (3) is completely or partially unknown, we suggest
applying theDNNapproach [11]which showed nice results being applied to various problems
in bio-engineering and the environment science [12, 13].

3.1 DNN IdentificationModel

Artificial neural networks (ANNs) are thought to be effective modeling tools for non-linear,
complicated systems with ambiguous dynamic models. ANNs were first utilized as reliable
predictors of various processes with static reliance on input–output data. The time effect must
be included in the ANN when it is used to characterize a rough model of time-dependent
input–output relationships, which necessitates the reconstruction of a dynamic ANN or the
use of Recurrent Neural Networks (RNNs) in discrete time or Differential Neural Networks
(DNNs) in continuous time. DNNs sometimes referred to as Auto Associative or Feedback
Networks, are a subclass of ANNs in which the connections between the input and the output
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are organized into a directed cycle. As a result, the network develops an internal state that
displays dynamic, temporally dependent behavior. DNN allows the signal to go both forward
and backward by including loops in the network design or topology. To achieve the required
behavior of this DNN, a particular tuning for the time-dependent weight matrix parameters is
realized as a result of such a suggestion. In our scenario, define the single layer DNN model
following [11], where the measurable output x(t) is a vector, as

d

dt
x̂ (t) = Ax̂ (t)+bx (n)

1 (t)+Ŵ (t) σ
(
x̂ (t)

) +L
[
x1(t)−C�x̂ (t)

]
,

x̂ (0)=x (0) ∈ R
n,C�= (1, 0, . . . , 0) ∈ R

n, Ŵ (t) ∈ R
n×p, σ : Rn → R

p,

⎫
⎪⎬

⎪⎭
(8)

where

• σ� (
x̂
) = (

σ1
(
x̂
)
, σ2

(
x̂
)
, . . . , σp

(
x̂
))

is the vector with sigmoidal components

σ j
(
x̂
) = α j

1 + β j e
−γ �

j x̂
+ δ j , j = 1, . . . , p

(α j , β j and δ j are positive scalars and γ j ∈ R
n is a weighting vector for the component

of x̂);
• Ŵ (t) is the weight matrix, changing in time according to the Learning Procedure (LP)

d

dt
Ŵ (t) = K−1P

[
x(t) − x̂(t)

]
σ� (

x̂ (t)
)

0 < K = K� ∈ R
n×n, 0 < P = P� ∈ R

n×n

⎫
⎪⎬

⎪⎭
(9)

• The vector L ∈ R
n must be selected in such a way that

L ∈ R
n×1 : A0(L) = A − LC� is Hurwitz,

spectrum
(
A0(L)

) ∈ C
−.

As it ismentioned in ( [11]), a special selection ofmatrix P wemayguarantee a goodDNN-
approximation (identification) x̂ (t) � x (t) practically for all t ≥ 0. The next subsection
explains how the algorithms ( 8) and (9) should be modified to be able to generate a good
prediction trajectory x̂ (t + T ) using only available information

{
x̂ (τ ) ,

}
τ∈[t−T ,t].

3.2 DNN PredictionModel

The DNN dynamics (8) in the integral causal format (7) may be represented as

x̂ (t + T ) = x̂ (t) + T r̂caus (t, T ) , (10)

where

• the signal x̂ (t) is generated by (8),
• the auxiliary vector r̂caus (t, T ) is defined as
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r̂caus (t, T ) :=r̂ (t − T , T ) + T
d

dt
r̂ (t − T , T )

+T 2

2

d2

dt2
r̂ (t − T , T ) + T 2

2

d3

dt3
r̂ (t − T , T )

(11)

with

r̂ (t − T , T ) := 1

T

t∫

τ=t−T

F̂ (τ, x (τ )) dτ,

F̂ (τ, x (τ )) := Ax̂ (τ ) +bx (n)
1 (τ ) + Ŵ (τ ) σ

(
x̂ (τ )

) + L
[
x1(τ ) − C�x̂ (τ )

]
,

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(12)

• the derivatives x (m)
1 (t) , (m = 1, . . . , n) and

dk

dtk
r̂ (t − T , T ) , (k = 1, 2, 3) are calcu-

lated recurrently based on "super-twist algorithm" ( [9]), [16]. To differentiate time
function f (t), the super-twisting controller is designed to reduce the error s(t) (s = x− f )
between its input f (t) and output x(t) to zero:

ẋ(t) = −α
√|s(t)|sign(s(t)) + y(t),

ẏ(t) = −M sign(s(t))∣∣ f̈
∣∣ < F0, M > F0

⎫
⎬

⎭
(13)

The error s(t) is reduced to zero after a finite time interval t0 and state component y(t)
is equal to the first-time derivative of a function f (t) , namely, y(t) = d

dt f (t) for all
t ≥ t0. If f (t) is corrupted by bounded noise |s(t)| ≤ � = const, then an upper bound
of the differentiation, the error is estimated by inequality

∣∣∣∣y(t) − d

dt
f (t)

∣∣∣∣ ≤ α1� + α2
√

�,α1, α2 - positive constants.

3.3 DNN Predictor with Slow and Fast Components

There are several systems whose trajectories can be understood as the overlapping of signals
formed with the combination of slow and fast components. Such systems are also known
as multi-rate system that appears naturally in mobile robotics [4], chemical [17] and bio-
chemical [6] reactions, evolution of medical sicknesses [14], evolution of ecosystems animal
populations [5] andmany others. The same type of combined dynamics is valid for describing
the evolution of both infected and deceased persons suffering of the Covid-19 sickness.

The developed DNN structure with mixed (slow and fast) learning scheme could be useful
to represent the dynamics of COVID-19. Such a fact can be justified considering that the
evolution of infected and deceased persons can be represented as the combination of a slow
dynamics defined by the seasonal variations and a fast evolution which corresponds to the
daily evolution. Onemay notice that suchmulti-rate dynamics has not been considered before
in the design of non-parametric identifiers based on differential neural networks, which is
indeed a contribution of this study.
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Fig. 1 Comparative evolution of the slow part of the infected cases over time using the corresponding DNN
with its state xslow (t)

3.3.1 Slow Predictive Component

Based on available data {x (τ )}τ∈[0,t] let us reconstruct a "slow" trajectory {xslow (τ)}τ∈[0,t]
defined as the best least squares polynomial approximation of a given order N , that is,

xslow (t) =
N∑

i=0
c̄i t i ,

c̄ = arg min
c∈RN+1

t∫

τ=0

(

x (τ ) −
N∑

i=0

ciτ
i

)2

dτ

=
⎛

⎝
t∫

τ=0

x (τ ) ø (τ ) ø� (τ ) dτ

⎞

⎠

−1 t∫

τ=0

x (τ ) ø (τ ) dτ,

c̄� := (c̄0, . . . , c̄N ) ∈ R
N+1, ø� (τ ) := (

1, τ, τ 2, . . . , τ N
) ∈ R

N+1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(14)

The behavior of trajectory xslow (t) is shown in Fig. 1 for COVID-19 case.
Then, as in (10), (11) and (12), define x̂slow (t + T ) as

x̂slow (t + T ) = x̂slow (t) + T r̂slowcaus (t, T ) , (15)

where

• x̂slow (t) is generated by the following DNN model:

d

dt
x̂slow (t)= Ax̂slow (t)+bx (n)

1,slow (t) +
Ŵslow (t) σ

(
x̂slow (t)

) + L
[
x1,slow(t) − C�x̂slow (t)

]
,

d

dt
Ŵslow (t) = K−1P

(
xslow(t) − x̂slow(t)

)
σ� (

x̂slow (t)
)

x̂slow (0) = x (0) ∈ R
n,C� = (1, 0, . . . , 0) ∈ R

n,

Ŵslow (t) ∈ R
n×p, σ : Rn → R

p,

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(16)
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Fig. 2 Comparative evolution of the faster part of the infected cases over time using the corresponding DNN
with its state x f ast (t)

• the auxiliary vector r̂slowcaus (t, T ) is defined as

r̂slowcaus (t, T ) := r̂slow (t − T , T ) + T
d

dt
r̂slow (t − T , T ) +

T 2

2

d2

dt2
r̂slow (t − T , T ) + T 2

2

d3

dt3
r̂slow (t − T , T ) ,

⎫
⎪⎬

⎪⎭
(17)

with

r̂slow (t − T , T ) := 1

T

t∫

τ=t−T

F̂slow (τ, xslow (τ)) dτ,

F̂slow (τ, xslow (τ)) := Ax̂slow (τ) +bx (n)
1,slow (τ) +

Ŵ (τ ) σ
(
x̂slow (τ)

) + L
[
x1,slow(τ) − C�x̂slow (τ)

]
,

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(18)

3.3.2 Fast Predictive Component

Define x f ast (t) as

x f ast (t) := x (t) − xslow (t) (19)

The behavior of trajectory x f ast (t) is shown in Fig. 2 for COVID-19 case.
Then, as in (16), (17) and (18), define x̂ f ast (t + T ) as

x̂ f ast (t + T ) = x̂ f ast (t) + T r̂ f ast
caus (t, T ) , (20)

where

• x̂ f ast (t) is generated by the following DNN model:
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d

dt
x̂ f ast (t)= Ax̂ f ast (t) +bx (n)

1, f ast (t) +
Ŵ f ast (t) σ

(
x̂ f ast (t)

) + L
[
x1, f ast (t) − C�x̂ f ast (t)

]
,

d

dt
Ŵ f ast (t) = K−1P

(
x f ast (t) − x̂ f ast (t)

)
σ� (

x̂ f ast (t)
)

x̂ f ast (0) = x (0) ∈ R
n,C� = (1, 0, . . . , 0) ∈ R

n,

Ŵ f ast (t) ∈ R
n×p, σ : Rn → R

p,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(21)

• the auxiliary vector r̂ f ast
caus (t, T ) is defined as

r̂ f ast
caus (t, T ) := r̂ f ast (t − T , T ) + T

d

dt
r̂ f ast (t − T , T )+

T 2

2

d2

dt2
r̂ f ast (t − T , T ) + T 2

2

d3

dt3
r̂ f ast (t − T , T ) ,

⎫
⎪⎬

⎪⎭
(22)

with

r̂ f ast (t − T , T ) := 1

T

t∫

τ=t−T

F̂ f ast (τ, x f ast (τ )
)
dτ,

F̂ f ast
(
τ, x f ast (τ )

) := Ax̂ f ast (τ ) +bx (n)
1, f ast (τ ) +

Ŵ (τ ) σ
(
x̂ f ast (τ )

) + L
[
x1, f ast (τ ) − C�x̂ f ast (τ )

]
.

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(23)

3.4 Joint Slow and Fast Predictor

In this paper, we use more advance predictor, consisting in two components: slow
x̂slow (t + T ) and fast x̂ f ast (t + T ) , namely,

x̂ (t + T ) = x̂slow (t + T ) + x̂ f ast (t + T ) . (24)

4 Structure of Numerical Procedure

The suggested predictive numerical structure consists of the following steps:

1. Based on given discrete-time data {x (k)}k∈[0,1,...K], where x (k) corresponds to the data
value at day k, and applying a spline approximation (herein examples, we use the spline
of 15-th order) we construct the continuous-time curve {x (τ )}τ∈[0,t] where t = K� (�
is time interval between discrete data).

2. Then using (14) and (19), based on the obtained curve {x (τ )}τ∈[0,t] we need to construct
the slow xslow (t) and fast x f ast (t) trajectories.

3. Applying the procedures (16), (17) and (18) we obtain the slow predictive curve
x̂slow (t + T ) (15).

4. Then applying the procedures (20), (22 ) and (23) we obtain the fast predictive curve
x̂ f ast (t + T ) (15).

5. The last step is to construct the final predictive curve x̂ (t + T ) (24) for desired T (for
example, taking T = 60, 90, 120 days on the COVID-19 prediction).

The corresponding block scheme is shown in Fig. 3.
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Fig. 3 Flow diagram describing
how the proposed forecasting
evolution is derived using the
tools included in the toolbox

The developed algorithm was implemented accordingly to the following pseudocode.

1. Load information corresponding to infected or deceased patients suffered from COVID-
19 sickness

2. Interpolate the loaded information using a third order spline strategy
3. Implement a p-th order low-pass filter with a finite-impulse response strategy using a cut-

off frequency of 0.5 Hz. This frequency was determined using the collected information.
The value of p-th order is fixed to 7 considering the evolution of Covid information.

4. Filter the loaded information separating the slow and fast components of the infected or
deceased datasets, according to the selected cut-off frequency.

5. Develop the slow learning algorithm in the first differential neural network implemented
as an non-parametric identifier.

6. Develop the fast learning algorithm in the first differential neural network implemented
as an non-parametric identifier.

7. Divide the information considering the training period and the complementary validation
period.

8. Evaluate both the slow and fast identifiers to reproduce the information corresponding
to the information considered in the training period.

9. Repeat the identification task until the least mean square error of the identification error
for both the slow and the fast learning is smaller than a given threshold value ε.

10. Once the expected quality of training is expected, recover the values of the weights
produced during this part of the process for both the slow and fast evaluations.

11. Develop the numerical simulation of the differential neural network working as the
predictor using two models using the recovered weights from the slow and the fast
evolution of the training algorithms.

12. Add the results of the slow and fast predictors to reconstruct the information during the
prediction period.

13. Compare if possible, the information obtained from the Covid statistics during the pre-
diction period with respect to the obtained data during the evaluation of the added
identifier.

14. Determine the LeastMean Square Error and theMaximumError for the predicted period,
if possible to characterize the quality of the prediction task.
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5 Seventy Days Prediction of Infections and Deaths for Different
Countries

This research uses a publicly available dataset “2019 Novel Coronavirus Data Repository-
published by Johns Hopkins University Center for Systems Science and Engineering (JHU
CSSE) available at: https://github.com/CSSEGISandData/COVID-19. Models achieved and
the code used in their generation are available in a repository located at: https://github.com/
RitehAIandRobot/COVID-19-MLP. This information is proposed in COVID-19MLP, Riteh
AI and Robotics Group, 2020, https://github.com/RitehAIandRobot/COVID-19-MLP.

The presented set of numerical simulations considered a temporal horizon of 70days.
All the selected parameters were obtained using the Hurwitz conditions for A − LC�. The
values for the parameters considered in the activation functions were obtained with a uniform
distribution for the exponential term, unitary gain with a fixed offset to 0.5. Hence, the
parameters used for solving the numerical simulation for this the study was the following:

A = 1.0 · 10−2 ·

⎡

⎢
⎢
⎢⎢
⎣

−25 0 0 0
−8 −32 0 0
−12 −11 −44 0
−13 −13 −12 −52

⎤

⎥
⎥
⎥⎥
⎦

(25)

The number of sigmoidal functions (artificial neurons in the DNN) used for the identi-
fication process was 9600. The parameters in the sigmoidal functions were α j = 1 for all
j = 1, . . . , 9600. The parameter in the denominator are β j = 0.05 and β j = 0.08 for all
j = 1, . . . , 9600. The period T was fixed to 10 days. All the initial conditions were fixed
as random values between 0 and 1. These selections were obtained using a trial and testing
method that effectively estimated the number of infected and deceased persons with Sars-
Cov2 virus. These estimations were evaluated using the collected information reported by
the World Health Organization.

The values of matrices K , P , and L are as follows:

K =

⎡

⎢⎢
⎣

25.0 1.2 −1.5 2.3
1.2 32.0 −1.1 −1.3

−1.5 −1.1 44 1.2
2.3 −1.3 1.2 52

⎤

⎥⎥
⎦ ,

P =

⎡

⎢⎢
⎣

2.5 0.8 −1.2 −0.3
0.8 5.2 −1.1 −0.1

−1.2 −1.1 6.4 −1.2
−0.3 −0.1 −1.2 9.2

⎤

⎥⎥
⎦ ,

L = [−15 −28 −32 −53
]�

.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(26)

5.1 Turkey

Figure4 shows the comparison of estimated data evolution for infected people in Turkey.
The comparison of trajectories confirms at first glance the effectiveness of the proposed
DNN-based forecasting considering a period of estimation of 70 days. Moreover, it shows
the effective estimation of the forecast information.
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Fig. 4 Prediction results with future estimation for the infected people detected in Turkey using the proposed
DNN-based predictor

Figure5 depicts the evolution of the predicted data for deceased people in Turkey using the
proposed multi-rate identifier. In this case, there is a comparison considering the estimated
data and the one corresponding to the actual data.

5.2 USA

Figure6 shows the comparison of estimated data evolution for infected people in the United
States of America. The comparison of trajectories confirms at first glance the effectiveness
of the proposed DNN-based forecasting considering a period of 70 days.

Figure5 depicts the evolution of the predicted data for deceased people in the United
States of America using the proposed multi-rate identifier. In this case, there is a comparison
considering the estimated data and the one corresponding to the actual data.

All the previous results confirm that the proposed forecaster is based on the dual config-
uration of DNN. Moreover, the proposed technique can be easily implemented in different
forecast problems taking advantage of the generalized formulation presented here.

For both studied cases, we included here some methods used for comparison including a
traditional recurrent neural network (RNN), a Long-Short termmemory (LSTM), and a gated
network unit (GNU). These networks were considered for comparison taking into account
the significant outcomes shown before as potential predictors of complex time dependent
information. We have presented two tables (one per infected and one per deceased persons)
comparing some quality measurements, including the least mean square evaluation for the
signals corresponding to the evolution of infected and deceased persons during the COVID
outbreak (Tables 1 and 2). With the aim of introducing a fair comparison, the number of
flops used for each of the prediction tasks was also estimated. These results confirm the

123



9610 A. Poznyak et al.

Fig. 5 Prediction results with future estimation for the deceased people detected in Turkey using the proposed
DNN-based predictor

Fig. 6 Prediction results with future estimation for the infected people detected in the United States of America
using the proposed DNN-based predictor
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Table 1 Comparison results for
infected persons showing the
prediction outcomes for the
infected persons and the flops
used to perform the task

Method LMSE MEPP Flops

RNN 193.5 398.0 7.8 × 107

LSTM 137.5 245.0 1.8 × 107

GNU 167.4 267.0 3.8 × 107

Slow-fast method 54.5 78.0 3.2 × 108

Table 2 Comparison results for
deceased persons showing the
prediction outcomes for the
infected persons and the flops
used to perform the task

Method LMSE MEPP Flops

RNN 45.5 48.0 5.4 × 107

LSTM 65.3 67.0 4.3 × 107

GNU 76.4 78.0 1.9 × 107

Slow-fast method 34.3 24.0 3.0 × 108

Fig. 7 Prediction results with future estimation for the deceased people detected in the United States of
America using the proposed DNN-based predictor

advances generated by applying the proposed predictor based on the combined learning
method introduced in this study.

The proposed outcomes shown in the previous tables confirm the benefits of the pro-
posed methodology, including the prediction quality, as well as the convergence conditions
(noticing the maximum error value). However, the augmented number of flops required by
the methodology considered in this study still requires some work to improve the prediction
abilities. Moreover, showing the better least mean square errors obtained with the proposed
methodology highlights the benefit of introducing the mixed learning with slow and fast
dynamics.
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6 Conclusions

• In this paper, it is shown that time-series datamay be effectivelymodeled by aDifferential
Neural Network (DNN) with time-varying weights matrix parameters whose dynamics
are governed by special Learning laws containing slow and fast components;

• This study also demonstrates oneof the possible applications of the suggested technique to
COVID-19 epidemic prediction, where we suppose that the current data set represents the
output of some dynamic system, governed by a nonlinear ordinary differential equation;
this method has been evaluated for two nations’ databases (Turkey and the USA) and has
demonstrated great performances (70 days of forecast).
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