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Abstract

Various works have been published around the optimization of Neural Networks that empha-
size the significance of the learning rate. In this study we analyze the need for a different
treatment for each layer and how this affects training. We propose a novel optimization tech-
nique, called AdaLip, that utilizes an estimation of the Lipschitz constant of the gradients in
order to construct an adaptive learning rate per layer that can work on top of already existing
optimizers, like SGD or Adam. A detailed experimental framework was used to prove the
usefulness of the optimizer on three benchmark datasets. It showed that AdaLip improves
the training performance and the convergence speed, but also made the training process more
robust to the selection of the initial global learning rate.

Keywords Neural networks - Online learning - Stochastic optimization - Adaptive learning
rate - Lipschitz constant.

1 Introduction

Neural Networks produce state-of-the-art results for various research fields, such as image
recognition [1, 2], speech recognition [3, 4], machine translation [5], autonomous driving [6],
text generation [7] and many others. As more and more data become available, the need for
deep neural networks becomes more evident. Deep networks can be trained through many
learning algorithms, most of them being variations of Stochastic Gradient Descent (SGD).
The training task of a neural network can be represented as an optimization problem of finding
the best parameters w* that minimize the loss function, f : %¢ — 9, given a set of training
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samples x:

w* = argmin f(w | x) (1)

The update rule of SGD can be summarized as an iterative movement in the opposite
direction of the gradient. That can be seen in the following equation:

ur

——
w1 = wy —a; V f(wy) ()
——
8t

where «; is the learning rate. For simplicity, we’ll often refer to the gradient as g; and the
update as u;. The convergence and performance of SGD is greatly influenced by the learning
rate, which is why it is one of the most important hyperparameters to fine-tune in a neural
network. Selecting a value of «; larger than the optimal can lead to unpredictable oscillations
of the learning curve and even to divergence. On the other hand, small values reduce the
convergence speed and make the loss more prone to be trapped in a local minima [8, 9].

The most common practice is to decrease the learning rate during training [10, 11]. How-
ever, there are many indications that this is not the best scheduling strategy [12]. Numerous
works have been published about the optimal learning rate. The best ones revolve around
techniques that change it adaptively depending on various conditions and metrics. In this
study a new method will be presented changing the learning rate of each layer based on the
Lipschitz constant.

2 Related Work

As mentioned previously, the learning rate is one of the most important hyperparameters in
Gradient Descent. Consequently there have been numerous studies aiming at identifying the
optimal learning rate. The most common approaches focus on defining a strategy to change
the learning rate during training. These are usually referred to as schedules. The earliest
instance of such a schedule, is the Robbins/Monro theory [10], which states that the learning
rate should be chosen to satisfy the following equations:

oo oo
Za, = 00 and Za,z < 0
r=1 =1
Another scheduling scheme calls for starting at a relatively high learning rate to achieve
fast convergence and then half that every few iterations to ensure small proximity to w* [13].
Due to its simplicity, variants of this scheme have been employed to train some of the most
popular architectures [14]. Another strategy that has proven to be effective in practice is to
start training with a constant learning rate and to decrease it by a factor of 2-10 once the loss
stops decreasing [15].
A strong assumption usually made by optimization algorithms is that the loss function f
is convex. In this setting, a good selection of learning rate is shown to be:
0

Vi

which guarantees a convergence of E[ f(w;) — f*] < O(log(t)/+/t) without any smooth
assumptions, if the base learning rate o is chosen properly [16]. [17] proves with a slightly
different framework that the learning rate of Eq. 3 achieves a convergence of O(1/4/1).
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A strategy gaining significant popularity lately is scheduling the learning rate in a peri-
odical fashion. More specifically, cyclical learning rate schedules (i.e. both increasing and
decreasing the learning rate during training) have proven to be very effective in practice [8,
9, 12]. This helps the network to escape bad local minima that the training process could be
stuck.

One of the main disadvantages with using SGD as an optimizer is that it scales the update
with the magnitude of the gradient in all directions. Sometimes this may lead to slower
convergence rates and poor performance. Ideally, the optimization procedure would benefit
from being able to choose different learning rates for different weights or set of weights of
the network. For example, it could be useful to set higher learning rates for small gradients
(or the opposite), when it is needed to reached a better point in the loss space [18].

To overcome this issue, a lot of methods have been proposed, that offer “adaptive" learn-
ing rates. The first such algorithm was AdaGrad [19], which adapts the learning rate with
the accumulated squared gradient for each parameter individually. This has been shown to
improve the convergence rate of SGD in non-convex settings, especially in highly sparse
data, as it decreases the learning rate faster for frequent parameters, and slower for infre-
quent parameters. One major drawback, however, is that the adaptive learning rate tends to
get small over time, due to the accumulation of gradients from the beginning of the training.

RMSProp [20] is another optimizer that aims to fix the aforementioned shortcomings of
AdaGrad. Instead of accumulating all the squared gradients, it uses an exponential moving
average. This is helpful because the moving average of the gradients does not get extremely
large forcing the overall learning rate closer to zero. Another major improvement in opti-
mization techniques came in the form of Adam [21], which in addition to scaling the learning
rate with the moving average of squared gradients, also averages the gradients themselves.
This optimizer has grown substantially in popularity and currently is the “default choice" in
most deep learning frameworks [15, 22].

This family of adaptive optimizers, however, are far from perfect and have received a lot of
criticism as they lead to biased gradient updates which change the underlying optimization
problem [18]. In fact, it has been shown that in some cases, adaptive methods often find
drastically different solutions compared to SGD [22]. Other techniques have been proposed
to alleviate the aforementioned issues of adaptive learning rates, namely AMSGrad [23]
and AdaBound [24], which provide strong theoretical proofs of convergence. [25] proposes
another variation of adaptive learning rates, where they theoretically derive the Lipschitz
constant for neural networks with different types of loss functions. Another attempt to com-
pute the Lipschitz constant was made by [26]. However, none of these approaches, has yet
to surpass the popularity of Adam.

Another approach for adapting the learning rate during training is to update it at each
iteration (using backpropagation) in order to maximize some criterion. This is equivalent to
“learning” the learning rate for some external goal, e.g. the minimization of the cost function
[27], or the squared norm of its derivative [18]. The first technique is interesting, however it
falls under the same pitfall mentioned previously, of using a scalar learning rate.

In this paper a new adaptive method is proposed that computes the learning rate based on
the Lipschitz constant. The main contributions of the present paper are the following:

e A novel adaptive optimization technique that approximates the Lipschitz constant of the
gradient of the loss function to estimate the optimal learning rate.

e An empirical analysis indicating an heterogeneity of the magnitude of the gradients of
different layers. This led us to the use of a different learning rate per layer.
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Table 1 Differences in popular adaptive optimization methods and how the are structured based on the
optimization framework of Algorithm 1

SGD AdaGrad RMSProp Adam
lon 8t 8t 8t I-BDYi, ﬂiiigi
i 1 diag(Y"!_, &?) (1 — ) diag(YI_, fis'e?)) (1 - B) diag(Y\_, 5 'gd)

e Through an experimental study we provide insights on neural network training as well
as some recommended practices.

3 Theoretical Analysis
3.1 Preliminaries

Before describing our contributions, we will present a generic framework, which can represent
all adaptive optimization methods. In the sequel, we will adopt standard notation and relevant
mathematical techniques from the literature [21, 23]. We will use F € R to denote the set of
feasible points for the weights w,. We assume that the set 7 has bounded diameter Dy, € N,
if |[x — y|| € Do, forall x, y € F. In the feasible set F, there is another assumption that
IV fi(x)|loc isbounded V¢ € [0, 1, ..., T]. This generic framework is portrayed in Algorithm
L.

Algorithm 1 Generic framework of adaptive optimization methods

Input: w; € F, initial step o, functions {¢;, 1//;}2-:]
1: for t=1 to T do

20 g =Vfi(w)

30 my =81, -, &) and Vi = Y (g1, -, 81)
4 oy =g/t

50 g1 =wr —arme/Ve

6:  wip = H]:ﬂ/vt(uvwl)

7: end for

Table 1 summarizes how various algorithms fit with the generic framework. The main
differences in these algorithms lie in the selection of the “averaging" functions ¢ and ¥,
through which the parameters m, and V; are updated. Through this abstraction, the differences
among the various optimizers become more apparent.

3.2 Background

Definition 1 A function f : R¢ — 9 is L-Lipschitz continuous if for all x, y € N there is
aL > 0 where!,

If ) = fODI < Liix =yl

and the smallest L that satisfies the above equation is called Lipschitz constant.

1" All the norms discussed in this study are Euclidean, || - || = || - [|2.
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Let f : %Y — N be a function with a smooth gradient:
IV fwi) = VF )l < Lwy — wall Ywi, wy € R “

Consider an optimization problem, where the goal is to find the set of parameters w that
minimize the loss function f (i.e. Eq. 1), through Gradient Descent (Eq. 2).

Lemma 1 Given a convex loss function f, with a L-Lipschitz continuous gradient (Def. 1)
with L being the Lipschitz constant, the optimal learning rate for Gradient Descent is:

o =

: 5
- )

The proof for that can be found in the Appendix A. Computing the optimal learning rate,
however, requires prior knowledge of the Lipschitz constant of the loss function’s gradient,
which is generally not the case.

In practise, it is difficult to find an overall good learning rate because that can change
from dataset to dataset and from model to model. Also, because the majority of deep learning
models are trained with variants of SGD, meaning noisy gradients, calculating the exact
value of L is not easily feasible. If, however, the Lipschitz constant could be learned during
training and its approximate value is accurate, then one could adapt the learning rate towards
its optimal value as training progresses. Up till now this has remained an open research
question [18].

3.3 Learning the Lipschitz Constant

Considering that the update steps are quite small for each iteration, we can calculate the
constant L of a small subspace, the one that the optimizer explores, assuming that it is L-
smooth. This means that the information of the subspace of the loss function needed was
computed during a single forward pass. A multiple forward pass scheme could be approached
by computing the gradients of different nearby directions, but it costs extra training time
making it extremely infeasible for large scale datasets and deep models. Below, we present
the approximation of L in a stochastic environment. It can be derived from Eq. 4, if (w1, w2)
is substituted by (w;, ws—_1):

IV f(w) =V fw—pDIl = Lllwe — w1l
From Egq. 2:

IVf(w) =V fwi—DIl < Lllwi—1 — oV f(wi—1) — wi—1l
IVf(w) =V fw—DIl < Ly ||V f(wi—1)l

o V) =V fw-pll

B ar |V f (w1l

The analysis so far has been based around Gradient Descent. In a realistic scenario the
stochastic version will take its place. This translates to the gradients being calculated from a
subset of the dataset (i.e. a batch) and, as a result, from a subspace of the loss space. These
gradients, g, are noisy versions of the total gradient but their expected value is equal to the
total:

L

Elg] = Ex[Vf(willx)] =V f(w)
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By renaming V f(w;) as g; and using Eq. 5, the above inequality transforms to this:

< llgr—1ll
llgr — g1l

where o™ is the optimal learning rate and ¢, is the initial learning rate.

Equation 6 offers a way of approximating the optimal value of the learning rate «*. Ideally,
we would want to set the learning rate at each to the value indicated. This practice, however,
isn’t recommended, as this equation exhibits a high degree of variance from iteration to
iteration, which would result in very unstable training.

One issue that arises is due to the denominator, which is the norm of the difference of the
gradients of two iterations. This can be seen as the magnitude of change of the direction the
optimizer chooses. The problem happens especially near local minima, where the updates
are smaller and close to each other. In this situation the denominator might reach values close
to zero, causing the learning rate to explode. A workaround is to add a small positive term,
¢;, to the denominator:

o

6

o <o llgr—1ll
llgr — gi—1ll + ¢

This creates an artificial low bound to the denominator, which can change over the course
of training. In the following sections, the impact of the hyperparameter c¢; to the training
process, will be explored in more detail.

The instability of the algorithm, however, isn’t solely attributed to the denominator; the
stochastic nature of the algorithm also plays its part. Equation 7 helps with approximating
the optimal learning rate of the loss’ subspace, visible through each batch x;. Our goal is to
approximate the optimal learning rate of the underlying loss function, though. To achieve
this goal, the moving average of o™ for each batch is computed:

(N

llgr—1ll
lgr —gr—1ll + ¢

with y € (0, 1) being the coefficient of the moving average. In closed form this can be
written as:

Ss=y-Sa+U—-y)-

t
— llgi—1ll
S=)/t-So+(1—)/) yt’— (8)
! ; lgi —gi-1ll +ci

with Sy = 1. Thus, the approximation A; of the optimal learning rate «™* is calculated as a
product of «; and the above exponential moving average:

A=, 5

=a - y’~So+(1—y)Xt:yt—iw ®
t = lgi — gi—1ll +ci

Lemma 2 Consider a loss function f that satisfies Definition I with bounded gradients
HV f(w)|| <G, Yw; € R4, Let M be the minimum norm of the gradients that is non-zero,
then the moving average S; of Eq. 8 is bounded.
M@ — G
& < St <1 +
2G + max; ¢;

min; ¢;
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The above lemma proves that the moving average of Eq. 8 is bounded and, as a result,
the learning rate A, is also bounded. This will be helpful for the next theorem to prove the
convergence of a SGD optimizer with such learning rate. For the proof of convergence, the
term of regret will be used. Regret (R) is the sum of all previous differences between the
current network’s prediction f;(w;) and the best possible prediction f;(w™*), obtained from
the optimal set of weights w*. The goal of the proof is to show that the regret averaged over
time reaches zero. The regret can be written in the following form:

T

R(T) =Y [fitw) — fi(w")] (10)

t=1

Theorem 1 Assume that the loss function has bounded gradients, ||g;|| < G, minimum non-
zero norm of gradients M and the weights are in the sphere |w;| < r. Let a; = ap/~/t and
y € (0, 1), then an SGD optimizer with Eq. 9 as its learning rate achieves the following

1— —
A g — gl
m_}’)st—l

R(T) _ 2r2(2G + cr) N G3ayg (1 N g)
T ~aM(I-—yNT T c1

guarantees forall T > 1 and ¢; >

which leads to

R(T)=O<l> 1t RO
T

The proofs for both Lemma 2 and Theorem 1 can be found in the Appendix A.

3.4 Motivation

Usually in neural networks, parameters within the same layer share similar properties. From
layer to layer, though, they might differ. An occasion where this is important is the case of
vanishing gradients [28], where the early layers of the network won’t be trained adequately.
While this problem has been addressed successfully with non-saturating activation functions
[29], better weight initialization strategies [30] and transformation layers [28], we can see,
in practice, none of the above solve the issue directly.

In order to have a better insight of the training process and how layers differ from each other,
an experimental scheme was performed in order to observe the magnitude of the gradients
and the magnitude of the updates in 3 different datasets comparing two optimizers, SGD and
Adam with steady learning rates. To measure that we computed the mean of the absolute
values of the gradients and the updates of each layer of the network for every iteration. The
results are shown in Fig. 1. The networks that were used are shown in Appendix B. The blue
lines correspond to the earlier iterations of the training and as the colormap reaches the red
color, it is the indication for the last iterations. The layers displayed are only Convolutional
and Dense layers. We can see that the left two columns display the networks that were trained
with SGD. As expected, the magnitude of the updates is proportional to the magnitude of
the gradients and their shapes are quite similar. On the other hand, the networks trained by
the Adam optimizer showed faster convergence and achieved higher accuracy. Analysing
the two right columns of the Fig. 1, we can assess that the magnitude of the updates is not
proportional to the magnitude of the gradients and does not mimic the shape of the gradients.
This is an insight on what makes Adam better than SGD in this specific scenario. Adam
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Magnitude of the Magnitude of the Magnitude of the Magnitude of the
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Fig.1 The magnitude of the gradients and the updates per layer for all datasets (MNIST, CIFAR 10, CIFAR100)
for two different optizizers (SGD and Adam). The blue lines depict the first iterations. As the color changes
to red, it shows iterations closer to the end

is able to construct updates closer to the optimal ones independently of the magnitude of
the gradient. SGD usually suffers from that, meaning that some layers in the middle might
display low gradients, hindering the path to the optimal updates. This shows the usefulness
of an adaptive learning rate per layer that will help any optimizer, like SGD or Adam, scale
the gradients and, in consequence, the updates in a way that it will make it easier to reach
the optimal weights.

All the weights and gradients that were mentioned in the previous equations of Sect.
3 were the full vectors containing every parameter of the network. However, in a realistic
setting it is difficult to construct one large vector of this size (usually would have millions of
dimensions) and perform calculations, such as multiplications, computing norms, etc. This is
the second reason why it is preferable to compute the updates of the network for every layer
separately. This led to the motivation of constructing an optimizer that employs a different
adaptive learning rate per layer. In the next section, the full algorithm will be displayed and
how it fits with other optimizers.

4 Proposed Optimization Framework

This paper proposes an optimization method, called AdaLip, which adapts the learning rate
per layer. This is helpful because it can alleviate issues that occur from underfitted layers,
while being able to work with any scheduler that monitors the global learning rate «;. Addi-
tionally, it can efficiently work on top of existing optimizers that use an adaptive learning
rate per parameter, e.g. Adam. This study focuses in the conjunction between AdaLip and
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three of the most popular optimizers in deep learning: SGD, Adam and RMSProp. A second
variation of AdaLip, with a slight modification in its update rule, will also be introduced in
Appendix C.

4.1 Adalip

Algorithms 2, 3 and 4 show the three new optimizers that are created. The first is the vanilla
version of AdaLip, where the algorithm adapts the learning rates of a SGD optimizer. As
discussed previously, the algorithm estimates the Lipschitz constant for each batch and,
through a moving average, approximates the optimal learning rate A; (Eq. 9). This is done
for each layer independently for the reasons mentioned in Sect. 3.4. It is important to note
that the norms displayed in the Algorithms 2, 3 and 4 are computed using only the gradients
of the weights that are in the same layer with the weight that is being updated in that iteration.

Algorithm 2 AdaLip

Input: w; € F, initial step oy, y € (0, 1), ¢¢
Initialize: So =1, g0 =0

1: for t=1 to T do

20 g = Vii(w)

3wy =oap/N1

4 S =y S+ -y i
5: A[ =0 - St
6

7.

D Wi =wr— A - g
end for

The AdaLip methodology can be applied on top of existing optimizers. One such instance
is AdaLip + RMSProp, which will be referred to as RMSLip and is described in Algorithm
3. Again, the optimal learning rate is estimated and is applied for each layer separately. The
difference, here, is that each parameter is scaled by the moving average of the squares of its
past gradients, as dictated by the RMSProp update rule.

Algorithm 3 RMSLip
Input: w; € F, initial step oy, y € (0, 1), ¢t
Initialize: So =1, g0 =0,v9 =0

1: for t=1 to T do

20 g = Vii(w)

33w =ag/Vi

& Si=y St U-n sy
5: A[ =0t - S[

6 v =pr vt + (- gt

T W1 =wp — Ar - g1/ (v +€)

8: end for

Finally, we’ll examine the combination of AdaLip and Adam, which will be referred to
as AdamLip. The update rule of Adam is left unchanged (i.e. the moving averages of the
gradients m, and their squares v, and their bias-correction), however in this version, the
constant learning rate is substituted with A; (Eq. 9).
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Algorithm 4 AdamLip

Input: x;, € F, initial step o, y € (0.1), ¢;
Initialize: So = 1, go = 0,mg =0, v9 =0
1: for t=1 to T do

8t =V fr(wy)
ar =g/t o

_ 8i—1
Si=y S+ 0=V g
A[ =t - S[

my = B -my—1+ (1= B1)g:

ve= P v1+ (1= B}

iy =m /(1= BY)

9: b= /(1 - P

100 g = wy — Ag it /(0 + €)
11: end for

A A R

4.2 Implementation Details

This Section will explain how the hyperparameter values for AdaLip were chosen and ini-
tialized.

From Theorem 1 the optimal ¢; has been calculated in order to have a guarantee of
convergence. In practice, the experiments were run with a constant ¢; = ¢ = 1078, which is
close to the theoretical ¢;. This will be discussed in more detail in Sect. 6.2.

For the initial learning rate «p we selected many values in order to test its robustness and
it will be further analyzed in Sect. 5. The initial value of the moving average Sy is set to one,
because then the overall learning rate will start at the initial learning rate o.

Another important hyperparameter to tune is the coefficient y of the moving average. Its
range is (0, 1) and the proposed value is 0.8, which was found empirically. Lower values
tend to affect the learning rate to change drastically from iteration to iteration. This could be
beneficial to overcome bad local minima that the the network can get stuck, but it also makes
the algorithm unstable. On the other hand, higher values will smooth out the overall learning
rate containing any possible spikes.

5 Experimental Framework

In order to accurately capture the performance of this novel optimization technique, three
benchmark datasets were used, MNIST [31], CIFAR10 [32] and CIFAR100 [32]. AdaLip
will be compared with its counterparts (i.e. AdaLip versus SGD, RMSLip vs RMSProp and
AdamLip vs Adam) in terms of convergence speed and robustness to the selection of the
initial learning rate ag. The goal is to determine whether or not this addition improves the
training procedure of a Neural Network.

Because of the varying levels of difficulty in each task, a different architecture was used
for each. These can be seen in Tables 6, 7 and 8, in Appendix B of the Appendix. The first
two are small versions of the VGG [33] architecture, while the CIFAR100 one has a lot more
depth and utilizes BatchNormalization [28] layers as well as Dropout [34].

For result stability, every setup for every optimizer was run multiple times (25 runs for
MNIST and CIFARI10, 10 runs for CIFAR100). 25 runs are enough to capture the overall
variance of the different initializations of the networks for MNIST and CIFAR10. Regard-
ing CIFAR100, we selected less runs because, due to the larger number of training epochs
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compared to the other two datasets, it was observed that the variance between runs was quite
small.

In every run, the optimizers were initialized with the same weights and hyperparameters.
Because different optimizers perform best with different values for the base learning rate,
various values were tested for each optimizer and dataset.

To evaluate the results, we first found the peak training accuracy for each run and then
took the median of those values over all 25 runs, for each learning rate independently. This
was done because we consider the most successful optimizer to be the one that outperforms
the others consistently, independent of random initialization. The next step of evaluation is to
assess how sensitive is the optimizer to the selection of the base learning rate. For this reason
we took the max, mean, median and std out of all the different learning rates experiments.
This is displayed in Tables 2, 3 and 4 for each dataset, which will be discussed below. Another
important feature of an optimizer is the speed of convergence. That can be measured with a
lot of ways. In this study the metric was the number of epochs needed to reach 95% of the
maximum training peak. The maximum training is computed out of all runs and different
learning rate experiments. Similar with the accuracy measurement, the mean, median and
best (lowest) Epoch of convergence (98% of maximum peak for MNIST and 95% for both
CIFAR) were computed to capture a more complete image of the training process.

5.1 MNIST

First, AdaLip was tested on MNIST, a dataset of small grayscale images of handwritten
digits, with a size of 28 x 28. It consists of 60000 training images and 10000 for testing. The

Table2 Training set accuracy (top 4 rows) and Epochs of convergence (bottom 3 rows) for the MNIST dataset

SGD AdaLip Adam AdamLip RMSProp RMSLip

Max 1.0 1.0 0.999 1.0 1.0 1.0
Median 0.976 0.996 0.999 0.999 1.0 1.0
Mean 0.663 0.883 0.999 0.999 1.0 1.0

Std 0.422 0.288 0.001 0.000 0.000 0.000
Mean 4.5 3.1 1.75 1.5 1.5 1
Median 2.5 1.5 2 1.5 1.5 1

Best 2 1 1 1 1 1

The bold refers to which is the best

Table 3 Training set accuracy (top 4 rows) and Epochs of convergence (bottom 3 rows) for the CIFAR10
dataset

SGD AdaLip Adam AdamLip RMSProp RMSLip

Max 0.945 0.940 0.978 0.984 0.975 0.987
Median 0.756 0.838 0.971 0.973 0.968 0.983
Mean 0.614 0.675 0.816 0.826 0.910 0.937
Std 0.346 0.310 0.299 0.298 0.120 0.084
Mean 274 27.6 22 22.571 21.2 20.6
Median 30 29 21 22 19 17

Best 21 22 14 14 16 15

The bold refers to which is the best
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Table 4 Training set accuracy (top 4 rows) and Epochs of convergence (bottom 3 rows) for the CIFAR100
dataset

SGD AdaLip Adam AdamLip RMSProp RMSLip

Max 0.965 0.978 0.966 0.967 0.956 0.966
Median 0.935 0.965 0.956 0.961 0.953 0.962
Mean 0.928 0.939 0.952 0.958 0.945 0.957
Std 0.034 0.054 0.015 0.010 0.016 0.012
Mean 60 53.66 4475 4.5 454 41.6
Median 62.5 49 42.5 40.5 40 38

Best 44 41 34 34 37 34

The bold refers to which is the best

1.00 4 1.000 A
I SGD_ —— Adam
AdaLip AdamLip

0.98 0.998 4

2 0.96 > 0.996 1

<] ®

g c

g g

©0.94+ © 0.994
0.92 4 0.992 1
0.90 - - - - y - ¥ 0.990

2 4 6 8 10 12 14 2 4 6 8 0 12 14
epoch epoch

Fig.2 Mean Curves out of all learning rates on MNIST for Adam and SGD based optimizers

images were normalized to the range of [0, 1] and no further preprocessing or augmentation
was added.

The SGD-based optimizers were examined for § different learning rates for this task
(i.e. 0.005, 0.01, 0.05, 0.1, 0.5, 0.7, 1.0, 1.3), Adam-based ones were examined for 4 (i.c.
0.0005, 0.001, 0.005, 0.01) and RMSProp optimizers for 6 (i.e. 0.0003, 0.0005, 0.0007,
0.001, 0.005, 0.01).

AdaLip in conjunction with every optimizer seems to perform better in both max and mean
performance. Also, it has lower std meaning that the results are more stable and fluctuate
less with the change of learning rate. Regarding the Epochs of convergence we see a slight
improvement in mean and median of the Epochs of conversion. Considering that MNIST
is an easy to train dataset and it converges extremely fast, there is not any room for big
improvements to achieve. For a closer look, the mean curve of all learning rates for SGD
and Adam based optimizers is displayed in Fig. 2. The shading represents the variance from
different learning rate experiments. The AdaLip versions seem to converge faster and reach
higher accuracies.

5.2 CIFAR10

CIFAR10 was the second dataset to test our methodology. CIFAR10 consists of colored
images with 32 x 32 size. The training set has 50000 images and the test set 10000, while
they are divided in 10 classes. The images were normalized as in MNIST between [0, 1] and
no further preprocessing was added.
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Fig.3 Mean Curves out of all learning rates on CIFAR10 for Adam and SGD based optimizers

In this task, the SGD-based optimizers were examined for 10 learning rates (i.e. 0.005,
0.01,0.05,0.07,0.1,0.2,0.3,0.5,0.7, 1.0), Adam-based ones for 7 learning rates (i.e. 0.0002,
0.0003, 0.0005, 0.0007, 0.001, 0.005, 0.01) and RMSProp-based ones for 5 (i.e. 0.0003,
0.0005, 0.0007, 0.001, 0.005). The same procedure was followed here, which yielded similar
results with MNIST. AdamLip and RMSLip outperformed their counterparts on mean and
max scores. AdaLip scored 0.5% lower in max performance but the mean and median results
were quite an improvement compared to SGD. Regarding the std scores RMSLip shows great
stability while the rest display similar behavior. As far as the Epochs of convergence analysis,
Adam and SGD are slight ahead (by 1 epoch or less on average) but RMSLip is faster than
its counterpart. The mean curve of all learning rates for SGD and Adam based optimizers is
plotted in Fig. 3. It is clear that the AdaLip versions converge faster and to higher accuracy.

5.3 CIFAR100

The last dataset used for testing the proposed framework was CIFAR100. It has the same
images as CIFARI10, but, instead of 10 classes, the dataset is divided in 100. This makes
it a lot more difficult to train a neural network and to achieve a good generalization score.
To help with the generalization, image augmentation was performed after the normalization.
The augmentation techniques were random rotations, flips and width/height shifts that help
with the better training of the network.

Here we examined 6 learning rates (i.e. 0.005, 0.01, 0.05, 0.1, 0.5, 0.7) for SGD-based
optimizers, 4 learning rates (i.e. 0.0005, 0.001, 0.005, 0.01) for Adam-based ones and 6
(i.e. 0.0003, 0.0005, 0.0007, 0.001, 0.005, 0.01) for RMSProp-based ones. Again, in all max
and mean scores the AdaLip-based algorithms show an improvement in the overall training
procedure. AdaLip has while having a lower std. Regarding the Epochs of convergence
AdaLip shows great improvement over SGD. AdamLip converges by 2 epochs faster on
average than Adam, while RMSLip displays a faster overall training progress. Figure 3
shows the mean curves, like in the previous datesets.

5.4 Generalization Performance

The focus of this paper is mainly revolving around the training performance of the optimizers,
but, the generalization performance is extremely important as well. In order to measure the
testing scores of each optimizer, we computed the mean of the maximum test accuracy of
each run of the aforementioned experimental process. Meaning that for each optimizer and
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Fig.4 Mean Curves out of all learning rates on CIFAR100 for Adam and SGD based optimizers

Table 5 Test accuracies for the

MNIST. CIFAR 10 and MNIST CIFARI0 CIFAR100

CIFARI00 datasets SGD 0.9896 0.6632 0.5706
AdaLip 0.9909 0.6670 0.5802
Adam 0.9910 0.7545 0.5937
AdamLip 0.9911 0.7545 0.5981
RMSProp 0.9902 0.7528 0.5868
RMSLip 0.9909 0.7622 0.5884

The bold refers to which is the best

for each learning rate a mean testing accuracy is extracted for the three benchmark datasets.
Table 5 displays the best test accuracies of the optimizers among all the starting learning rates
for each case. We can see that in most cases the scores are close, but AdaLip’s version display
an improvement. Specifically, AdamLip’s performance is slightly better than Adam in all 3
datasets. RMSProp seems to achieve better generalization in CIFAR10 than RMSLip, but on
the the other datasets the improvement is smaller. Lastly, regarding SGD and AdaLip, AdaLip
seems to perform better in all 3 datasets. Overall, the test scores show a slight advantage for
the AdaLip-based optimizers.

6 Discussion and Future Work

In this section a discussion will be held about various aspects of the proposed algorithm, the
theoretical analysis as well as some insights on the whole training process of DNNs.

6.1 Learning Rates Per Layer

As previously mentioned in Sect. 3.4, the norms of the weights of the layers follow a U-like
shape. Specifically, the first and last layers tend to exhibit larger norms. In Figs. 5, 6 and 7
we can see that in most situations the algorithm chose a different learning rate for different
layers, which seems to validate our initial intuition. It is important to note that the AdaLip
and AdamLip optimizers show a wider variance over time compared to RMSLip. Another
observation is that despite the norms of the weights have a fixed tendency the learning rates
per layer do not. This means that the learning rate successfully adapts to the needs of each
architecture and dataset uniquely.
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6.2 Theoretical versus Practical c;

One of the main discussion points is the selection of ¢; and how it stands between the two most
important features of an optimizer, the theoretical guarantee of convergence and the overall
performance. As mentioned in the Related Work section one of the most used schedules for a
guarantee in convergence is dividing the initial learning rate by the square root of the number
of the iterations (see Eq. 3). However, in practice this is not preferred. The decay applied by
the square root is too great for any real application that needs thousands of iterations to reach
a good performance. With that many iterations the learning rate will become extremely small
at an early stage of the training resulting in converging to a bad local minimum. On the other
hand, a more steady learning rate seems to provide better results. This can be seen in Fig. 8
where constant learning rate achieves better convergence than the theoretical one.

Recent studies [8, 9, 12] show that an oscillating learning rate performs in some cases
better than a strictly decreasing one, because it helps the optimizer overcome local minima.

Similarly to the case of ¢;, the theoretical value has the same performance as a constant
value, except for some cases where constant ¢, has a slight edge over the theoretical one. This
can be seen in Fig. 9, where all runs with the same learning rate are really close, but constant
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Fig.8 Constant Learning rate vs 1.0 4
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Fig.9 Different runs with learning rates (0.1, 0.2) and different values of ¢; (theoretical ¢y, 10_8) with AdaLip
on CIFAR10

¢; shows a small improvement. This trade-off between the guarantee of convergence and
better results is quite important and can be rephrased as a trade-off of stability versus peak
performance. One of the reasons that this behavior exists lies in the nature of SGD. In order
to prove that SGD’s (or its variants) Regret converges to 0 over time, various assumptions are
being made about the loss landscape. In practice, though, the landscape may not be ideal and
converging to the first local minimum might not be satisfactory [35, 36]. Naturally, escaping
saddle points and local minima has been a focal point in optimization research [11, 37, 38].

6.3 SGD Based Equation for Optimal LR

In order to find the optimal learning rate we used Lemma 1, which is based on Gradient
Descent. However, we have to mention the reason that the optimal learning rate based on
SGD was not used. Various experiments showed that the equation derived from SGD leads
to a quite unstable learning progress. The times when the network was trained normally, the
convergence speed was notably slower to the point that no amount of fine-tuning could have
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Fig. 10 Magnitude of gradients and updates on CIFAR100 of the BatchNormalization layers (regarding gamma
and beta weights). The blue lines depict the first iterations. As the color changes to red, it shows iterations
closer to the end

made it competitive. In the Appendix in Lemma 6 there is the full formula for the optimal
learning rate based on SGD. It would be very interesting for future work to see if there is a
way to apply this efficiently.

6.4 Impact of Batch Normalization

Another important observation about the norms of the layers arises with the use of the
Batch Normalization. As can be seen from Fig. 10, the magnitude of the BatchNormalization
weights does not always follow the pattern shown earlier in Fig. 1. This means that the gamma
and beta weights of the BatchNormalization layers display a different behaviour compared
with the rest of the weights. Although Batchnormalization helps the training to smooth the
gradients of the layers [28], it creates weights that suffer from the same problem. This is the
reason that AdaLip is able to construct a suitable learning rate for all these parameters. This
is enforced by the fact that in practice, with networks that apply Batch Normalization (Sec.
5.3), AdaLip seems to perform better than other optimizers.
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7 Conclusion

To summarize, this paper proposes a novel optimization method, called AdaLip, which uses
the theoretical optimal learning rate based on the Lipschitz constant to produce an adaptive
learning rate per layer. The motivation behind the idea was an analysis on the different
behaviors of different layers of a network. We show that this method helps with the overall
training process of neural networks in convergence speed. This was supported by a number
of experiments on three benchmark datasets. An advantage to the proposed technique is that
it can work together with various existing optimizers, such as Adam or RMSProp, while
being more robust in selecting the starting learning rate.
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Appendix A Proofs

Proof of Lemma 1
Let wyy1 = w; — aV f(w;) be the update rule. From the L-Lipschitz continuity we have
the following:

V2 f(w) < LI
meaning that the eigenvalues of the Hessian are bounded by L. This can be written as:
u V2 fyu <u'LIu (A.1)
From the Taylor series of f, it can be derived that:

fwi) = fw) + V) (g —w)+
1 P (A.2)
+ E(wt+1 —w)' V7 (w) (w1 — wy)

Using Eq. (A.1) and the update rule on the second part of Eq. (A.2):
1
S i) = w0+ Y f )T Weer = w) + S Ll — w)?

1
= f(w) + V)T (—aV f(w)) + LI = aV f(w)|?

@ Springer


http://creativecommons.org/licenses/by/4.0/

AdaLip: An Adaptive Learning Rate Method per Layer... 6329

T 1 2
= fw) —aV fw)"Vfw)+ S La|[Vfwdll

o’L )
= f(w) —(a— T)IIVf(wz)II
In order to guarantee the decrease of the function f during the iterations, then the following
must be true:
o? 2
(o — T) >0=>a< —

L
To maximize the decrease of function f per iteration, the derivative of f in regard to «
must be zero:

B — “3F5)

1
=0=>a=—
da “=7
o
Proof of Lemma 2
From Eq. 8, S; can be written as:
Sy = ytso +0-y) Xt:yt—iw
i=1 llgi — gi—1ll + ¢

For the upper bound we take:

t
i G
SISSO+(1_)/)§ y! lm
= (e

(1-9)G ¢

t—i
e 27

i=1

The sum on the right is the sum of a geometric series and because y # 1 then it can be
transformed to:

1—- 1 — 9!
<14 4=n6 1oy
min;(¢;) 1—y

ot
14 (1 . yHG - .G
- min, (c) min, (c;)
For the lower bound we use :
t
_i llgi—1ll
S=z(0-y)) y—>""—
' ; llgi — gi-1ll +ci
1
. M
> 1 _ t—i
= ( y)l;y 2G + max;(cy)

t

M Z yt—i
2G + max;(¢;) P

>1-y)

Computing the same geometric series we get:

¢ M1 —vy)
S22 —-y) > 7 —
2G + max;(¢;) 2G + max,(¢;)
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which concludes the proof of the upper and lower bounds of S;.

Proof of Theorem 1
From the projected stochastic subgradient method w; 1 = Ip(w; — A;g;), we have:

w1 — w¥* < llw, — w* — A,gl|?
= [lw, — w*|[* — 241 (g, w — w*) + A7l|g |
From Lemma 3 we have:
< llwy — w¥* = 24, (fi(wy) — fi(w*) + A7|lg >
Rearranging this we get:

24,(fr(wy) — fr(w®) < [lwy — w*)? = [lwes1 — w*|| + AZ||ge ]I

1
fi(wy) — fr(w*) < A v = w*)? —

1 * A 2
TA,”w’H w|| + 7||gt||

Summing from t=1,2,..,T to form the Regret, we have:

T

R(T) =Y (fitw) — fitw") <
t=1
LN LN
*112 *
sgz—mnwt—w [ _ZTA,”th_w I+

t=1
T
A
+2 S gl
t=1

Unfolding the sums we get:

1 1
< — 1wy — w1+ —|lws — w*[|* + ...
_<2A1” 1 Il +2A2|| 2 [ +

1 *112
+E||IUT w ||>

1 *112 1 *(12 1 *12
(ZA]sz WP+ S lws — w4 ol —
T
A
+2 S gl
t=1

ZLle_w>s<||2_i_T27:1 1 _L ||w l_w*||2_
24, —\2441 24, o

T
1 *112 1 2
— s lwr41 —w| +§l§71 Arllgell

2AT
<i||uu—w*||2+TZ_1 e
= 24, — 240 24,)
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T
1 2
+§ ;,1 Arllgell

Because the gradients are bounded ||g;|| < G and using lemma 4 we have:

T-1 I

452 1
< A, G? -
<5it Z +Z<2A,+1 2A)||wt+1 w|[?
2i+—ZAt+ Z(———)me—w*nz
A+l Ay

From lemma 5 we prove that with certain ¢, the difference is positive so we can use lemma
4 to get:

2rt  G?
=—+—>) 4
ar 2 2 A

2r2f G2ap Z S

oo ST + 2

t=1

Clearly the behavior of A; affects the convergence of the whole algorithm. The left term
shows that if A; decreases really fast (i.e. O(1/ %)) the algorithm diverges. On the other hand,
if A; is constant or increases then the right term (the sum) will diverge. Lemma 5 shows that
¢; controls how fast A, decreases. There can be many c¢; that lead to convergence with various
speeds. Here one of them is presented that satisfies the following equation:

A=pligi-1ll
¢ =max | 77— — lgr — gr—1ll, ¢
(Vo)

Using the bounds of S; from Lemma 2 we have:

22T Gap o 1 G
R = i) T : 27 (1 T Hinrce ))
%0 2G+maxr (c7) =1 VI rier

(A.3)

From the Eq. A.3 of ¢ it is clear that ¢; is non-decreasing, thus, the above inequality
transforms into:

2r2(2G + cp)VT Gzozo ( )
R(T
O == ma—yn T Z
2r2(2G + cr)VT Gzao( G>/‘T 1
R(T 1 —d
(T) < w1 —7) + 5 + A Jt
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2
R(ry < 22CGH VT | o (1 + Q) JT
aoM(1 —y) cl

Dividing by T

R(T) _ 2r2(2G + cr) N G2y (1 N g)
T “aM1—y)WT VT c1

which shows that:

@:O<L> and lim @:O

T ﬁ T—ooo T
O
Lemma 3 A function f : ¢ —> N is convex, then for all x, y € R,
fO =z fO+V D (=)
Lemma4 Given a weight w; € Ny and ||w;|| < r, then ||w, — wplI? < 4r2, Vn, m.
Proof From the triangular inequality we have:
lwn = wal* = llwy — 2wawy, + wy |
< llwall? + 2l walllws | + llwn |
< P24 2rr + 1% = 4?2
[m}

Lemma5 Let A, be the learning rate from Eq. 9, a; = ag/~/t. Then A, < A,_y is true, if ¢;
is a positive function of t and satisfies the following inequality:

1— _
o> (I =p)llgr=1ll
( ﬁ _V) Si—1

Proof Starting from the inequality we have:

—llgr — g1l

Ay < A
ar - S <oy - S
ao llg:—1ll a0
—\ySi—1+U—y) < Sr-1
NG ( ' lgr — gr—1ll + ¢ '
llgr—1l t

ySi-1+ 1 —yp) < Si—1
! lgr —gill+¢ ~Ve—1""

g1l 1
A—p)—20 < [ —— =y )8
lg: — gi—1ll +c r—1 '
I =gl

llgr — gr—1ll + ¢ = T N
( = J/) Si—1

A =p)lg—1ll

€t 2
( ﬁ_y)stfl

— llgr — g1l
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Lemma 6 Given a convex loss function f, with an L-Lipschitz continuous gradient (Def. 1),
the optimal learning rate for Stochastic Gradient Descent is:
2
o — IV f (o)l .
L-E[IVf(w)l?]

Proof The update rule for SGD is the following:
Wi = wy — oV fi(wy)

where f; is the partial f computed by a mini-batch at iteration z. Starting with same equations
as Lemma 1 we have:

1
Fwen) < fFw) + V) (wer — wy) + 5 Llwi = w, 12

1
fern) < fw) + V fw)" (—aV fi(w)) + ELII —aV fiw)|?
Taking the expected value of both sides:

ELf (wien)] < ELf )] = «E [V )TV fywn)] +

a2

L 2
+E [T IV fi(w)l :|

T o’L 2
E[f(w+1)] < f(w) —aV f(w)" ELV fi(w)]+ TE [”vft(wt)” ]
Using the fact that E[V f;(w;)] = V f(wy):
2L
E[f(wis )] < f(wy) — al|V f(w)l* + aTE [IV fi (w7

Taking the derivative equal to zero similar with Lemma 1:

8 (—alV F @I + SEEIV fiwl?])
da -
—IVF @I +aLE [IV f;(w)]*] =0
I A4 U5
L E[IVfiw)]

Appendix B Model Architectures

The detailed architectures for the networks used in the experimental study are presented here.

Appendix C Extension: AdaLip-U

Here we’ll introduce a variation of AdaLip, called AdaLip-U. This variation uses the fact
that the magnitude of the update has similar behaviour with the magnitude of the gradient in

@ Springer



6334 G.loannou et al.

Table 6 Architecture for MNIST

Model Layer Units Padding Activation
3 x 3 Conv 32 Valid Relu
3 x 3 Conv 64 Valid Relu
2 x 2 MaxPool - - -
Flatten - - -
Dense 128 - Relu
Dense 10 - Softmax
Table 7 Architecture for . . . L
CIFAR10 Model Layer Units Padding Activation
3 x 3 Conv 32 Valid Relu
3 x 3 Conv 32 Valid Relu
2 x 2 MaxPool - - -
3 x 3 Conv 64 Valid Relu
3 x 3 Conv 64 Valid Relu
2 x 2 MaxPool - - -
3 x 3 Conv 128 Same Relu
3 x 3 Conv 128 Same Relu
2 x 2 MaxPool - - -
Flatten - - -
Dense 200 - Relu
Dense 10 - Softmax
1.0 A
—— Adam
—— AdamlLip
0.84 — AdamLip-U
> 0.6
©
5
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Fig. 11 AdamLip-U vs best Adam and AdamLip in Cifar100

GD. Continuing from Eq. 6 and assuming that «;_1 =~ oy, we have:

_ _ o
N 7Y O 7251 B
llgr — g1l llgr — gr—1ll o1

llor—1 - gr—1l

llar—1 - g —ar—1 - g1l
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Table 8 Architecture for

CIFAR 100 Model Layer Units Padding Activation

3 x 3 Conv 64 Same Relu
BatchNorm - - -

2 x 2 MaxPool - - -

3 x 3 Conv 128 Same Relu
BatchNorm - - -

2 x 2 MaxPool - - -

3 x 3 Conv 256 Same Relu
BatchNorm - - -

3 x 3 Conv 256 Same Relu
BatchNorm - - -

2 x 2 MaxPool - - -

3 x 3 Conv 512 Same Relu
BatchNorm - - -

3 x 3 Conv 512 Same Relu
BatchNorm - - -

2 x 2 MaxPool - - -

3 x 3 Conv 512 Same Relu
BatchNorm - - -

3 x 3 Conv 512 Same Relu
BatchNorm - - -

2 x 2 MaxPool - - -
Flatten -
Dense 512 - Relu
BatchNorm - - -
Dropout(0.5) - - -
Dense 100 - Softmax

llor—1 - gr—1ll
et - g0 — ar—1 - gr—1ll

This variation is based on the previous and current update of the optimizer, rather than its

gradients. By denoting u; = —«; - g; the update of the optimizer, we have:
N 7] o
= ue =gl

By using this as the batch’s optimal learning rate, instead of Eq. 6, the learning rate of
AdaLip-U can be derived:

t
_i lle;—1l|
Ar=o;- S =a; - )/t~S()+(l—y) )/t e (C5)
' e ! ; lui —ui—1ll +ci

The previous update is stored from the previous iteration. The current update is the update

the optimizer would compute without using AdaLip-U (i.e the update of SGD with the
initial learning rate). Like previously with AdaLip, this new version generates three new

@ Springer



6336 G. loannou et al.

optimizers based on SGD, RMSProp and Adam, called AdaLip-U, RMSLip-U and AdamLip-
U respectively. As shown in Fig. 11, AdamLip-U shows much potential in some cases,
however it was much more unstable than its counterpart and more sensitive to the selection
of the learning rate. In Algorithm 5, AdaLip-U is presented in detail.

Algorithm 5 AdaLip-U

Input: w; € F, initial step o, y € (0, 1), ¢t
Initialize: So = 1, g0 = 0,u0 =0

1: for t=1 to T do

20 g =V fi(w)

lft = Olo/xﬁ
Uy = —0 - 8¢ I 0

— _ Ur—1
Si=y S+ =VE

up=—Ar- g
D W = wr Uy

3

4

5:

6: A[ =t - St
’7.

8

9: end for

References

1. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, Van Der Laak JA, Van Ginneken
B, Sdnchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60-88
2. Minaee S, Boykov YY, Porikli F, Plaza AJ, Kehtarnavaz N, Terzopoulos D (2021) Image segmentation
using deep learning: a survey. IEEE Trans Pattern Anal Mach Intell 2:668
3. Padmanabhan J, Johnson Premkumar MJ (2015) Machine learning in automatic speech recognition: a
survey. IETE Tech Rev 32(4):240-251
4. Kumar A, Verma S, Mangla H(2018) A survey of deep learning techniques in speech recognition. In: 2018
international conference on advances in computing, communication control and networking ICACCCN),
pp 179- 185. IEEE
5. Yang S, Wang Y, Chu X (2020) A survey of deep learning techniques for neural machine translation.
arXiv preprint arXiv:2002.07526
6. Grigorescu S, Trasnea B, Cocias T, Macesanu G (2020) A survey of deep learning techniques for
autonomous driving. J Field Robot 37(3):362-386
7. Igbal T, Qureshi S (2020) The survey: text generation models in deep learning. J King Saud Univ Comput
Inf Sci 6:998
8. Loshchilov I, Hutter F (2016) Sgdr: Stochastic gradient descent with warm restarts. arXiv preprint
arXiv:1608.03983
9. Huang G, Li Y, Pleiss G, Liu Z, Hopcroft JE, Weinberger KQ (2017) Snapshot ensembles: Train 1, get m
for free. arXiv preprint arXiv:1704.00109
10. Robbins H, Monro S (1951) A stochastic approximation method. Ann Math Stat 22(3):400—407. https://
doi.org/10.1214/aoms/1177729586
11. Kleinberg R, Li Y, Yuan Y (2018) An alternative view: when does SGD escape local minima? In: Dy
JG, Krause A (eds.) Proceedings of the 35th international conference on machine learning, ICML 2018,
Stockholmsmissan, Stockholm, Sweden, July 10-15. Proceedings of Machine Learning Research, vol
80, pp 2703-2712. PMLR. http://proceedings.mlr.press/v80/kleinberg18a.html
12. Smith LN (2017) Cyclical learning rates for training neural networks. In: 2017 IEEE winter conference
on applications of computer vision, WACV 2017, Santa Rosa, CA, USA, March 24-31, pp 464-472.
IEEE Computer Society. https://doi.org/10.1109/WACV.2017.58
13. Bottou L, Curtis FE, Nocedal J (2018) Optimization methods for large-scale machine learning. SIAM
Rev 60(2):223-311
14. He K, Zhang X, Ren S, Sun J ( 2016) Deep residual learning for image recognition. In: Proceedings of
the IEEE conference on computer vision and pattern recognition, pp 770— 778
15. Chollet F (2017) Deep learning with python, 1st edn. Manning Publications Co., New York

@ Springer


http://arxiv.org/abs/2002.07526
http://arxiv.org/abs/1608.03983
http://arxiv.org/abs/1704.00109
https://doi.org/10.1214/aoms/1177729586
https://doi.org/10.1214/aoms/1177729586
http://proceedings.mlr.press/v80/kleinberg18a.html
https://doi.org/10.1109/WACV.2017.58

AdaLip: An Adaptive Learning Rate Method per Layer... 6337

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

36.

37.

38.

Shamir O, Zhang T (2013) Stochastic gradient descent for non-smooth optimization: convergence results
and optimal averaging schemes. In: International conference on machine learning, pp 71— 79

Zinkevich M (xxxx) Online convex programming and generalized infinitesimal gradient ascent. In: Pro-
ceedings of the twentieth international conference on international conference on machine learning.
ICML’03, pp 928-935. AAAI Press

Wu X, Ward R, Bottou L(2018) Wngrad: learn the learning rate in gradient descent. CoRR abs/1803.02865.
arXiv:1803.02865

Duchi JC, Hazan E, Singer Y (2011) Adaptive subgradient methods for online learning and stochastic
optimization. J Mach Learn Res 12:2121-2159

Tieleman T, Hinton G (2012) Lecture 6.5-RmsProp: divide the gradient by a running average of its recent
magnitude. COURSERA Neural Netw Mach Learn 2:58

Kingma DP, Ba J (2015) Adam: a method for stochastic optimization. In: Bengio Y, LeCun Y (eds.) 3rd
International conference on learning representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings. arXiv:1412.6980

Wilson AC, Roelofs R, Stern M, Srebro N, Recht B ( 2017) The marginal value of adaptive gradient
methods in machine learning. In: Advances in neural information processing systems, pp 4148— 4158
Reddi SJ, Kale S, Kumar S (2018) On the convergence of adam and beyond. In: 6th international conference
on learning representations, ICLR 2018, Vancouver, BC, Canada, April 30-May 3, 2018, Conference
Track Proceedings. OpenReview.net. https://openreview.net/forum?id=ryQu7{-RZ

Luo L, Xiong Y, Liu Y, Sun X (2019) Adaptive gradient methods with dynamic bound of learning rate.
In: 7th international conference on learning representations, ICLR 2019, New Orleans, LA, USA, May
6-9, 2019. OpenReview.net. https://openreview.net/forum?id=Bkg3g2RIFX

Yedida R, Saha S (2019) LipschitzLR: using theoretically computed adaptive learning rates for fast
convergence

Fazlyab M, Robey A, Hassani H, Morari M, Pappas GJ (2019) Efficient and accurate estimation of lipschitz
constants for deep neural networks. In: Wallach HM, Larochelle H, Beygelzimer A, d’ Alché-Buc F, Fox
EB, Garnett R (eds.) Advances in neural information processing systems 32: annual conference on neural
information processing systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pp
11423— 11434. https://proceedings.neurips.cc/paper/2019/hash/95e1533eb1b20a97777749fb94fdb944-
Abstract.html

Baydin AG, Cornish R, Martinez-Rubio D, Schmidt M, Wood F (2018) Online learning rate adapta-
tion with hypergradient descent. In: 6th international conference on learning representations, ICLR
2018, Vancouver, BC, Canada, April 30-May 3, Conference Track Proceedings. OpenReview.net. https:/
openreview.net/forum?id=BkrsAzZWAb

Toffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal
covariate shift. In: Bach FR, Blei DM (eds.) Proceedings of the 32nd international conference on machine
learning, ICML 2015, Lille, France, 6-11 July. JMLR Workshop and Conference Proceedings, vol 37, pp
448-456. JMLR .org. http://proceedings.mlr.press/v37/ioffe15.html

Nair V, Hinton GE ( 2010) Rectified linear units improve restricted boltzmann machines. In: Proceedings
of the 27th international conference on machine learning (ICML-10), pp 807— 814

Glorot X, Bengio Y (2010) Understanding the difficulty of training deep feedforward neural networks.
In: Proceedings of the thirteenth international conference on artificial intelligence and statistics, pp 249—
256

. LeCun Y, Cortes C (2010) MNIST handwritten digit database

Krizhevsky A (2009) Learning multiple layers of features from tiny images

. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition

Srivastava N, Hinton GE, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to
prevent neural networks from overfitting. J Mach Learn Res 15(1):1929-1958

Choromanska A, LeCun Y, Arous GB (2015) Open problem: the landscape of the loss surfaces of multi-
layer networks. In: Griinwald P, Hazan E, Kale S (eds.) Proceedings of The 28th conference on learning
theory, COLT 2015, Paris, France, July 3-6. JMLR Workshop and Conference Proceedings, vol 40, pp
1756-1760. IMLR .org. http://proceedings.mlr.press/v40/Choromanskal5.html

Li H, Xu Z, Taylor G, Studer C, Goldstein T (2018) Visualizing the loss landscape of neural nets. In:
Advances in neural information processing systems, pp 6389— 6399

Ge R, Huang F, Jin C, Yuan Y (2015) Escaping from saddle points-online stochastic gradient for tensor
decomposition. In: Griinwald P, Hazan E, Kale S (eds.) Proceedings of The 28th conference on learning
theory, COLT 2015, Paris, France, July 3-6, . JMLR workshop and conference proceedings, vol 40, pp
797-842. IMLR.org. http://proceedings.mlr.press/v40/Gel5.html

Jin C, Ge R, Netrapalli,P, Kakade SM, Jordan MI (2017) How to escape saddle points efficiently. In: Precup
D, Teh YW (eds.) Proceedings of the 34th international conference on machine learning, ICML 2017,

@ Springer


http://arxiv.org/abs/1803.02865
http://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=ryQu7f-RZ
https://openreview.net/forum?id=Bkg3g2R9FX
https://proceedings.neurips.cc/paper/2019/hash/95e1533eb1b20a97777749fb94fdb944-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/95e1533eb1b20a97777749fb94fdb944-Abstract.html
https://openreview.net/forum?id=BkrsAzWAb
https://openreview.net/forum?id=BkrsAzWAb
http://proceedings.mlr.press/v37/ioffe15.html
http://proceedings.mlr.press/v40/Choromanska15.html
http://proceedings.mlr.press/v40/Ge15.html

6338 G. loannou et al.

Sydney, NSW, Australia, 6-11 August. Proceedings of machine learning research, vol 70, pp 1724-1732.
PMLR. http://proceedings.mlr.press/v70/jin17a.html

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer


http://proceedings.mlr.press/v70/jin17a.html

	AdaLip: An Adaptive Learning Rate Method per Layer for Stochastic Optimization
	Abstract
	1 Introduction
	2 Related Work
	3 Theoretical Analysis
	3.1 Preliminaries
	3.2 Background
	3.3 Learning the Lipschitz Constant
	3.4 Motivation

	4 Proposed Optimization Framework
	4.1 AdaLip
	4.2 Implementation Details

	5 Experimental Framework
	5.1 MNIST
	5.2 CIFAR10
	5.3 CIFAR100
	5.4 Generalization Performance

	6 Discussion and Future Work
	6.1 Learning Rates Per Layer
	6.2 Theoretical versus Practical ct
	6.3 SGD Based Equation for Optimal LR
	6.4 Impact of Batch Normalization

	7 Conclusion
	Appendix A Proofs
	Appendix B Model Architectures
	Appendix C Extension: AdaLip-U
	References




