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Abstract
This paper introduces a novel structure of a polynomial weighted output recurrent neural
network (PWORNN) for designing an adaptive proportional—integral—derivative (PID)
controller. The proposed adaptive PID controller structure based on a polynomial weighted
output recurrent neural network (APID-PWORNN) is introduced. In this structure, the
number of tunable parameters for the PWORNN only depends on the number of hidden
neurons and it is independent of the number of external inputs. The proposed structure of the
PWORNN aims to reduce the number of tunable parameters, which reflects on the reduction
of the computation time of the proposed algorithm. To guarantee the stability, the opti-
mization, and speed up the convergence of the tunable parameters, i.e., output weights, the
proposed network is trained using Lyapunov stability criterion based on an adaptive learning
rate. Moreover, by applying the proposed scheme to a nonlinear mathematical system and
the heat exchanger system, the robustness of the proposed APID-PWORNN controller has
been investigated in this paper and proven its superiority to deal with the nonlinear dynamical
systems considering the system parameters uncertainties, disturbances, set-point change, and
sensor measurement uncertainty.
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1 Introduction

Most of the industrial processes are nonlinear dynamical systems. The control of these sys-
tems requires a robust controller, which can handle the systems uncertainties, load change,
disturbances, and interference noises [1–5]. Conventional PID controller is still widely used
in industry on account of its simpler structure. Furthermore, the three terms of the PID con-
troller perform an interpreted and clear action on the system response. Unfortunately, most
of the tuning methods of conventional PID parameters require known model parameters and
fixed operating points [1, 3, 6]. Therefore, the conventional PID controller fails when it faces
a variation in the system parameters, a sudden load change, an external disturbance, a set-
point change [2, 6, 7]. For these drawbacks of the conventional PID controller, the researchers
worked seriously to find suitable controllers to control such complex nonlinear dynamical
systems [8, 9].

In [6], a fuzzy-back propagation (fuzzy- BP) neural network PIDwas introduced to control
a tracking system of a wheeled mobile robot. In [10], the authors presented a single output
adaptive PID controller to govern the DC side voltage of a Vienna rectifier. Three training
algorithms were used in [8], for an artificial neural network-based PID controller to flight
control of quadcopter using at least three input neurons, three hidden neurons and three
output neurons, i.e., (3–3-3) neural network structure. The time delay temperature system
was controlled using adaptive PID with Lyapunov function in [11]. The level in a tank was
governed using (8–4-3) structure PID based on neural network as mentioned in [7]. A radial
basis function (RBF) neural network was used to tune the PID controller parameters for
DC motor position control in [12]. In [13], a PID controller with (4-5-3) BP neural network
structure was applied to an experimental model. An electric-heating reactor was controlled
using anRBFneural networks-based PID controller as introduced in [14]. Dynamical systems
were controlled using a neural network-based PID controller with (3-20-1) structure and
tangent hyperbolic activation function was used as mentioned in [15].

In addition, a PID controller based on general dynamic neural networks (GDNN) with
(2-4-3) structure was introduced in [16] to control an inverted pendulum. A liquid in a surge
tankwas controlled using (3-30-3) neural structure-based PID controller, which is highlighted
in [17]. Furthermore, [18] proposed a multiple-input-multiple-output adaptive neural-based
PID controller (MIMO-AN-PID) to control a hexacopter, i.e., unmanned aerial vehicles.
Recently, in 2018, a contour error identifier based on a neural network is constructed to adapt
the three parameters of the PID controller (PID-NNEI) using (15-15-1) neural structure and a
hyperbolic tangent activation function that used to control three axes of a computer numerical
control (CNC) machine as presented in [19]. In 2020, a PID controller based on an RBF
neural network (PID-RBFNN) was introduced for a speed profile control of a subway train
using (3-5-3) neural network structure [20]. In 2020, a neural network-based PID controller
usingLevenberg–Marquardt identifier (NNPID-LM)was introduced in [21]. TheNNPID-LM
controller, which was optimized by using an LM learning algorithm and an adaptive learning
rate, used a neural network structure (2-5-1) and a ’log-sigmoid’ activation function and it
was used to control nonlinear dynamical systems. Moreover, in 2021, a smart optimized PID
controller based on neural networks (SOPIDNN) with (4-18-3) structure using ’tan sigmoid’
activation function was introduced to control the two-wheeled differential mobile robot [22].
The neural network of SOPIDNN was trained using the BP algorithm and the weights were
adjusted using gradient descent manner. The main challenge faced the previous researchers
is the large number of tunable parameters that need a large computation time. On the other
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hand, the BP algorithm,which converges along themean square error (MSE) gradient descent
has drawbacks such as falling in local minima and convergence rate is slow.

Early, a polynomial recurrent neural network (PRNN) based identification and control
is proposed using a smaller number of tunable parameters (12 parameters) with gradient
descent training algorithm and fixed learning rate [23]. PRNN is still suffering from slow
convergence speed and a relatively large number of the adjusted inputweights, which depends
on the number of external inputs and the number of neurons in the hidden layer. Therefore,
themotivation of the proposedwork is to overcome thementioned challenges and drawbacks.

In this paper, a novel structure of a polynomial weighted output recurrent neural network
(PWORNN) is introduced. To guarantee the stability and speed up the convergence of the
weights of the PWORNN, Lyapunov criteria-based adaptive learning rate is developed to
update the weights. Furthermore, a Lyapunov criterion is used for optimizing the parameters
of the controller and eliminating the problem of gradient descent besides guaranteeing the
controller stability. Then, the proposed neural network structure is used to obtain the controller
parameters of the PID controller. The proposed adaptive PID controller structure based on
a PWORNN (APID-PWORNN) is designed for controlling nonlinear systems to reduce the
effect of system uncertainties and external disturbances. The contributions of this paper can
be summarized as follows:

• This paper presents an adaptive PID controller based on a novel PWORNN structure with
only 6 tunable parameters.

• A stable learning algorithm is proposed in this work by deriving a new weight update
rule based on the Lyapunov stability criterion to overcome the drawbacks of the gradient
descent learning algorithm and prevent the proposed learning algorithm from falling in
local minima.

• Deriving anewadaptation rule for the learning rate basedon theLyapunov stability criterion
to guarantee the optimal convergence speed to prevent the proposed learning algorithm
from slow convergence speed as in the case of using gradient descent learning algorithm.

• Two cases are studied and comparisons among the six controllers’ performance show that
the proposed APID-PWORNN controller has a robust performance and it is superior to
other existing controllers.

The remainder of this paper is organized as follows: the structure of the polynomial
recurrent neural network is described in Sect. 2. Sequentially, the proposed structure is
explained in Sect. 3. Section 4 presents Lyapunov stability criteria for deriving a new weight
update rule and adaptive learning rate formula following that, simulation results of a two cases
studies considering, the system parameters uncertainties, disturbances, sensor measurement
uncertainty, noise in the control signal, and set-point change and comparisons are introduced
in Sect. 5. Finally, the conclusions are summarized in Sect. 6.

2 Polynomial Recurrent Neural Network Controller (PRNNC) Structure

This section describes the structure of PRNNC [23]. PRNNC consists of three layers; the
input layer, the hidden layer and the output layer. The input layer receives the recurrent
network inputs; these inputs are weighted then transmitted to the hidden layer. The hidden
neurons sum the weighted inputs then send them to the output layer. The output neurons
multiply all the outputs coming from the hidden neurons then send them to the output of the
network as shown in Fig. 1. In the structure shown below in Fig. 1, the output of the j th
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Fig. 1 Structure of PRNNC [23]

hidden neuron; (S j (k)) is given as:

S j (k) �
N∑

i�0

wi j (k)Xi (k) (1)

where k is the sample number, wi j is the connection weight between i th input
neuron to j th hidden neuron, N is the number of input neurons and Xi (k) �
[1, r(k), r(k − 1), u(k − 1), y(k − 1), y(k − 2)]; is the input vector, i.e., online training data
set. Basically, S j (k) changes its value based on the weights updating and the input vector.
The output of the network is given as:

u(k) �
M∏

j�1

S j (k) (2)

where u(k) is the control signal and M is the number of the hidden neurons. Now, u(k) is
expressed as the result of multiplication of aggregated terms (product of sum) operation that
means polynomial function.

For the control purpose, the squared error is used as a cost function, and the gradient
descent is applied to minimize the accumulative sum of the cost function as follows:

E(k) � 1

2
(r(k) − y(k))2 (3)

where E(k) is the cost function, r(k) is the reference input, y(k) is the plant output. This
method produces the following update rule:

wi j (k) � h(r(k) − y(k))
∂y(k)

∂u(k)

∂u(k)

∂wi j (k)
(4)
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where h is the fixed learning rate.

3 Proposed APID-PWORNN Controller Structure

The structure of the proposed APID-PWORNN controller is highlighted in Fig. 2. The pro-
posed adaptive PID controller is constructed based on a polynomial network with weighted
outputs. The input layer receives the recurrent input vector. Every hidden neuron sums the
incoming inputs and then generates an output to the output layer. The output layer consists of
three neurons, each output neuron products all the weighted outputs coming from the hidden
neurons and then generates its own output. The three outputs coming from the output layer
represent the three adaptive PID controller parameters,KP (k), KI (k), and KD(k).

The inputs and outputs of each layer are given as follows:
Input layer: The input vector to this layer is set as; Xi (k) � [e(k), u(k − 1), y(k − 1)], i.e.,

online training data set, where, y(k − 1), u(k − 1), and e(k) are the recurrent plant output,
the recurrent control signal, and the error signal between the reference input and the plant
output, respectively.

Hidden layer: The inputs of each neuron in this layer are the elements of the input
vector; Xi (k). While the output of the j th hidden neuron is given as:

Fj (k) �
N∑

i�1

Xi (k) (5)

where N is the number of input neurons and Fj (k) is the hidden neuron output.

Fig. 2 Structure of the proposed APID-PWORN controller
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Output layer: The inputs to the output neuron are Fj (k). While the three outputs of the
output layer are defined as follows:

KP (k) �
M∏

j�1

w j P (k)Fj (k) (6)

KI (k) �
M∏

j�1

w j I (k)Fj (k) (7)

KD(k) �
M∏

j�1

w j D(k)Fj (k) (8)

whereM is the number of the hidden neurons, andw j P ,w j I ,w j D are the connection weights
between the j th hidden neuron and the proportional output neuron (P node), integral output
neuron (I node), and the derivative output neuron (D node), respectively.

Obviously, in this simple structure, the number of the tunable parameters (adjustable
weights) doesn’t depend on the number of inputs neurons (N) but only it depends on the
number of the hidden neurons (M). Accordingly, the number of the tunable parameters always
equals 3 M. In this work (3-2-3) structure is used, which results in 6 tunable parameters.
Therefore, the proposed structure aims to reduce the number of the tunable parameters,
which leads to a reduction of the computation time.

Figure 3 describes the block diagram of the closed loop control system based on the
proposed APID-PWORNN controller. In this block diagram, an incremental PID controller
based on discrete-time form is used as follows:

�u(k) � KP (k)e1(k) + KI (k)e2(k) + KD(k)e3(k) (9)

u(k) � �u(k) + u(k − 1) (10)

where KP (k),K I (k),KD(k) are the adaptive PID controller parameters,e1(k) � e(k) −
e(k − 1),e2(k) � e(k),e3(k) � e(k) − 2e(k − 1) + e(k − 2),�u(k) � u(k) − u(k − 1),

Fig. 3 Block diagram of the proposed controller
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u(k) is the control signal, and e(k) � r(k) − y(k) is the error signal between the reference
input and the plant output.

4 Lyapunov Stability Analysis

In this section, the Lyapunov stability analysis-based updating parameters and learning rate
is presented to overcome the shortcomings of the gradient descent learning algorithm, which
are mentioned above in the introduction section. The first part of this section explains the
deriving of a new update rule for the adjusted weights of the proposed structure based on the
Lyapunov stability criterion. This solution aims to prevent the proposed learning algorithm
from falling in local minima. The other part explains the deriving of a new adaptation rule
for the learning rate based on the Lyapunov stability criterion. This solution guarantees the
optimal convergence speed and the stability for the proposed learning algorithm.

4.1 Update Rule Based on the Lyapunov Stability Criterion

For deriving a new update rule, a more flexible positive definite Lyapunov function is chosen
as in [24]:

VL(k) � ax2v (k) + 2bxv(k)yv(k) + cy2v (k) (11)

with these constrains;a > 0andac − b2 > 0.
In this work, the parameters of Eq. (11) are replaced by the error signal; e(k), and the

connection weights vector; w(k) � [w1P , w2P , w1I , w2I , w1D, w2D]T , where xv(k) �
e(k), yv(k) � w(k). Therefore, the Lyapunov function can be rewritten as:

VL(k) � ae2(k) + 2be(k)w(k) + cw2(k) (12)

The Lyapunov stability criterion states that the controlled system is asymptotically stable
if the following condition is satisfied as [24]:

�VL(k) � VL(k + 1) − VL(k) ≤ 0 (13)

Then:

(14)

�VL (k) � [
ae2 (k + 1) + 2be (k + 1)w (k + 1) + cw2 (k + 1)

]

− [
ae2 (k) + 2be (k)w (k) + cw2 (k)

] ≤ 0

Substituting �e(k) � e(k + 1) − e(k), and�w(k) � w(k + 1) − w(k) in Eq. (14) and
performing some simple mathematical operations those lead to:

(15)

�VL (k) � c [�w (k)]2 + �w (k) [2b�e (k) + 2be (k) + 2cw (k)]

+ a[�e (k)]2 + �e (k) [2ae (k) + 2bw (k)] ≤ 0

Equating Eq. (15) by zero and dividing both sides by �w(k) that gives:

(16)

�VL (k) � c�w (k) + [2b�e (k) + 2be (k) + 2cw (k)]

+ a
[�e (k)]2

�w (k)
+

�e (k)

�w (k)
[2ae (k) + 2bw (k)] � 0
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At small change, �e(k)
�w(k) can be replaced by

∂e(k)
∂w(k) in Eq. (16); Then:

�w(k) � −1

c

[
(2b�e(k) + 2be(k) + 2cw(k)) +

∂e(k)

∂w(k)
(2a�e(k) + 2ae(k) + 2bw(k))

]

(17)

For simplifying the incremental term form in Eq. (17), let:

L1 � (2b�e(k) + 2be(k) + 2cw(k)) and L2 � (2a�e(k) + 2ae(k) + 2bw(k))

Then Eq. (17) can be rewritten as follows:

�w(k) � −1

c

[
L1 +

∂e(k)

∂w(k)
L2

]
(18)

Now Eq. (18) guarantees the convergence stability. Moreover, to satisfy the optimization,
themain formula ofweight update, whichminimizes the cost function that defined in Eq. (12),
is given as:

w(k + 1) � w(k) + h(k)�w(k) (19)

where h(k) is the adaptive learning rate, and �w(k) is the incremental term, which is given
in Eq. (18), and the last term (h(k)�w(k)) in Eq. (19) can be called the updating term. Using
the chain rule, the term ∂e(k)

∂w(k) in Eq. (18) can be replaced by
∂e(k)
∂w(k) � −∂y(k)

∂w(k) � −∂y(k)
∂u(k)

∂u(k)
∂w(k) .

Then, the six adjusted weights (connecting weights from the hidden layer to the output layer)
of the proposed APID-PWORNN controller can be updated using Eq. (19) as follows:

w1P (k + 1) � w1P (k) − h(k)
1

c

[
L11P − ∂y(k)

∂u(k)

∂u(k)

∂w1P (k)
L21P

]
(20)

w2P (k + 1) � w2P (k) − h(k)
1

c

[
L12P − ∂y(k)

∂u(k)

∂u(k)

∂w2P (k)
L22P

]
(21)

w1I (k + 1) � w1I (k) − h(k)
1

c

[
L11I − ∂y(k)

∂u(k)

∂u(k)

∂w1I (k)
L21I

]
(22)

w2I (k + 1) � w2I (k) − h(k)
1

c

[
L12I − ∂y(k)

∂u(k)

∂u(k)

∂w2I (k)
L22I

]
(23)

w1D(k + 1) � w1D(k) − h(k)
1

c

[
L11D − ∂y(k)

∂u(k)

∂u(k)

∂w1D(k)
L21D

]
(24)

w2D(k + 1) � w2D(k) − h(k)
1

c

[
L12D − ∂y(k)

∂u(k)

∂u(k)

∂w2D(k)
L22D

]
(25)

where L11P , L21P , L12P , L22P , L11I , L21I , L12I , L22I , L11D, L21D,L12DandL22D are
given in Appendix.

The value of the partial derivative; ∂y(k)
∂u(k) has no major effect on the learning algorithm

in Eqs. (20–25) because it can be absorbed by the learning rate; h(k)[23]. Therefore, it is
considered a constant value in this work, while ∂u(k)

∂w(k) can be calculated as the following
remark:

Remark: For deriving the formulas of ∂u(k)
∂w(k) in Eqs. (20–25), since the two hidden neurons

used in this structure generate the same output value from Eq. (5), and then, let, Fj (k) � F ,
accordingly Eqs. (6–8) can be rewritten in the following form:

KP (k) � F2w1P (k)w2P (k) (26)

KI (k) � F2w1I (k)w2I (k) (27)
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KD(k) � F2w1D(k)w2D(k) (28)

Substituting Eqs. (26–28) in Eq. (9) and Eq. (10) and performing the partial differentiation
on Eq. (10), the required formulas of ∂u(k)

∂w(k) for the six adjusted weights can easily derived as
follows:

∂u(k)

∂w1P (k)
� ∂u(k)

∂KP (k)

∂KP (k)

∂w1P (k)
� e1(k)F

2w2P (k) +
∂u(k − 1)

∂w1P (k − 1)
(29)

∂u(k)

∂w2P (k)
� ∂u(k)

∂KP (k)

∂KP (k)

∂w2P (k)
� e1(k)F

2w1P (k) +
∂u(k − 1)

∂w2P (k − 1)
(30)

∂u(k)

∂w1I (k)
� ∂u(k)

∂KI (k)

∂KI (k)

∂w1I (k)
� e2(k)F

2w2I (k) +
∂u(k − 1)

∂w1I (k − 1)
(31)

∂u(k)

∂w2I (k)
� ∂u(k)

∂KI (k)

∂KI (k)

∂w2I (k)
� e2(k)F

2w1I (k) +
∂u(k − 1)

∂w2I (k − 1)
(32)

∂u(k)

∂w1D(k)
� ∂u(k)

∂KD(k)

∂KD(k)

∂w1D(k)
� e3(k)F

2w2D(k) +
∂u(k − 1)

∂w1D(k − 1)
(33)

∂u(k)

∂w2D(k)
� ∂u(k)

∂KD(k)

∂KD(k)

∂w2D(k)
� e3(k)F

2w1D(k) +
∂u(k − 1)

∂w2D(k − 1)
(34)

Sequentially, the proposed APID-PWORNN controller parameters given by Eqs. (26–28)
can be updated directly by inserting the updated weights Eqs. (20–25) into Eqs. (26–28).

4.2 Adaptation of the Learning Rate Based on the Lyapunov Stability Criterion

To guarantee the optimization of the convergence speed and the convergence stability that
may be lost when using the gradient descent learning algorithm. An adaption rule for the
learning rate based on the Lyapunov function is derived for the proposed learning algorithm
in this subsection. Following the same manner used in [25–28] an adaptation rule can be
obtained as follows:

Let the Lyapunov function is as follows:

Lv(k) � 1

2
e2(k) (35)

where Lv(k) is a Lyapunov function, e(k) is the error signal. To guarantee the stability, the
following condition should be achieved:

�Lv(k) � Lv(k + 1) − Lv(k) ≤ 0 (36)

Then,

�Lv(k) � 1

2

[
e2(k + 1) − e2(k)

]
(37)

Equation (37) can be rewritten as:

�Lv(k) � 1

2
[e(k + 1) + e(k)][e(k + 1) − e(k)] (38)

Since �e(k) � e(k + 1) − e(k), then Eq. (38) can be rewritten as:

�Lv(k) � �e(k)

[
1

2
(�e(k)) + e(k)

]
≤ 0 (39)
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Now Tayler series expansion is used to express e(k + 1) as:

e(k + 1) � e(k) +
∂e(k)

∂Q(k)
�Q(k) + hot (40)

where Q(k) is any tuned parameter in PWORNN, which can be considered the output weight
vector;w(k), and hot is the higher order terms that can be neglected. So,�e(k) can be written
as:

�e(k) � ∂e(k)

∂Q(k)
�Q(k) � ∂e(k)

∂w(k)
�w(k) � ∂(r(k) − y(k))

∂w(k)
�w(k) � −∂y(k)

∂w(k)
�w(k)

(41)

Now, for guaranteeing the weight updating stability, �w(k) in Eq. (41) can be considered
the updating term (h(k)�w(k)) from the update rule; Eq. (19). Then, replacing �e(k) in
Eq. (39) by �e(k) � − ∂y(k)

∂w(k) �w(k)h(k), which yields that:

�Lv(k) � 1

2
h(k)�w(k)

∂y(k)

∂w(k)

[
h(k)�w(k)

∂y(k)

∂w(k)
− 2e(k)

]
≤ 0 (42)

Then, replacing �e(k) in Eq. (17) by �e(k) � −∂y(k)
∂w(k) �w(k)h(k), which gives �w(k) as

follows:

�w(k) � −1

c

[
∂y(k)
∂w(k) [−2bw(k) − 2ae(k)] + 2be(k) + 2cw(k)

]

[
1 − 2h(k)

c
∂y(k)
∂w(k)

[
b − a ∂y(k)

∂w(k)

]] (43)

Finally, substituting Eq. (43) in Eq. (42) that leads to:

0 ≤ h(k) ≤ ce(k)[[
∂y(k)
∂w(k)

]2
(bw(k) − ae(k)) + ∂y(k)

∂w(k) (be(k) − cw(k)

] (44)

Taking the Euclidean norm, the adaptive learning rate, which guarantees the learning
stability is given as:

0 ≤ h(k) ≤ ce(k)[[
∂y(k)
∂w(k)

]2
(bw(k) − ae(k)) + ∂y(k)

∂w(k) (be(k) − cw(k)

] (45)

The adaptation of the learning rate; h(k) can be performed by using the Euclidean norm
of the previous equation, which mainly depends on the weight updating and the error signal
(e(k)).

5 Simulation Results

This section presents the MATLAB simulation results and the comparisons among the per-
formance of the proposed APID-PWORNN controller, and four previous published neural
network PID controllers that are pre-described in the introduction section such as the PID-
NNEI controller [19], the PID-RBFNNcontroller [20], theNNPID-LMcontroller [21],which
is optimized by the LM learning algorithm and an adaptive learning rate, and the SOPIDNN
controller [22]. In addition, an improved particle swarm-based PID (IPSO-PID) controller
[29], is added to the comparisons. All these algorithms are programmed using MATLAB
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R2017b scripts. The neural structure of the PID-NNEI controller [19] is (5-5-1) with biases
in the hidden and output neurons for the error identifier, in addition three adjusted parameters
of the PID controller that totally yields 39 tunable parameters. The used NN structure of the
PID-RBFNN controller [20] is (3-5-3) with two adjusted parameters for each RBF hidden
neuron (i.e., center and radius), which yields 25 tunable parameters. Moreover, an (2-5-1)
NN structure with neurons biases for plant identifier is used for the NNPID-LM controller
[21]; in addition to the three adjusted parameters of the PID controller, which totally yields
24 tunable parameters. In addition, a (2-18-3) neural structure that used to control single–in-
put–single–output systems (SISO systems), which yields 90 tunable parameters is used for
SOPIDNN controller [22].

Furthermore, to judge the superiority of the performance of the proposed controller, two
indices are considered; the integral absolute error (IAE) and the mean absolute error (MAE).
Several simulation tasks are preceded on the six controllers to investigate the robustness
of the proposed controller performance such as unit step response, set-point change, system
parameters uncertainty, system disturbance, and actuator noise. All these simulation tasks are
applied through twocases studies that are explained in details in the following subsections. For
fairness, the learning rate is unified for all five NN controllers to be h � 0.001. Furthermore,
all initial weights values are unified and chosen as random numbers in [− 0.5, 0.5]. For the
proposed APID-PWORNN controller; the coefficients of the Lyapunov function in Eq. (12)
are chosen as; a � 1, b � 0.2, c � 2; and the initial value of the learning rate is h(k) � 0.001.
In addition, the total number, which is used for the particles for the IPSO-PID controller, is
25 particles. The optimized IPSO-PID controller parameters are KP � 39.45× 10−3, KI �
58.4 × 10−3, KD � 154.3 × 10−3 for the case study 1, and KP � −9.875 × 10−3, KI �
−1.575 × 10−3, KD � −2.225 × 10−3 for the case study 2. Moreover, the two indices,
which are measured for all controllers, are given as:

I AE � T
n∑

k�1

|e(k)| (46)

MAE � 1

n

n∑

k�1

|e(k)| (47)

where T is the sampling time and n is the total number of the iteration.

5.1 Case Study 1

Consider the mathematical nonlinear dynamical system described as [23]:

yp(k + 1) � P1yp(k)

1 + y2p(k) + y2p(k − 1)
+

P2

1 + e−P3[yp(k)+yp(k−1)]
+ P4u(k) + P5u(k − 1) + dp

(48)

where yp(k) is the system output, u(k) is the control input (control signal), and the system
parameters set as P1 � 1, P2 � 0.1, P3 � 1, P4 � 1, P5 � 0.4, dp � 0.

5.1.1 Task 1: Unit Step Response

The control scheme is built as in Fig. 3. A unit step input is applied to the closed-loop system
to depict the system response for the six controllers. Figure 4 shows the system response for
the proposed APID-PWORNN controller and other controllers. It’s clear that the proposed
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Fig. 4 System output (Task 1)

Fig. 5 Control Signal (Task 1)

controller, which is indicated with the red curve, reaches to the set-point faster than the other
controllers. Furthermore, Fig. 5 shows the control signal of all controllers.

5.1.2 Task 2: Set-Point Change

Figure 6 presents the behavior of the six controllers when the set-point is changed. Obviously,
the proposed APID-PWORNN controller has more convergence speed and accuracy than the
other controllers. NNPID-LM controller causes some overshoot in the beginning and it is
relative slow convergence. SOPIDNN and PID-RBFNN controllers are slowed down at the
last stage of the learning (from k � 2000 to k � 2500). PID-NNEI controller is slowed down
at stage (from k � 1500 to k � 2000). Figure 7 shows the control signal for all controllers.
Moreover, Fig. 8 shows the adaptation of the APID-PWORNN controller parameters.

5.1.3 Task 3: System Parameters Uncertainty

In this task, all system parameters are decreased to 80% as parameters uncertainty. Figure 9
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Fig. 6 System output (Task 2)

Fig. 7 Control Signal (Task 2)

depicts the unit step response with the effect of this uncertainty. The proposed APID-
PWORNN controller is still the superior controller. It is the least affected and faster retraced
the reference input. Furthermore, the control signal is presented in Fig. 10 for all controllers.

5.1.4 Task 4: Disturbance Model

A disturbance signal is added to Eq. (48) as dp(k) � 0.7 (70% of the reference input) at
iteration number k � 500. Figure 11 shows how each controller handles the system with this
disturbance model. Here, the six controllers proved the robust performance but still the pro-
posed APID-PWORNN controller is the fastest controller for handling this disturbance and
the least affected one. Figure 12 shows the control signal for all controllers. Figure 13 indi-
cates the changing of the APID-PWORNN controller parameters along the time in particular
during applying the disturbance.
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Fig. 8 APID-PWORNN controller parameters (Task 2)

Fig. 9 System output (Task 3)

Fig. 10 Control Signal (Task 3)
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Fig. 11 System output (Task 4)

Fig. 12 Control Signal (Task 4)

The IAE and MAE are listed in Tables 1 and 2, respectively for the five neural controllers
and the IPSO-PID controller that are used in this work. Moreover, to investigate the powerful
computation of the proposed neural structure (3-2-3), which yields only 6 tunable parameters,
the neural structure of the SOPIDNN and PID-RBFNN controllers are unified to be (3-2-
3) i.e., SOPIDNN (3-2-3), which results in 12 tunable parameters and PID-RBFNN (3-2-
3), which results in 10 tunable parameters. In addition, the conventional PID controller is
performed for purpose of comparison.

Tables 1 and 2 show that the proposed APID-PWORNN controller has the least values of
IAE andMAE in all tasks. Furthermore, the proposed controller with an adaptive learning rate
(APID-PWORNN-AL) recorded fewer values of the proposed controller with a fixed learning
rate (APID-PWORNN-FL). It’s clear that the proposed controller has a simple structure with
fewer parameters and a good robustness compared with other controllers. Moreover, the
robustness performance is proved through the above tests.

5.2 Case Study 2

Consider the heat exchanger system described in [30]. This system aims to raise the tempera-
ture of the process water; y(k) by steam flow rate. The system has two inputs and one output
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Fig.13 APID-PWORNN controller parameters (Task 4)

Table 1 Values of IAE

Algorithms NN structure Task 1 Task 2 Task 3 Task 4

APID-PWORNN-AL 3-2-3 0.0310 0.1229 0.0369 0.0753

APID-PWORNN-FL 3-2-3 0.0316 0.1726 0.0497 0.2033

SOPIDNN [22] 2-18-3 0.1155 0.3943 0.1358 0.7936

SOPIDNN [22] 3-2-3 0.1991 3.0355 0.2361 2.8321

NNPID-LM [21] 2-5-1 0.0573 0.2244 0.0826 0.1278

PID-RBFNN [20] 3-5-3 0.1697 0.6177 0.2437 0.3743

PID-RBFNN [20] 3-2-3 0.5589 2.0507 0.7999 3.0927

PID-NNEI [19] 5-5-1 0.7725 1.3491 0.8572 0.8456

IPSO-PID [29] – 0.0708 0.2661 0.1019 0.1564

Conventional-PID – 1.6672 6.3614 2.6052 3.5946

Table 2 Values of MAE

Algorithms NN structure Task 1 Task 2 Task 3 Task 4

APID-PWORNN-AL 3-2-3 0.0062 0.0049 0.0041 0.005

APID-PWORNN-FL 3-2-3 0.0063 0.0069 0.0052 0.0102

SOPIDNN [22] 2-18-3 0.0231 0.0158 0.0151 0.0529

SOPIDNN [22] 3-2-3 0.0398 0.1214 0.0262 0.1888

NNPID-LM [21] 2-5-1 0.0115 0.0090 0.0092 0.0085

PID-RBFNN [20] 3-5-3 0.0339 0.0247 0.0271 0.0250

PID-RBFNN [20] 3-2-3 0.1118 0.0820 0.0889 0.2062

PID-NNEI [19] 5-5-1 0.1545 0.0540 0.0952 0.0564

IPSO-PID [29] – 0.0142 0.0106 0.0113 0.0104

Conventional-PID – 0.3334 0.2545 0.2895 0.2396
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Fig. 14 Heat Exchanger System [30]

and classified from the control view point as a temperature control system. The first input is
the steam flow rate, which is a fixed rate and another is the water flow rate; u(k), which is
controlled by the control signal of the APID-PWORNN controller and other controllers in
the simulations. The two inputs can be controlled using pneumatic control valves as shown
in Fig. 14. Temperature is the output of this system, which has a nonlinear behavior. The
dynamics of the steam-heat exchanger are given as:

y(k) � q1y(k − 1) + q2y(k − 2) + q3z(k − 1) + q4z(k − 2) + dq(k) (49)

z(k) � u(k) + q5u
2(k) + q6u

3(k) + q7u
4(k) (50)

where y(k) is the plant output (process temperature),u(k) is the control input (inputwater flow
rate), and the system parameters are set as; q1 � 1.608, q2 � −0.6385, q3 � −6.5306, q4 �
5.5652, q5 � −1.3228, q6 � 0.767, q7 � −2.1755, dq(k) � 0. These parameters values
are derived from real data for a practical system as explained in [31–33]. So, the model given
by Eqs. (49) and (50) represents a real system.

5.2.1 Task 1: STEP Response

Figure 15 shows the heat exchanger response of a unit step input signal. The proposed APID-
PWORNN controller based on adaptive learning rate has more convergence speed than other
controllers. NNPID-LM and PID-NNEI controllers caused some overshoots in the transient
period. ThePID-RBFNNcontroller showed the least convergence speed in this task. Figure 16
presents the control signals of all controllers.

5.2.2 Task 2: Set-Point Change

Figure 17 depicts the response of the heat exchanger system when the reference input is
changed. From the figure, the superiority (more accurate, and more convergence speed) of
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Fig. 15 Heat exchanger output (Task 1)

Fig. 16 Control signal for heat exchanger (Task 1)

Fig. 17 Heat exchanger output (Task 2)

the proposed APID-PWORNN controller compared with other controllers is shown. The
control signals for all controllers are shown in Fig. 18. The adapting of the APID-PWORN
controller parameters is depicted in Fig. 19.
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Fig. 18 Control signal for heat exchanger (Task 2)

Fig. 19 Changing the APID-PWORNN controller parameters (Task 2)

5.2.3 Task 3: Heat Exchanger System Uncertainty

All the parameters of the heat exchanger have acquired an uncertainty by adding them with
80%at the 500th instant. The adaptation of the learning rate of theAPID-PWORNNcontroller
increased the convergence speed and accordingly minimized the effect of the uncertainty in
the response that is shown in Fig. 20. Moreover, the control signal is depicted in Fig. 21 for
all controllers.

Fig. 20 Heat exchanger output (Task 3)
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Fig. 21 Control signal for heat exchanger (Task 3)

Fig. 22 Heat exchanger output (Task 4)

5.2.4 Task 4: Heat Exchanger With an External Disturbance Model

This disturbance in the output measurements can be caused by the sensor uncertainty. This
task is performed by substituting dq(k) � − 0.284 sin(0.1y(k)) in Eq. (49). Figure 22 shows
the simulated heat exchanger response for all controllers due to this disturbance model. The
proposed controller is the least affected controller. Figure 23 shows the control signal for all
controllers. Furthermore, the self-changing of the APID-PWORNN controller parameters to
eliminate the effect of the external disturbance is shown in Fig. 24.

5.2.5 Task 5: Actuator Noise

Actuator noise can be expressed by adding a noise signal to the plant output at the 500th
instant. So, in thiswork, a noise signalwith -0.05 rand (1) is added to the heat exchanger output
in Eq. (49). Figure 25 shows the superiority of the proposed APID-PWORNN controller
compared with other controllers. Furthermore, the control signal is presented in Fig. 26 for
all controllers.

For any nonlinear system, the stability and the limit cycle can be defined as follows:
Stability: the dynamical system is stable if all state variables of it are converged to the

equilibriumpoint after the internal or external perturbation is applied to the dynamical system.
And the system is called unstable if at least one of its state variables has diverged in an
oscillatory or exponential manner [34].
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Fig. 23 Control signal for heat exchanger (Task 4)

Fig. 24 Adapting the APID-PWORNN controller parameters (Task 4)

Fig. 25 Heat exchanger output (Task 5)

A limit cycle: is a closed trajectory in phase space having a property that at least one other
trajectory spirals into it [34].

Based on the above definitions, the stability and limit cycles (i.e., phase portrait) for the
open-loop system and closed-loop system of the heat exchanger system are highlighted in
Fig. 27 (a, b), respectively.
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Fig. 26 Control signal for heat exchanger (Task 5)

(a)

(b)

Fig. 27 Phase portrait of heat exchanger system a Open loop. b Closed loop
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Figure 27a shows the phase portrait between the heat exchanger output; (Y � y(k))
on the horizontal axis, and the derivative of the output Ydot � y(k)−y(k−1)

T on the ver-
tical axis at input changes such as u(k) � 1, 0.75, 1, 0.75, and 1 without controller
(i.e., open-loop), while Fig. 27b shows the phase portrait at a set-point change such as
r(k) � 1, 0.75, 1, 0.75, and1 with the proposed controller (i.e., closed-loop). Clearly, the
proposed controller rapidly attracted the state variables of the heat exchanger to the equilib-
rium point and stabilizes the system.

Finally, in this subsection, the comparisons of the performance for all six algorithms are
introduced considering again the IAE, MAE. Tables 3 and 4 list the IAE and MAE, respec-
tively for all controllers. The proposed algorithm has fewer values of IAE and MAE than
other algorithms. Table 5 lists the computation time, NN structure and number of parameters
for NN algorithms and only the computation time of the IPSO-PID controller. It’ is clear that
the computation time for the proposed controller is lower than other NN algorithms. On the
other hand, the number of parameters for the proposed NN structure is smaller than those
parameters for other NN algorithms. All simulations are performed by MATLAB scripts on

Table 3 Values of IAE

Algorithms NN structure Task 1 Task 2 Task 3 Task 4 Task 5

APID-PWORNN-AL 3-2-3 0.1023 0.2011 0.3718 0.1745 1.2660

APID-PWORNN-FL 3-2-3 0.1398 0.2404 0.3786 0.2564 1.5218

SOPIDNN [22] 2-18-3 0.1961 0.7761 0.6726 0.3203 2.3400

SOPIDNN [22] 3-2-3 2.1464 2.5925 2.7139 2.3263 4.0470

NNPID-LM [21] 2-5-1 0.1846 0.3163 0.4718 0.2746 1.8463

PID-RBFNN [20] 3-5-3 0.4087 1.1633 4.5168 1.1426 4.2659

PID-RBFNN [20] 3-2-3 1.0170 1.9461 7.1941 2.6590 4.7354

PID-NNEI [19] 5-51 0.2560 0.4671 0.7890 0.3717 1.9126

IPSO-PID [29] – 0.1927 0.3798 1.4306 0.3596 1.7104

Conventional-PID – 2.3021 5.1825 15.873 5.1544 6.2223

Table 4 Values of MAE

Algorithms NN structure Task 1 Task 2 Task 3 Task 4 Task 5

APID-PWORNN-AL 3-2-3 0.0205 0.0040 0.0124 0.0058 0.0422

APID-PWORNN-FL 3-2-3 0.0279 0.0048 0.0126 0.0085 0.0507

SOPIDNN [22] 2-18-3 0.0392 0.0155 0.0224 0.0107 0.078

SOPIDNN [22] 3-2-3 0.4293 0.0519 0.0905 0.0775 0.1349

NNPID-LM [21] 2-5-1 0.0369 0.0063 0.0157 0.0092 0.0615

PID-RBFNN [20] 3-5-3 0.0817 0.0233 0.1506 0.0381 0.1422

PID-RBFNN [20] 3-2-3 0.2034 0.0389 0.2398 0.0886 0.1578

PID-NNEI [19] 5-5-1 0.0512 0.0093 0.0263 0.0124 0.0638

IPSO-PID [29] – 0.0385 0.0076 0.0477 0.0120 0.0570

Conventional-PID – 0.4604 0.1036 0.5291 0.1718 0.2074
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Table 5 Computation time, NN structure and number of parameters for all algorithms

Algorithms NN structure No of parameters Computation time (ms)

APID-PWORNN -FL 3-2-3 6 0.3451

APID-PWORNN-AL 3-2-3 6 0.373

SOPIDNN [22] 2-18-3 90 2.900

SOPIDNN [22] 3-2-3 12 0.4266

NNPID-LM [21] 2-5-1 24 0.5448

PID-RBFNN [20] 3-5-3 25 0.6480

PID-RBFNN [20] 3-2-3 10 0.4148

PID-NNEI [19] 5-5-1 39 1.800

IPSO-PID [29] – – 2.420

Conventional-PID – – 0.1019

a PC with a processor Intel (R) Core (TM) i3 CPUM350 @ 2.27 GHz, RAM 6.0 GB, 64-bit
operating system, and Windows 7.

The main advantages of the proposed APID-PWORNN controller over other controllers
are summarized as:

• It possesses a stable learning algorithm because the learning algorithm is developed based
on the Lyapunov stability criteria.

• It has less computation time and less number of tunable parameters as shown in Table 5,
and simple structure as shown in Fig. 2.

• Moreover, the proposed controller recorded theminimumvalues of the performance indices
such as IAE and MAE as indicated by Tables 1, 2, 3, and 4 that explore its computation
accuracy compared to the existing controllers published previously.

6 Conclusions

In this paper, a novel structure of an adaptive PID controller based on a polynomial weighted
output recurrent neural network and an adaptive learning rate algorithm is introduced. The
simulation results proved that the proposed controller has the superiority for controlling the
complex nonlinear dynamical systems and the robustness performance is examined through
five tasks with two case studies (mathematical nonlinear system and heat exchanger system).
Moreover, the optimization, the stability and the convergence speed are achieved by deriving
parameters update rule and adaptation formula of the learning rate using a Lyapunov function.
The proposed APID-PWORNN structure with a fewer number of tunable parameters, i.e.,
6 weights, considered as a simple NN structure that reduced the computation time and it is
applicable for microcontrollers with low-speed processors.
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Appendix

L11P � (2b�e(k) + 2be(k) + 2cw1P (k)), L21P � (2a�e(k) + 2ae(k) + 2bw1P (k))

L12P � (2b�e(k) + 2be(k) + 2cw2P (k)), L22P � (2a�e(k) + 2ae(k) + 2bw2P (k))

L11I � (2b�e(k) + 2be(k) + 2cw1I (k)), L21I � (2a�e(k) + 2ae(k) + 2bw1I (k))

L12I � (2b�e(k) + 2be(k) + 2cw2I (k)), L22I � (2a�e(k) + 2ae(k) + 2bw2I (k))

L11D � (2b�e(k) + 2be(k) + 2cw1D(k)), L21D � (2a�e(k) + 2ae(k) + 2bw1D(k))

L12D � (2b�e(k) + 2be(k) + 2cw2D(k)), L22D � (2a�e(k) + 2ae(k) + 2bw2D(k))
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