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Abstract
Many of today’s decision making systems deployed in the real world are not static—they
are changing and adapting over time, a phenomenon known as model adaptation takes place.
Because of their wide reaching influence and potentially serious consequences, the need for
transparency and interpretability of AI-based decision making systems is widely accepted
and thus have been worked on extensively—e.g. a very prominent class of explanations
are contrasting explanations which try to mimic human explanations. However, usually,
explanation methods assume a static system that has to be explained. Explaining non-static
systems is still an open research question, which poses the challenge how to explain model
differences, adaptations and changes. In this contribution, we propose and (empirically)
evaluate a general framework for explainingmodel adaptations and differences by contrasting
explanations. We also propose a method for automatically finding regions in data space that
are affected by a given model adaptation—i.e. regions where the internal reasoning of the
other (e.g. adapted) model changed—and thus should be explained. Finally, we also propose
a regularization for model adaptations to ensure that the internal reasoning of the adapted
model does not change in an unwanted way.
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1 Introduction

Machine learning (ML) and artificial intelligence (AI) based decision making systems are
increasingly affecting our daily life—e.g. predictive policing [1] and loan approval [2, 3].
Given the impact of many ML and AI based decision making systems, there is an increasing
demand for transparency and interpretability [4]—the importance of these aspects have been
also emphasized by legal regulations like the EU’s “General Data Protection Right” (GDPR)
[5] that contain a “right to an explanation”. In the context of transparency and interpretability,
fairness and other ethical aspects become relevant as well [6, 7].

As a consequence, the research community extensively worked on these aspects and came
up with methods for explaining ML and AI based decision making systems and thus meeting
the demands for transparency and interpretability [8–10]. A popular class of explanations
methods [9, 11] highlight relevant features of a givenmodel ormodel decision, such as feature
interactionmethods [12], feature importancemethods [13], partial dependency plots [14], and
local methods that approximates the model locally by an explainable model (e.g. a decision
tree) [15]. Thesemethods explain themodels by using features as vocabulary.Another class of
explanation methods are examples based methods [16]. Instances of example based methods
are counterfactual explanations [17, 18] and prototypes & criticisms [19]—these methods
use a set or a single example for explaining the behavior of the system. Counterfactual
and contrastive explanations in general (also called contrasting explanations) [11, 17, 18]
are popular instances of example based methods for locally explaining decision making
systems [11]—popularity comes from the fact there exists strong evidence that explanations
by humans (which these methods try to mimic) are often counterfactual in nature [20]. While
some of these methods are global methods—i.e. explaining the system globally—most of
the example based methods are local methods that try to explain the behavior of the decision
making system at a particular instance or in a “small” region in data space [11, 15, 21,
22]. Further, existing explanation methods can be divided into model agnostic and model
specific methods. While model agnostic methods view the decision making system as a
black-box and thus do not need access to any model internals, model specific methods rely
and usually exploit model internal structures and knowledge for computing the explanation.
However, distinguishing between model agnostic and model specific methods is not that
strict because there exist model specific methods that aim for efficiently computing (initially
model agnostic) explanations of specific models [23].

The majority of the proposed explanation methods in literature assume fixed models—i.e.
explaining the decisions of a fixed decision making system. However, in practice decision
making systems are usually not fixed but evolving over time—e.g. the system is adapted or
fine tuned on new data [24], or replaced by a completely new and different model. In this
context, it is relevant to explain the changes of the decision making system1—in particular in
the context ofHuman-CenteredAI (HCAI)which, besides explainability, is another important
component2 in ethical AI [28]. HCAI allows the human to “rule” AI systems instead of being
ruled (e.g. “discriminated” or “cheated”) by AI. Given the complexity of many modern ML
or AI systems (e.g. Deep Neural Networks), it is usually difficult for a human to understand
the reasoning of a decision making system or the impact of adaptations applied to a given
system. Yet, understanding the impact of such changes is crucial for mediating changes that
violate the user expectations, some (ethical) guidelines or (legal) constraints.

1 E.g. The authors of [25] discuss the problem that explanations of a changing classifier can become invalid
(i.e. expire) after some time and thus pose a major problem in algorithmic recourse.
2 Some people even argue that explainability and transparency are an essential part of HCAI [26, 27]
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For example, consider the scenario of a complex loan approval system that automatically
accepts or rejects loan applications, and assume that the decision making process of this
system is difficult to inspect from the outside: Consider the rejection of a loan application
with the argument of a low income and a bad payback rate in the past—this latter explanation
perfectly meets the bank internal guidelines for accepting or rejecting a loan. However, after
adapting the loan approval system on new data, it could happen that the same application
that was rejected under the “old” system (before the adaptation), is now accepted by the new
system. In such a case we would like to reject the adaptation/update because the resulting
system violates the bank policy by exposing it to a higher risk of loosing money—in the
remainder of this work, we will come back many times to this example for illustrating our
proposed methods. Since in practice we do not always have a detailed policy available,3 we
need a mechanism that makes the impact of model adaptations/updates transparent so that it
can be “approved” by a human.4

Although there exists work that is aware of the challenge of explaining changing ML
systems [18], how to explain model adaptations is still an open research question which
we aim to address in this contribution. In this work, we propose a framework that uses
contrasting explanations for explaining model adaptations—and more generally differences
between two given models, in particular to match settings where the observed behavior on
the given data only slightly changed, but the underlying mechanisms/reasoning might have
changed significantly. We argue that inspecting the differences of contrasting explanations
which are caused by the adaptation is a reasonable proxy for explaining model adaptations.
More precisely, our contributions are as follows:

1. We propose to compare (contrasting) explanations for locally explaining model adapta-
tions and differences.

2. We propose a method for finding relevant regions in data space which are affected by a
given model adaptation/difference and should be explained to a human for approval.

3. We propose persistent local explanations for regularizing the model adaptation towards
modelswith a specific behavior—i.e. avoiding unwanted changes in the internal reasoning
of the adapted model.

The remainder of this work is structured as follows: After briefly reviewing related work
(Sect. 2) and the foundations, in particular contrasting explanations (Sect. 3.2) and model
adaptations (Sect. 3.1), we introduce our proposal for comparing (contrasting) explanations
for locally explainingmodel adaptations in Sect. 4.We then study counterfactual explanations
as a specific instance of contrasting explanations in Sect. 5—their changes (Sect. 5.1), and
propose amethod for finding relevant regions in data space (Sect. 5.2). In Sect. 6, we introduce
our idea of persistent contrasting explanations—we consider different types of persistent
explanations constraints and study how to add them to the model adaptation optimization
problem. Finally, we empirically evaluate our proposed methods on several data sets and
scenarios in Sect. 7, and close our work with a summary and discussion in Sect. 8.

For the purpose of better readability, we put all proofs and derivations in Appendix 1.

3 Otherwise there would be no or very limited need for using some ML or AI system that learns such a policy
from data.
4 Ideally the explanation of the adaptations/changes are simple enough to be understood by lay persons instead
of only being accessible to ML or AI experts.
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2 RelatedWork

While incremental model adaptation as well as transparency (i.e. methods for explaining
decision making systems) have been extensively studied separately, the combination of both
has received much less attention so far. Counterfactual explanations are a popular instance of
example based explanation methods as well as an instance/realization of contrasting explana-
tions. Yet existing methods rely on the assumption of a static underlying model—a strategy
for counterfactual explanations of model adaptations is still missing [18].

The authors of [29] propose a method called “counterfactual metrics” which they use for
explaining drifting feature relevances ofmetric basedmodels like learning vector quantization
models. In contrast to a counterfactual explanation, their method focuses on feature relevance
rather than changes of counterfactual examples. However, this method is limited to metric
based models and feature relevance drifts—i.e. it is not applicable to other models and more
importantly not to other types of drift or changes.

In [30], another instance of contrasting explanations called contrastive explanations, and
in particular counterfactual explanations, are used for explaining concept drift in data space.
Unlike our approach, its focus lies on an explanation of the different temporal characteristics
of concept drift in the data. For this purpose, a classifier is constructed which tries to separate
two batches of data that are assumed to be affected by concept drift—the concept drift is
explained by using contrastive explanations that contrast a sample from one class (i.e. batch)
to the other class/batch under the trained classifier. The authors also propose a method for
finding interesting and relevant samples which they call “characteristic samples” that are
affected by the concept drift and thus promising candidates for explaining the present drift.
Our Contributions In contrast to the related work discussed above, the two key/novel contri-
butions this paper makes are as follows:

1. A general framework for explaining model adaptations or differences by comparing
explanations of the old model with explanations of the new model. Although this is
a very general approach, we realize it with contrasting explanations—we chose con-
trasting explanations because these are widely accepted as intuitive and human-friendly
explanations.

2. A method for identifying regions in data space where the two models behave the same
(e.g. their predictions are the same) but do so for different reasons—i.e. their internal
reasoning differs significantly.

3 Foundations

3.1 Model Adaptions

We assume a model adaptation scenario in which we are given a prediction function, also
called model, h(·) and a set of (new) labeled data points D. Adapting the model h(·) to the
dataDmeans that we want to find a model h′(·)which is as similar as possible to the original
model h(·)while performing well on labeling the (new) samples inD [24]. Model adaptation
can be formalized as an optimization problem [24] as stated in Definition 1.

Definition 1 (Model adaptation) Let h : X → Y , h ∈ H be a prediction function (also called
model) and D = {(�xi , yi ) ∈ X × Y} a set of (new) labeled data points. Adapting the model
h(·) to the data D is formalized as the following optimization problem:
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argmin
h′ ∈H

θ(h, h′) s.t. h′(�xi ) ≈ yi ∀ (�xi , yi ) ∈ D (1)

where θ : H × H → R+ denotes a regularization that measures the similarity between two
given models5 and ≈ refers to a suitable prediction error (e.g. zero-one loss or squared error)
which is minimized by h′(·).
Note that for large D, e.g. caused by abrupt concept drift [31], one could completely retrain
h(·) and abandon the requirement of closeness. In such situations it is still of interest to
explain the difference of h′(·) and h(·).

3.2 Contrasting Explanations

Counterfactual explanations are a popular instance of contrasting explanations. A counter-
factual explanation—often just called counterfactual—states a change to some features of
a given input such that the resulting data point, called counterfactual, causes a different
(specified) behavior (e.g. prediction) than the original input. The rational is considered to be
intuitive, human-friendly and useful because it tells the user which minimum changes can
lead to a desired outcome [11, 17]. Formally, a (closest) counterfactual can be defined as
follows:

Definition 2 ((Closest) Counterfactual explanation [17]) Assume a prediction function h :
R

d → Y is given. Computing a counterfactual �xcf ∈ R
d for a given input �xorig ∈ R

d is
phrased as an optimization problem:

argmin
�xcf ∈Rd

�
(
h(�xcf), y′) + C · θ(�xcf, �xorig) (2)

where �(·) denotes a loss function that penalizes deviation of the prediction h(�xcf) from
the requested target prediction y′—for a classification problem, a reasonable choice of loss
could be the cross-entropy loss, while in case of regression the squared-error �(h(�xcf), y′) =
(h(�xcf)− y′)2 might be a reasonable, θ(·) denotes a penalty for dissimilarity of �xcf and �xorig,6
and C > 0 denotes the regularization strength.

Remark 1 In the following, we assume a binary classification problem: In this case, we
denote a (closest) counterfactual �xcf according to Definition 2 of a given sample �xorig under
a prediction function h(·) simply as �xcf = CF(�xorig, h) and drop the target label y′ because
it is uniquely determined.

Another instance of contrasting explanations are contrastive explanations. The authors of [32]
define a contrastive explanations consisting of two parts: a pertinent negative (equivalent to
a counterfactual) and a pertinent positive. A pertinent positive [32–34] describes a minimal
set of features that are already sufficient for the given prediction. Pertinent positives are
usually considered as an addition to counterfactual explanations and are assumed to provide
additional insights why the model took a particular decision [32].

Apertinent positive of a sample �xorig describes aminimal set of featuresI (of this particular
sample �xorig) that are sufficient for getting the same prediction—these features are also called

5 In case of a parameterized model, one possible regularization measures the difference in the parameters
(e.g. by a p-norm).
6 This acts as a regularization of the complexity of the final explanation—i.e. prefer “simple/low complexity”
explanations.
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“turned on” features and all other features are called “turned off”, meaning that they are set to
zero or any other specified default value. One could either require that all “turned on” features
are equal to their original values in �xorig or one could relax this and only require that they
are close to their original values in �xorig. The computation of a pertinent positive (also called
sparsest pertinent positive) can be phrased as the following multi-objective optimization
problem [34]:

min
�δ ∈Rd

∥
∥
∥

[�xorig − �xcf
]
I

∥
∥
∥ where min

I
‖I‖ (3a)

s.t. h(�xcf) = yorig (3b)

where [·]I denotes the selection operator on the set I and I denotes the set of all “turned
on” features.7 I itself is defined as follows:

I =
{

i : ∥∥(�xcf)i
∥∥ > ε

}
(4)

where ε ∈ R+ denotes a tolerance threshold at which we consider a feature “to be turned
on”—e.g. a strict choice would be ε = 0.

Since (3) is difficult to solve – a number of different methods for efficiently computing
(approximate8) pertinent positives have been proposed [32–34].

4 ExplainingModel Adaptations

Anobvious approach for explaining amodel adaptationwould be to explain and communicate
the regions in data space where the prediction of the new and the old model are different—
i.e. {�x ∈ X | h(�x) 	= h′(�x)}. However, in particular for incremental model adaptations,
this set might be small and its characterization not meaningful—because of the constraint
in Eq. (1), it is likely that both models compute the same prediction on all samples in a
given test set. However, the reason for these predictions can be arbitrarily different—i.e. the
internal prediction rules (reasoning) of both models are different. For example, while both
models reject or accept a loan application, the reasons for doing so could be completely
different.. We think that explaining, and thus understanding, how and where the reasons and
prediction rules differ are muchmore useful than just inspecting points where the twomodels
disagree—in particular when it comes to understand and judging decision making systems
in the context of human centered AI. Hence, instead of finding the samples where the two
models compute different predictions,9 we aim for an explanation of possible differences
in the learned generalization rules underlying the models. Note that this objective is still
meaningful, even if the models completely coincide on the given data set. In the example
of loan application, the bank might want to make sure that generalization rules have not
changed arbitrarily after updating the model.

In the following, we propose that a contrasting explanation can serve as a proxy for
the model generalization at a given point; hence, a comparison of the possibly different
(contrasting) explanations of twomodels at a given point can be considered as an explanation

7 The selection operator returns a vector, whereby it only selects a subset of indices from the original vector
as specified in the set I.
8 The approximation comes from giving up closeness—many methods successfully compute pertinent posi-
tives but can not guarantee that they are globally optimal.
9 Which of course is an obvious and reasonable starting point for explaining the difference between two
models.
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of the differences in the underlying principles based on which the models propose a decision.
As it is common practice, we thereby look at local differences, since a global comparison
might be too complex and not easily understood by a human, and because it is widely accepted
that local and example-based (in particular contrasting) explanations are “easily” accessible
to (lay-)persons [11, 18, 20]. In the context of loan applications, this means to study the
entire decision making system by looking at individual cases/applications. Furthermore, it
might also be easier to add constraints on specific samples, instead of constraints on the
global decision boundary, to the model adaptation problem Eq. (1) in Definition 1. The
computation of such differences of explanations is tractable as long as the computation of
the (contrasting) explanation under a single model itself is tractable – i.e. no additional
computational complexity is introduced when using this approach for explaining model
adaptations and differences.

4.1 Modeling

We define this type of explanation as follows:

Definition 3 (Explaining model differences) We assume that we are given a set of labeled
data points D∗ = {(�x∗

i , y∗
i ) ∈ X × Y} whose labels are correctly predicted by both models

h : X → Y and h′ : X → Y .
For every (�x∗

i , y∗
i ) ∈ D∗, let �δi

h ∈ X be a contrasting explanation under h(·) and and
�δi

h′ ∈∈ X under the new model h′(·). The explanation of the model differences at point
(�x∗

i , y∗
i ) and its magnitude is then given by the comparison of both explanations:

ψ(�δi
h, �δi

h′) and �(�δi
h, �δi

h′) (5)

where ψ(·) denotes a suitable operator which can compare the information contained in two
given explanations, and �(·) denotes a real-valued distance measure judging the difference
of explanations.

Remark 2 Note that the explanation, as defined in Definition 3, can bemore generally applied
to compare two arbitrary classifiers h′(·) and h(·) w.r.t. given input locations, albeit h′(·)
does not constitute an adaptation of h(·)—e.g. one could compare the internal reasoning of a
Support Vector Machine with the one of a Deep Neural Network. For simplicity, we assume
uniqueness of contrasting explanations in the definition, either by design such as given for
linear models or by suitable algorithmic tie breaks.

In the context of loan application, this means that we explain or define the difference in
the internal reasoning of two given models by comparing the contrasting explanations of a
specific case/loan application—i.e. comparing the recommended actions for changing the
models behavior.

Remark 3 Although we use contrasting explanations in Definition 3, the idea of explaining
the difference by comparing explanation, can be realized with any kind of explanation as
long as comparing explanations of this particular type is meaningful.

The concrete form of the explanation heavily depends on the comparison function ψ(·) and
�(·)—this allows us to take specific use-cases and target groups into account. In this work we
assume X = R

d and ψ(·) is given by the component-wise absolute value ‖(�δi
h)l − (�δi

h′)l‖l ,
and we consider two possible realizations of �(·):
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Euclidean Similarity An obvious measurement of the difference of two explanations in R
d

is to compute the Euclidean distance between them:

�(�δh − �δh′) = ‖�δh − �δh′ ‖2 (6)

where on could also use a different p-norm (e.g. p = 1).
Cosine Similarity We can also measure the difference between two explanations in R

d by
the cosine of their respective angle:

�(�δh, �δh′) = cos
(
∠�δh, �δh′

)
(7)

Note that the angle is scale invariant—i.e. it is more interesting if different features have
to be changed, rather than the same features have to been changed slightly more. Since the
image of the cosine is limited to [−1, 1], we can directly compare the values of different
samples—whereas the general norm is only capable of comparing nearby points with each
another as it contains information regarding the local topological structure.

5 Counterfactual Explanations for ExplainingModel Adaptations

Counterfactual explanations are a popular instance of contrasting explanations (Sect. 3.2).
In the following, we study counterfactual explanations for explaining model adaptations as
proposed in Definition 3. We first relate the difference between two linear classifiers to their
counterfactuals and, vice versa, the change of counterfactuals to model change (Sect. 5.1).
Then, we propose a method for finding relevant regions and samples for comparing counter-
factual explanations (Sect. 5.2).

5.1 Counterfactuals for Linear Models

First, we highlight the possibility to relate the similarity of two linear models at a given point
to their counterfactuals. We consider a linear binary classifier h : Rd → {−1, 1}:

h(�x) = sign( �w��x) (8)

and assume w.l.o.g. that the weight vector �w ∈ R
d has unit length, i.e. ‖ �w‖2 = 1. We

consider an adaptation h′(�x) = sign( �w�∗ �x) with unit weight vector �w∗. We can then relate
the similarity of the two classifier as stated in Theorem 1.

Theorem 1 (Cosine Similarity of Linear Models) Let h(·) and h′(·) be two linear mod-
els Eq. (8), and �xorig a data point. Let �xcf = CF(�xorig, h) and �xcf∗ = CF(�xorig, h′) be the
closest counterfactual of a data point �xorig ∈ R

d under the original model resp. the adapted
model h′(·). Then

cos(∠ �w, �w∗) = �x�
cf �xcf∗ + �x�

orig �xorig − �x�
cf �xorig − �xcf∗��xorig

√(
�x�

cf �xcf + �x�
orig �xorig − 2�x�

cf �xorig

) (
�xcf∗��xcf∗+�x�

orig �xorig−2�xcf∗��xorig

)

(9)

Note that the angle between two separating hyperplanes can be considered as a measurement
for their differences. Since every (possibly nonlinear) model can be locally be approximated
by a linear function, Theorem 1 also indicates the relevance of counterfactuals to characterize
local differences of two models.
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Conversely, it is possible to limit the difference of counterfactual explanations by the
difference of classifiers as stated in Theorem 2.

Theorem 2 (Change of a Closest Counterfactual Explanation) Let h(·) be a binary linear
classifier Eq. (8) and h′(·) be its adaptation. Then, the difference between the two closest
counterfactuals of an arbitrary sample (�xorig, yorig) ∈ R

d × {−1, 1} can be bounded as:

‖CF(�xorig, h) − CF(�xorig, h′)‖2 ≤ √
8‖�xorig‖2

(
1 − cos(∠ �w, �w∗)

)1/2 (10)

5.2 Finding Relevant Regions in Data Space

Since we are interested in local explanations, we have to choose locations/points �x that are
most informative for highlighting differences in the reasoning of the two models. In our
running example of loan application, this translates to finding cases (i.e. loan applications)
where the two given models agree in their predictions (i.e. either they both reject or accept
the application) but the reasons for doing so are significantly different. These cases might be
of interest to the bank because by inspecting these cases the bank could check whether the
generalization rules are still in their interest or not.

In the following, we formalize the notion of characteristic samples in the context of model
change, to enable an algorithmic (i.e. automatic) selection of such interesting points.

The idea is to provide an interest function, i.e. a function that marks the regions of the data
space that are of interest for our consideration—wecould use such a function for automatically
finding interesting samples by applying it to a set of points to get a ranking, or optimizing
over the function for coming up with interesting samples. This function i(·) should have the
following properties:

1. For every pair of fixed models h, h′ ∈ H it maps every point x ∈ X in the data space to
a non-negative number indicating the interest—i.e. i : X × (H × H) → R+.

2. It should be continuous with respect to the classifiers and in particular i(x, h, h′) = 0
for all x if and only if h = ±h′.

3. Points that are “more interesting” as measured by a difference of local explanations
should take on higher values.

4. Regions where the classifiers “coincide structurally”, i.e. their local explanations coin-
cide, are not of interest.

The last two properties are basically a localized version of the second in the sense that it forces
i(·) to turn global properties of the decision boundary into local, i.e. point wise, properties.

An obvious choice for i(·) is to directly use the explanation Definition 3 itself together
with a difference measurement �(·) as stated in Eqs. (6) and (7):

i(�x, h, h′) = �
(
CF(�x, h),CF(�x, h′)

)
(11)

It is easy to see that the four properties are fulfilled, if we assume that�(·) is chosen suitably.
The first property follows from the definition of dissimilarity functions and so does the

second. The fourth property follows from the fact that if the classifiers intrinsically perform
the same computations then the counterfactuals are the same and hence i(·) = 0; on the other
hand, if the classifiers (intrinsically) perform different computations (thought the overall
output may be the same) then the counterfactuals are different and hence the i(·) 	= 0. In a
comparable way the third property is reflected by the idea that obtaining counterfactuals is
faithful to the computations in the sense that slight resp. very different computation will lead
to slight resp. very different counterfactuals.
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Besides the Euclidean distance Eq. (6), the cosine similarity Eq. (7) is a potential choice
for comparing two counterfactuals in�(·). Since the cosine always takes values between−1
and 1, we scale it to a positive codomain:

�
(
CF(�x, h),CF(�x, h′)

) = 2 − cos
(
∠CF(�x, h),CF(�x, h′)

)
(12)

However, the measure �(·) as suggested in Eq. (12) is discontinuous if we approach the
decision boundary of one of the classifiers. This problem can be resolved by using an relaxed
version of Eq. (12):

�(·) = 2 − 〈CF(�x, h) − �x,CF(�x, h′) − �x〉
‖CF(�x, h) − �x‖2‖CF(�x, h′) − �x‖2 + ε

(13)

for some small ε > 0—in this case the samples on the decision boundary are marked as not
interesting, which fits the finding that the counterfacutals for those samples basically coincide
with the samples them self and therefore do not provide any (additional) information.
Approximation for Gradient Based Models While the definition of the interest func-
tion Eq. (11) captures our goal of identifying interesting samples, the computation of (closest)
counterfactuals can be computationally challenging for many models [23], hence finding
local maxima of i(·) is infeasible. It is therefore of importance to find a surrogate for the
counterfactual CF(·, ·) that allows for fast and easy computation.

In these cases, an efficient approximation is possible, provided the classifier h(·) is induced
by a differentiable function f (·) in the form h(�x) = sign ( f (�x)). Then, the gradient of f (·)
enables the following approximation of the counterfactual CF(�x, h):

CF(�x, h) = �x − ηh(�x)∇�x f (�x) (14)

for a sufficient η > 0.10 In this case Eq. (14), the cosine similarity approach Eq. (12) works
particularly well because it is invariant with respect to the choice of η—i.e. η can be ignored.
Under some smoothness assumptions, this modeling admits simple geometric interpretations
since the gradient points towards the closes point on the decision boundary in this case. This
way it (locally) reduces the interpretation to linear classifiers for which counterfactuals are
well understood [23].

In the remainder of this work, we use the gradient approximation together with the cosine
similarity for computing the interest of given samples.

6 ConstrainedModel Adaptation for Persistent Explanations

In the previous sections, we proposed and studied the idea of comparing contrasting (in
particular counterfactual) explanations for explaining model adaptations and differences. In
the experiments (see Sect. 7), we observe that this method is indeed able to detected and
explain less obvious and potential problematic changes of the internal reasoning (decision
rules) of adapted models. We will see in Sect. 7 that our method can find crucial differences
in the internal reasoning of a given (adapted) loan application system, although both models
agree on either rejecting or accepting the given application.

As already discussed in the introduction, in this context of explaining model adaptations,
Human-Centered AI comes into play when the user rejects the computed model adaptation
based on the explanations. For instance, it might happen that the local explanation under the

10 Although a sufficient η > 0 guarantees a valid counterfactual, this counterfactual is not necessarily a closest
counterfactual.
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oldmodel h(·)was accepted, but the new local explanation under the newmodel h′(·) violates
some rules or laws— e.g. while the reasons for rejecting a given loan application under the
old model coincide with the banks guidelines, the reasons for rejecting the same application
under the new model might not be acceptable for the bank because it might not be in the
interest of the bank or it might be discriminating with respect to some sensitive attributes
which in turns would cause ethical and legal problems. In such a case, we want to constrained
the model adaptation (see Definition 1) such that (some) local explanations remain the same
or valid under the new model—i.e. making some local explanations persistent—and by this
guiding the new model h′(·) towards globally accepted behavior by making use of such local
constraints. In the context of our loan application example, this means that we want to ensure
that the reason for rejecting or accepting a given loan application does not change in an
unwanted way when updating the model.

6.1 Persistent Local Explanations

For the purpose of “freezing” a local explanation in the formof a contrasting explanation—i.e.
making it persistent, we propose the following (informal) requirements:

• Distance to the decision boundary must be within a given interval.
• Counterfactual explanation must be still (in-)valid.
• Pertinent positive must be still (in-)valid.

Aiming for persistent contrasting explanations, we have to augment the original optimization
problem Eq. (1) from Definition 1 for adapting a given model h(·) as follows:

argmin
h′ ∈H

θ(h, h′) (15a)

s.t. h′(�xi ) ≈ yi ∀ (�xi , yi ) ∈ D (15b)

Some local contrastive explanations under h are still true under h′ (15c)

where the additional (informal) constraint Eq. (15c) is the only difference to the original
optimization problem Eq. (1).

Next, we study howwe can formalize Eq. (15c) and thus how to solve Eq. (15) for different
models and different explanation constraints.

6.2 Modeling

We always assume that we are given a labeled sample (�xorig, yorig) ∈ X ×Y that is correctly
labeled by the old model h(·) as well as the new model h′(·)—i.e. h(�xorig) = h′(�xorig) =
yorig. In the subsequent section, we study how to write constraint Eq. (15c) in Eq. (15) for
different requirements/constraints as listed in Sect. 6.1—it turns out that we can often write
the constraints (at least after a reasonable relaxation) as additional labeled samples which
enable a straight forward incorporation into many model adaption procedures (see Sect. 6.3
for details):

h′(�x ′) = y′ (16)

6.2.1 Persistent Distance to Decision Boundary

In case of a classifier, one might require that the distance to the decision boundary dh(�xorig)
is not larger than some fixed λ ∈ R+. Applying this to our model adaption setting, we get
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the following constraint:

dh′(�xorig) ≤ λ (17)

However, because reasoning over distances to decision boundariesmight be a too complicated
and often difficult to formalize as a computational tractable constraint, one might instead
require that all samples that are “close” or “similar” to �xorig must be have the same prediction
yorig:

h(�x) = yorig ∀ �x ∈ E(�xorig,X ) (18)

where we defined the set of all “similar”/”close” points as follows:

E(�xorig,X ) = {�x ∈ X | d(�x, �xorig) ≤ λ
}

(19)

where d : X × X → R+ denotes an arbitrary similarity/closeness measure—e.g. in case of
real valued features the p-norm might be a popular choice. If E(�xorig,X ) contains a “small”
number of elements only, then Eq. (18) is computational tractable and can be added as a set
of constraints to the optimization problem Eq. (15). However, in case of real valued features
where we use the p-norm (e.g. p = 1 or p = 2) as a closeness/similarity measure, we get
the following constraint:

h(�x) = yorig ∀ �x ∈ X : ‖�x − �xorig‖p ≤ λ (20)

Note that constraints of the form of Eq. (20) are well known and studied in adversarial
robustness literature [35]—these constraints reduce the problem to a training an locally
adversarial robust model h′(·).

Further relaxing the idea of a persistent distance to the decision boundary might lead to
requirements where a set of features is increased or decreased such that the original prediction
remains the same. For instance one might have a set of �z j ∈ R

d which must not change the
prediction if added to the original sample �xorig, yielding the following constraint:

h′(�xorig + �z j ) = yorig ∀ j (21)

6.2.2 Persistent Counterfactual Explanation

Recall that in a counterfactual explanation, we add a perturbation �z ∈ R
d to the data point

�xorig which results in a (requested) prediction y′ different from yorig:

h(�xorig + �z) = h(�xcf) = y′ 	= yorig (22)

where we define �xcf = �xorig + �z.
Requiring that the same counterfactual explanations holds for the adapted model h′(·),

yields the following constraint:

h′(�xorig + �z) = h′(�xcf) = y′ (23)

Note that with constraint Eq. (23) alone, we can not guarantee that �xcf will be the closest
counterfactual of �xorig under h′(·)—although it is guaranteed to be a valid counterfactual
explanation. However, we think that computing the closest counterfactual is not that impor-
tant because the closest counterfactual is very often an adversarial which might not be that
useful for explanations [11, 36] and for sufficiently complex models, computing the closest
counterfactual becomes computational difficult [23]. Furthermore, closeness becomes even
less important when dealing with plausible counterfactuals which are usual not the closest
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ones [36]—if �xcf is a plausible counterfactual under h(·) one would expect that it is also
plausible under h′(·) because the data manifold itself is not expected to change that much.

6.2.3 Persistent Pertinent Positive

Recall that a pertinent positive �xpp ∈ R
d describes a sparse sample where all non-zero

feature values are as close as possible to the feature values of the original sample �xorig and
the prediction is still the same:

h(�xorig) = h(�xpp) = yorig (24)

Requiring that �xpp is still a pertinent positive of �xorig under the adapted model h′(·), yields
the following (rather trivial) constraint:

h′(�xpp) = yorig (25)

Similar to the case of persistent counterfactual explanations, Eq. (25) does not guarantee that
�xpp is the sparsest or closest pertinent positive of �xorig under h′(·)—i.e. it could happen that
there exists an even sparser or closer pertinent positive of �xorig under h′(·) which was invalid
under the old model h(·). However, it is guaranteed that �xpp is a sparse pertinent positive
of �xorig under h′(·) which we consider to be sufficient for practical purposes, in particular
if taking into account the computational difficulties of computing a pertinent positive—as
stated in [34], computing a pertinent positive (even of “classic” ML models) is not that easy.

6.3 Model Specific Implementation

We consider a scenario where we have a sample wise loss function11 �h′ : X × Y → R

that penalizes prediction errors and a set of (new) labeled data points D = {(�xi , yi ) ∈
X ×Y} to which we wish to adapt our original model h(·)—we rewrite the model adaptation
optimization problem Eq. (1) as follows:

argmin
h′ ∈H

θ(h, h′) + C
∑

i

�h′(�xi , yi ) (26)

where the hyperparameter C ∈ R+ allows us to balance between closeness and correct
predictions.12

Next, we assume that we have a bunch of persistence constraintsD∗ = {(�x ′
j , y′

j ) ∈ X ×Y}
of the form h′(�x ′

j ) = y′
j as discussed in the previous Sect. 6.2. Considering these constraints,

we rewrite the constrained model adaptation optimization problem Eq. (15) as follows:

argmin
h′ ∈H

θ(h, h′) + C
∑

i

�h′(�xi , yi ) + C ′ ∑

j

�h′(�x ′
j , y′

j ) (27)

where we introduce a hyperparameter C ′ ∈ R+ that denotes a regularization strength which,
similar to the hyperparameter C , helps us enforcing satisfaction of the additional persistence
constraints—encoded as constraint Eq. (15c) in the original informal modeling Eq. (15).

Assuming a parameterized model, we can use any black-box optimization method (like
Downhill-Simplex) or a gradient-based method if Eq. (27) happens to be fully differentiable

11 E.g. smth. like the squared error or negative log-likelihood.
12 This approach of getting rid of the constraints is also called penalty method.
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with respect to the model parameters. However, such methods usually come without any
guarantees and are highly sensitive to the solver and the chosen hyperparameters C and C ′.
Therefore, one would be advised to use and exploit model specific structures for efficiently
solving Eq. (27)—e.g. writing Eq. (27) in constrained form and turn it into a convex program.

7 Experiments

We empirically evaluate each of our proposed methods separately. We demonstrate why it
is appropriate to compare contrasting explanations for explaining model adaptations and
differences in Sect. 7.2. In Sect. 7.3, we evaluate our method for finding relevant regions
in data space that are affected by the model adaptations, and thus are interesting candidates
for illustrating the corresponding difference in counterfactual explanations (see Sect. 5.2).
Finally,wedemonstrate the effectiveness of persistent local explanation for avoiding arbitrary,
unwanted, changes to the internal reasoning rules.

All experiments are implemented13 in Python. We use CEML [37] for computing coun-
terfactuals and use MOSEK14 as a solver for all mathematical programs.

Empirically evaluating our proposed methods is quite challenging because it is not clear
how to evaluate “differences in the internal reasoning”. Therefore, there do not exist any
standardbenchmarks ormetrics (e.g. numerical scores that could be computed and compared).
We construct (artificial) concept drift in data sets—i.e. we know how the concept drift looks
like—which then results in adapted models that should differ in their internal reasoning from
the original model. By this, we can make sure that there exist differences in the internal
reasoning and we also have some clues how these differences should look like—we use
this approach as some kind of a ground truth and (manually) check whether our proposed
methods are able to detect these differences or not. Especially, we empirically investigate the
following questions:

(R0) Is our proposed method for explaining model adaptions/differences by comparing
counterfactual explanations (see Sect. 4) able to come upwith reasonable explanations
that matches the ground truth (if available)?

(R1) Is our proposedmethod for detecting relevant regions in data space (see Sect. 5.2) able
to find a small sets of samples from the training/test set that are affected by the model
adaption—i.e. samples where the prediction itself did not change but the reasons for
the predictions changed?

(R2) Is our proposed regularization for model adaptations (see Sect. 6) able to prevent
unwanted changes in the internal reasoning?

We study each of these questions in a separate subsection, but first, we introduce the data
sets used in the experiments.

7.1 Data Sets

We use a variety of artificial (toy) data sets as well as real world data sets for evaluating
our proposed methods. In case of the artificial data sets, we introduce drift to the data and
subsequently to the adapted model by changing the class conditional distribution of the

13 https://github.com/andreArtelt/ContrastiveExplanationsForModelAdaptations.
14 We gratefully acknowledge an academic license provided by MOSEK ApS.
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Fig. 1 Coffee data set: classwise mean spectra per measurement time

features. In case of real world data sets, we split the data into two sets such that there are
differences in the feature distribution which then should lead to differences in the adapted
model.
Gaussian Blobs Data SetThis artificial toy data set consists of a binary classification problem.
It is generated by sampling from two different two dimensional Gaussian distributions – each
class (200 samples) has is its own Gaussian distribution. The drift is introduced by changing
theGaussian distributions between the two sets. In thefirst set, the two classes canbe separated
with a threshold on the first feature, whereas in the second set the second feature must be
also considered.
Coffee Data Set The data set consists of hyperspectral measurements of three types of coffee
beans measured at three distinct times within three month of 2020. Samples of Arabica,
Robusta and immature Arabica beans were measured by a SWIR_384 hyperspectral camera.
The sensor measures the reflectance of the samples for 288 wavelengths in the range between
900 and 2500 nm. For our experiments, we standardize and subsample the data by a factor of 5
leading to approx. 120,000 samples with 58 dimensions. It is known that the data distribution
is drifting between the measurement times—i.e. by splitting the data set into two sets (before
and after a specific point in time), we get a data set with abrupt concept drift between the two
sets. Classwise means of the data per measurement time are shown in Fig. 1.
Human Activity Recognition Data Set The human activity recognition (HAR) data set by [38]
contains data from 30 volunteers performing activities like walking, walking downstairs and
walking upstairs. Volunteers wear a smartphone recording the three-dimensional linear and
angular acceleration sensors. We use a time window of length 64 to aggregate the data stream
and compute the median per sensor axis and time window. We only consider the activities
walking, walking upstairs and walking downstairs. We create drift by putting half of all
samples with label walking or walking upstairs into the first set (approx. 2500 samples)—
i.e. walking vs. walking upstairs—the other half of walking together with samples labeled
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as walking downstairs into the other set (approx. 2500 samples)—i.e. walking vs. walking
downstairs.
German Credit Data SetThe “German Credit Data set” [39] is a data set for loan approval and
contains 1000 samples each annotatedwith 20 attributes (7 numerical and 13 categorical)with
a binary target value (“accept” or “reject”). We only use the first seven features: duration in
month, credit amount, installment rate in percentage of disposable income, present residence
since, age in years, number of existing credits at this bank and number of people being liable
to provide maintenance for. We introduce drift by splitting the data set into two sets. We put
all samples where age in years is less or equal than 35 into the first set and all other samples
into the second set.
Boston Housing Data Set The “Boston Housing Data Set” [40] is a data set for predicting
house-prices (regression) and contains 506 samples each annotated with 13 real and positive
dimensional features. We introduce drift by putting all samples with a NOX value lower or
equal than 0.5 into the first set and all other samples into the second set.

7.2 Comparing Counterfactuals for ExplainingModel Adaptation

In the following, we investigate (R0) Is our proposed explanation (see Sect. 4) able to come
up with reasonable explanations that match the ground truth (if available)? For this purpose,
we consider different data sets and scenarios.

7.2.1 Gaussian Blobs

We fit a Gaussian Naive Bayes classifier to the first set and then adapt the model to the second
set of the Gaussian blobs data set. Besides the both set, we also generate 200 samples (located
between the two Gaussians) for explaining the model changes. We compute counterfactuals
for all test samples under the old and the adapted model.

The differences of the counterfactuals are shown in the left plot of Fig. 2. We observe a
significant change in the second feature of the adapted model—which makes sense since we
know that, in contrast to the first set, the second feature is necessary for discriminating the
data in the second set.

Fig. 2 Left: Changes in counterfactual explanations for the Gaussian blob data set. Right: Changes in coun-
terfactual explanations for the house prices data set
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Fig. 3 Mean difference in counterfactual explanations for two updated models. Left plot: t2 = 14th August.
Right plot: t2 = on 28th August

7.2.2 Predicting House Prices

We fit a linear regression model to the first set and then completely refit the model on the first
and second set of the house prices data set. We use the the test data from both batches for
explaining the model changes using counterfactual explanations. We compute counterfactual
explanations under the old and the adapted model whereas we always use a target prediction
of 20 and allow a deviation of 5.

The differences of the counterfactuals are show in the right plot of Fig. 2. We observe that
basically only the feature NOX changes—which looks reasonable because we split the data
into two sets based on this feature and we would also consider this feature to be relevant for
predicting house prices.

7.2.3 Coffee

We consider the model drift between a model trained with the data collected on the 26th
of June and another model based on the data from 14th of August. As we know that the
drift in the data set is abrupt, we train a logistic regression classifier on the training data
collected at the first measurement time (model_1), and another on the second measurement
time (model_2). We compute counterfactual explanations for all the samples in test set of the
first measurement time that are classified correctly bymodel_1 but misclassified bymodel_2.
The target label of the explanation is the original label. This way, we analyze how the model
changes for the different measurement times.

The mean difference between the counterfactual explanation and the original sample are
visualized in Fig. 3. We observe that surprisingly there are only a few frequencies which are
consistently treated different by both models.

7.2.4 Human Activity Recognition

We fit a Gaussian Naive Bayes classifier to the first set and then adapt the model to the second
set of the HAR data set. We use the the test data from both sets for explaining the model
changes using counterfactual explanations.

The differences in the counterfactuals (separated by the target label) are show in Fig. 4. In
both caseswe observe some noise but also a significant change in theY axis of the acceleration
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Fig. 4 Changes in counterfactual explanations—each target label is shown separately. Note the different
scalings of the Y axis which are due to model differences

sensor and the X axis of the gyroscope—both changes look plausible15 but since this is a
real world data set, we do not really know the ground truth.

7.2.5 Loan Approval

We fit a decision tree classifier to the first set (age in years ≤ 35) and completely refit the
model to the first and second set (age in years > 35) of the credit data set. The test data
from both sets is used for computing counterfactual explanations for explaining the model
changes.

The changes in the counterfactual explanations for switching from “reject” to “accept”
are shown in the Fig. 5. We observe that after adapting the model to the second set, there
are a couple of cases where increasing the credit amount would turn a rejection into an
acceptance—we consider this as inappropriate and unwanted behavior which our method is
able to detect.

7.3 Finding Relevant Regions in Data Space

In the following, we investigate (R1) Is our proposed method for finding relevant
regions/samples in data space (see Sect. 5.2) able to identify samples that are affected by a
change in the internal reasoning (caused by a model adaptation)?

Because our proposed method needs a differentiable model (ideally this model is a clas-
sifier), we limit our empirical evaluation to two data sets—the artificial Gaussian Blobs data
set where we know the ground truth and the real world Human Activity Recognition data
set for illustrative purposes (recall that we do not know the ground truth in this case). For
both data sets, we investigate whether our method is able to highlight the relevant (in case
the ground truth is known) or reasonable features in the explanation by only using a small
set of relevant samples, according to our proposed method from Sect. 5.2.

15 Because walking can be considered as horizontal movement (i.e. along the X axis), while going upstairs or
downstairs is a vertical movement (i.e. along the Y axis), it seems reasonable that these two axis are flagged
as relevant by the counterfactuals.
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Fig. 5 Changes in
counterfactuals when turning a
“reject” into an “accept”

Fig. 6 Left: Changes in counterfactual explanations considering all test samples. Right: Changes in counter-
factual explanations considering the most relevant test samples

7.3.1 Gaussian Blobs

We follow the same procedure like in Sect. 7.2, but this time we do not use all test samples
but only the 10 most relevant (approximately 5% of the test samples) as determined by our
method proposed in Sect. 5.2.

In Fig. 6 we plot the changes in the counterfactual explanations for both cases—i.e. all
samples from the test set vs. only the 10most relevant samples from the test set.Weobserve the
same effects in both cases but with less noise in case of using only a few relevant samples—
this suggests that our method from Sect. 5.2 successfully identifies relevant samples for
highlighting and explaining the specific model changes.
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Fig. 7 Left: Changes in counterfactuals considering all test samples. Right: Changes in counterfactual expla-
nations considering the most relevant test samples. Note the different scalings of the Y axis which are due to
model differences

7.3.2 Human Activity Recognition

We fit a Gaussian Naive Bayes classifier to the first set and then adapt the model to the
second set of the HAR data set. In the first setting, we use the the test data from both sets for
explaining themodel changes using counterfactual explanations, and in the second setting we
only use approx. 13 of all samples sorted by relevance as determined by our method proposed
in Sect. 5.2.

In Fig. 7 we plot the changes of the counterfactual explanations for both cases when
switching from walking up-/downstairs to walking straight. We observe the same effects
in both cases but with much less noise in case of using only a few relevant samples—this
suggests that our method successfully identifies relevant samples for explaining the model
changes. Considering only the most relevant samples yields the same (but much stronger)
results while saving a lot of computation time—this becomes even more handy when every
sample has to be inspected manually (e.g. in some kind of manual quality assurance).

7.4 Persistent Local Explanations

In the following, we investigate (R2) Is our proposed regularization persistent local expla-
nation (see Sect. 6) able to prevent unwanted changes in the internal reasoning.

Since the credit data set is the most illustrative data set in our experiments, we demonstrate
the usefulness of our proposed persistent local explanations on this data set only.

We fit a decision tree classifier to the first set and completely refit the model to the first
and second set of the credit data set. The test data from both sets is used for computing
counterfactual explanations for explaining the model changes.

The changes in the counterfactual explanations for switching from “reject” to “accept”
are shown in the left plot of Fig. 8. Again, like in Sect. 7.2.5, we observe that after adapting
the model to the second set (recall that we split data based on age) there are a couple of
cases where increasing the credit amount would turn a rejection into an acceptance which
we consider to be inappropriate and unwanted behavior.

We therefore use our proposed method for persistent local explanations from Sect. 6 to
avoid this observed behavior. The results of the constrained model adaptation is shown in
the right plot of Fig. 8. We observe that now there is nearly no case in which increasing the
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Fig. 8 Left: Changes in counterfactual explanations. Right: Changes in counterfactual explanations under
persistent counterfactual explanations. Note the large differences in the scalings of the Y axis which are
caused by the differences of the two models

credit amount turns a rejection into an acceptance—this suggests that our proposed method
for persistent local explanations successfully prevented these unwanted changes.

8 Discussion and Conclusion

In this work, we proposed to compare (contrasting) explanation as a proxy for explaining and
understanding model adaptations and differences—i.e. highlighting differences in the under-
lying reasoning and decision making rules of the models. In this context, we also proposed
a method for finding samples where the explanation changed significantly and thus might
be illustrative for understanding the model adaptation and differences. Finally, we proposed
persistent contrasting explanations for preventing unwanted changes in the internal reason-
ing of the adapted model. Because we are in a setting where a straight forward evaluation
is not established or known—i.e. it is not clear how to “properly” evaluate explanations of
model differences—we designed data sets with known ground truth changes/differences and
evaluate whether our computed explanations find these intended ground truth, which they
did.

8.1 Limitations and FutureWork

Although our proposed methods show promising results in the empirically evaluation, we
want to highlight some limitations which could be addressed in future research:

• The idea of comparing explanations for understanding and explaining model adaptations
or differences is very abstract and the final method heavily depends on the chosen type of
explanations that is used for implementing this idea. We used contrasting explanations in
this work but as already mentioned, other explanations can be used as well—in this con-
text, it would be interesting to compare other explanations with contrasting explanations
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and study what kind of changes can be spotted and explained by which type of expla-
nation. The same also applies to the proposed persistent explanations for regularizing
model adaptations.

• Our proposedmethods for finding regions in data spacewhere the internal reasoning of the
models is different, is realized using counterfactual explanations. However, it is unclear
if there are changes or differences that cannot be spotted by counterfactual explanations.
Furthermore, other types of explanations could be used for realizing a method for finding
these regions of interest—in this context, it would be interesting to compare this to our
counterfactual approach and study if the same, different or more regions where their
reasoning is different can be spotted.

• In thiswork,we are concernedwith explaining and highlighting differences in the internal
reasoning of two models—however, it is not clear what exactly is meant by “different
reasoning”. We “somewhat avoided” this problem by not proposing a precise definition
of “different reasoning” but instead demonstrating that our proposed method is able to
highlight (manually constructed) differences in the feature processing which then lead
to different explanations.

• Our empirically evaluation focuses on detecting differences in the models internal rea-
soning only. While this covers one important aspect, it completely ignores the human
and their needs. How useful are these kinds of explanations to humans, are these expla-
nations “understandable”? Another aspect is the target audience: understanding model
differences is clearly of interest to model developers (e.g. ML engineers) but it might
also be of interest to normal users or other people with only very little to no technical
background knowledge. Contrasting explanation, which we use in this work, are widely
accepted for being human friendly and intuitive to lay persons—while this type of expla-
nation might be suited for non technical users, other explanation might be necessary
for ML experts who want to debug the model and “deeply understand” what is going
on and how to fix it at a technical level. Therefore, it would be of interest and of high
relevance to study the benefits of comparing (contrasting) explanations for explaining
model adaptations from a psychological perspective—i.e. studying how different people
(like lay users vs. ML experts) perceive model adaptations and how useful they find these
explanations for understanding and assessing model adaptations.
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Appendix A: Proofs and Derivations

• Theorem 1 Given a sample �x ∈ R
d and a correspond closest counterfactual �xcf ∈ R

d

(Definition 2) under a classifier h : Rd → Y , we can compute the weight vector �w ∈ R
d

of a locally linear approximation of the classifier h(·) between �x and �xcf as follows:

�w = �xcf − �x (A.1)

Given a sample �x ∈ R
d and a closest counterfactual �xcf ∈ R

d before the model drift and
another one �xcf∗ ∈ R

d after the model adaptation, we can compute the corresponding
locally linear approximations of the decision boundaries Eq. (A.1) and compute the
cosine angle between the two weight vectors Eq. (A.1) as follows:

�w�
1 �w2

‖ �w1‖2‖ �w2‖2 =
(�xcf − �x)� (�xcf∗ − �x)

‖�xcf − �x‖2‖�xcf∗ − �x‖2

= �x�
cf �xcf∗ + �x��x − �x�

cf �x − �xcf∗��x
√(

�x�
cf �xcf + �x��x − 2�x�

cf �x
) (�xcf∗��xcf∗ + �x��x − 2�xcf∗��x)

(A.2)

which concludes the proof.
• Theorem 2 The closest counterfactual �xcf = CF(�x, h) of a sample �x under a linear

binary classifier Eq. (8) can be stated analytically [41]:

�xcf = �x − ( �w��x) �w (A.3)

Working out ‖�xcf − �xcf∗‖22, where �xcf = CF(�x, h′), by making use of Eq. (A.3) and
‖ �w‖2 = ‖ �w∗‖2 = 1 yields:

‖�xcf − �xcf∗‖2 = ‖�x − ( �w��x) �w − �x + ( �w�∗ �x) �w∗‖2
= ‖( �w�∗ �x) �w∗ − ( �w��x) �w∗ + ( �w��x) �w∗ − ( �w��x) �w‖2
= ‖

(
( �w∗ − �w)��x

)
�w∗ + ( �w��x)( �w∗ − �w)‖2

(A.4)

Applying the triangle and Cauchy–Schwarz inequality to Eq. (A.4) yields:

‖�xcf − �xcf∗‖2 = ‖
(
( �w∗ − �w)��x

)
�w∗ + ( �w��x)( �w∗ − �w)‖2

≤ ‖
(
( �w∗ − �w)��x

)
�w∗‖2 + ‖( �w��x)( �w∗ − �w)‖2

= |( �w∗ − �w)��x |2‖ �w∗‖2 + | �w��x |2‖ �w∗ − �w‖2

(A.5)

Applying the Cauchy–Schwarz inequality to Eq. (A.5) yields:

‖�xcf − �xcf∗‖2 ≤ |( �w∗ − �w)��x |2‖ �w∗‖2 + | �w��x |2‖ �w∗ − �w‖2
≤ ‖ �w∗ − �w‖2‖�x‖2‖ �w∗‖2 + ‖ �w∗‖2‖�x‖2‖ �w∗ − �w‖2
= 2‖�x‖2‖ �w∗ − �w‖2

(A.6)
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Substituting ‖ �w∗ − �w‖2 = √
2 − 2 cos(∠ �w, �w∗) in Eq. (A.6) yields the stated bound:

‖�xcf − �xcf∗‖2 ≤ 2‖�x‖2‖ �w∗ − �w‖2
= 2‖�x‖2

√
2 − 2 cos(∠ �w, �w∗)

= 2
√
2‖�x‖2

(
1 − cos(∠ �w, �w∗)

)1/2

= √
8‖�x‖2

(
1 − cos(∠ �w, �w∗)

)1/2

(A.7)

which concludes the proof.
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