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Abstract
Deep learning models, such as convolutional neural networks (CNN), have been successfully
applied in pattern recognition and system identification recent years. But for the cases of
missing data and big noises, CNN does not work well for dynamic system modeling. In
this paper, complex valued convolution neural network (CVCNN) is presented for modeling
nonlinear systemswith large uncertainties. Novel trainingmethods are proposed for CVCNN.
Comparisons with other classical neural networks are made to show the advantages of the
proposed methods.
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1 Introduction

Predicting future behaviors in dynamic systems is a complicated task.Many advanced control
techniques could be used to achieve this goal. The system modeling can be done through
different methods, applying the laws of physics that govern the behavior of the system is
one of the most used [1]. In order to apply this method, it is necessary to have sufficient
knowledge of the system to determine the parameters of physic equations, which in most
cases is difficult to achieve. In general, modeling or identification of systems is to find
relationships between the inputs and outputs of the system. These relationships can often be
represented as a convolution operation, such as time-invariant linear systems. Time series
forecasting methods can be used for the system identification, but the inputs and outputs of
the system are joined into one time series, and the convolution relation lost [2].

Neural networks are black box models, because they only need to know input and out-
put data. This data-driven modeling method still has problems. There are still not effective
methods for determining the hyper-parameters of the neural network, such as the number of
hidden layers and the number of nodes in each of the layers [3]. The universal approximation
theorem ensures that a neural model can approximate virtually any continuous system using
some number of nodes in one hidden layer. However, increasing the number of nodes in this
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layer leads to overfitting problem [4]. As an alternative, instead of increasing the number of
nodes in the hidden layer, it is recommended to add more hidden layers. This is the deep
neural networks [5]. In recent years the models of deep learning have been performed in
many areas, and they archive better results than existing models theoretically and practically
[6].

One of the most popular deep learning models is convolutional neural network (CNN) [7],
which is used mainly in images processing. CNNs are used for image classification in [8–
10]. The CNNs give almost the highest performances, and they have been applied in medical
images [11,12]. There are also applications in other areas, such as time series prediction
[13,14]. Many variation architectures of CNNs have been presented. [15] presents a CNN in
the frequency domain, which differs from the classical CNNs from the 90’s [3,16].

A very common problem of systems modeling are large uncertainties affecting them, such
as unknown parts of the data, which are commonly up to 50% of total data, It can be produced
by any cause, a fault, a human error, an accidental or provoked deletion, etc. Data loss is
most often caused by physical failure of sensors, followed by human error. The others large
uncertainties are the external disturbance,such as themeasurement noisewhich can be around
20% of the output amplitude, this type of noise is generated mainly by a malfunction of the
sensors used in the system and it can be periodic, intermittent, or random. Data processing
can reduce these effects on the process. We can also reduce these influences through our
neural networks, for example multilayer perceptions (MLP) can increase theirs nodes and
layer numbers. But we have to train a greater number of parameters, and there is overfitting
problem. CNNs can reduce noise directly in the convolutional layers. CNN are use more
frequently in the others tasks than nonlinear dynamic system modeling [17].

System identification can be formed into time series prediction [18,19]. In [20], the time
series is in the self-regulating model to improve performance. [21] presents a model based
on neural networks to estimate COVID-19 cases in the following months. In [22] proposes a
new LSTM network architecture for modeling dynamic systems. In this same area, very few
publications are presented in which a CNN is used for this purpose. In [23], the identification
of the nonlinear system is transferred to time series using ARMAX model. In our previous
work [24], a modeling scheme for nonlinear systems is proposed using CNNwith real values.
In [25], CNN is trained to model uncertainties in the dynamic system. These uncertainties are
over passed with the CNN because of the properties of share weights and sparse connectivity.

Most of deep learning algorithms work with real values, such as multilayer networks
(MLP), support vector machine (SVM), long-short term memories (LSTM) and CNN. Com-
plex valued neural networks have many advantage over classical NNs, such as complex
valued MLP [26], complex valued RBF networks [27] and complex valued convolutional
neural networks (CVCNN) [28,29].

In order to use complex numbers, the normal neural networks have to be modified. The
modifications are in the structure of NNs and in learning methods [30]. A general training
algorithm for the complex valued NN is introduced in [28]. In [31], the complex valued
NN is regarded as two real valued NNs, which expand the learning information. It is more
difficult to give theoretical analysis for complex values [32]. For image processing, CVCNN
is given for image denoising [33] and for image classification [34]. In [35] CVNN is proposed
as classifier based on range-beam-Doppler tensor. In [36] classification of human activities
are proposed using CVCNN, where the motion of human are captured and transformed
to frequency domain. To the best of our knowledge, there are not published results using
CVCNN for dynamic system modeling [37].

From our point of view, the main advantage of the CVCNN is that we can have same
structure as the real valued CNN, but for the cases of missing data and big noises, CVCNN

123



Complex Valued Deep Neural Networks for… 561

will give better performances. In order to create a neural network who can model nonlinear
systems with missing data and large uncertainties with CNN, in this paper, we make the
following contributions:

(1) Novel architecture of CVCNN for non linear dynamic system modeling is proposed.
(2) Learning method of the CVCNN is given.

To show the advantages of the CVCNN, comparisons with the other state-of-art methods
aremade by using several benchmarks. The comparison results show that: (1) the novelmodel
has bettermodeling performances than the other algorithms in the cases of large uncertainties;
(2) the proposed method has fast convergence speed, and it can be realized easily.

2 Nonlinear Dynamic SystemModeling with Complex Valued CNN

2.1 Deep Nneural Networks for Dynamic SystemModeling

Let consider an unknown discrete-time nonlinear system

x̄(k + 1) = f [x̄ (k) , u (k)] , y(k) = g [x̄ (k)] (1)

where u (k) is the input vector, x̄ (k) is the internal state vector, y (k) is the output vector. f
and g are general nonlinear smooth functions, f , g ∈ C∞. Denoting

Y (k) = [y (k) , y (k + 1) , · · · y (k + n − 1)]

U (k) = [u (k) , u (k + 1) , · · · u (k + n − 2)]

if ∂Y
∂ x̄ is non-singular at x̄ = 0 and U = 0, leads to the following nonlinear auto regressive

exogenous model (NARX)

y(k) = Υ [x (k)] (2)

where Υ (·) represent an unknown nonlinear difference equation corresponding to the plant
dynamics,

x (k) = [y (k − 1) , · · · y (
k − my

)
, u (k) , · · · u (k − mu)]T (3)

x (k) = [x1 · · · xl ]T , l = my + mu + 1, k = 1 · · · N , N is the total data for this particular
system.

To model the nonlinear system (2) two types of models can be used:

(1) The first type is

ŷ(k) = N [u (k) , · · · , u (k − nu)]
or ŷ(k) = N [ŷ(k − 1), · · · , ŷ(k − ny),

u (k) , · · · , u (k − nu)]
(4)

where ŷ(k) is the model output, N [·] is the complex valued CNN. ny and nu are the
regression orders. These representation is called the parallel model [38]. Here the input
to the CNN does not include the real output y (k − 1) , · · ·

(2) The second type is

ŷ(k) = N [y (k − 1) , · · · , y
(
k − ny

)
,

u (k) , · · · , u (k − nu)] (5)
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Fig. 1 Three-layer complex valued CNN

It is the series-parallel model [38]. The data regression is the same as the NARX model
(3), only nu �= mu, ny �= my .

Because the parallel model (4) do not use the output y (k − i) , the missing data and the
disturbances in the output y (k − i) does not affect the neural model. In this paper, we will
use the parallel model (4).

The biggest difficult of the parallel model (4) is that it cannot model complex nonlinear
system, such as missing data and large disturbances, this is because it is not enough to know
only the input of the system. By not knowing the output data, even when the data is presented
smoothly, the models used tend to diverge [39]. But we will use complex valued CNN to
overcome this problem, the fact of adding the imaginary part to the network, leads to being
able to extract different features of the system helping a better understanding by the network.

2.2 Complex Valued CNN

The architecture of the convolutional neural networks (CNN) for system identification is
shown in Fig. 1. It is in cascade connection. Each CNN cell includes convolution and sub-
sampling operations. The last layer is fully connected with synaptic weights. For complex
valued CNN (CVCNN), all parameters (weights) are complex-value.

CVCNN is an efficient modeling option for nonlinear systems, because the convolution
operation in CNN is the same as the input-output relationship of dynamic system [24], and the
complex-based representation of the neural network increases the potential of the algorithm.
The advantages of using CVCNN for modeling dynamic systems are:

(1) To model a complex nonlinear system, large-scale neural networks are needed. The
CNN model uses sparse connectivity and shared weight to reduce the number of model
parameters. This property is one of the main advantaged of real valued CNN. A CNN
does not depend on the type of data used, but on the structure of the network.

(2) Each convolutional filter scans the entire data regardless of where the information is in
the data. When acquiring features is in the complex domain, the created feature maps
are much richer with system information, even the input data are real. Each of these
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feature maps has some particular system property through the convolution operation
with complex values, enlarge by the imaginary part, This can be seen as if more filters
are added to the network, corresponding to the imaginary part of them, causing more
features to be acquired from the data, providing more information for the modeling of
the system [40].

(3) The multi-level grouping, such as the maximum operation on the sub sampling layer, has
tolerance to the noise in the data. This makes CNN’s model very robust. The calculations
carried out in the convolutional layers by the CVCNN obtain more information from
the physical system, this due to the fact that the filters have complex components, which
allows different features to be generatedwhen performing these operations,which implies
that the probability of presenting over fitting, which is a very frequent problem in these
types of methods [41].

(4) The activation function has the problem of gradient vanish [42], which occurs in deep
neural networks. CVCNN also uses modified rectified linear units (ReLU) function to
reduce this effect. With this activation function, the gradient passes through these layers
without any alteration allowing the deep models to be more reliable. It also reduces the
number of parameters to be updated in each iteration, since it is a conditional function
which does not depend on any parameter, except for the input to function.

2.3 Complex Valued CNN for Dynamic SystemModeling

To model complex nonlinear systems, we design the following operations for the complex
valued CNN.

(1) Convolutional operation. The parameters of the complex valued CNN, such as the filters
and the synaptic weights, are complex values The convolution operation of CVCNN is
modified as

ϕ
(�)
j = φ

(�−1)
j ∗ Γ

(�)
j (6)

where ϕ is the j−th feature map in the layer �, produced by the convolution of the input
φ(�−1), Γ

(�)
j is the filter in current layer, � = 1, 2, · · · ,m, m is the number of convo-

lutional layers. In each layer, there are n filters with the length f�. Each convolutional
layer is denoted by C�.
In the first layer, φ(�−1) = φ(0). It is the input to the CVCNN. Because convolution is
a combined operation, the sum of the product can also be interpreted as a point product
between two vectors.

(2) Activation function. After the featuremaps are created by the convolutional layer, an acti-
vation function is applied. For the complex valued CNN, the ReLU function is modified
as CReLU function,

CReLU(x) = ReLU(x�) + iReLU(x�)

x = x� + i x� ∈ C
(7)

The CReLU satisfies the Cauchy-Riemann equations, when both real and imaginary
are strictly positives or negatives. This condition is also satisfied when θx ∈ [

0, π
2

]
or

θx =∈ [
π, 3

2π
]
, θx = arg(x), θx is the phase or argument of the complex number x .

Applying the CReLU activation function to the feature map (6),

φ
(�)
j = CReLU (ϕ�

j ) (8)
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where φ
(�)
j is the output of the current convolutional layer.

(3) Pooling. An additional layer is included to the CVCNN for nonlinear dynamic system
modeling. This layer is called pooling layer. Because the complex number has more
properties than the real number, the pooling operations, such as maximum grouping and
average grouping, have different meanings. Because of cycling property, we cannot only
evaluate complex numbers by their phase. Magnitude is a more reliable property in the
pooling, which is defined by

M(x) = |x | M : C → � (9)

The pooling uses the magnitude of the complex number as

arg max
x∈set M(x) (10)

(10) allows us to maintain a complex number through the complex valued CNN, because
the output of the max-by-magnitude grouping belongs to the same input set.

(4) Full connection. The output layer of the CVCNN is a fully connected layer with synaptic
weights W (�) ∈ C

n . The output of the CVCNN is defined as:

ŷ(k) = W (�)φ(�−1) (11)

3 Complex Valued CNN Training

The normal training algorithms of CNN cannot be applied to CVCNN, because:

(1) The ReLU of CNN is modified as CReLU (7), which uses complex value. The back-
propagation operation has to be changed in complex domain.

(2) The convolution operation in complex domain can be only applied to the real counterpart.
The image part has to be redefined to obtain more information from the data.

(3) CNN uses the gradient descent algorithm to update the parameters. But for CVCNN, the
gradient descent algorithm has to be derived in complex domain.

In this paper, we propose a novel training method of CVCNN for system identification.

3.1 Backpropagation in Complex Domain

The object of nonlinear dynamic system modeling using the complex valued deep neural
networks (11) is to update theweightsW (�), such that the output of theCNN ŷ(k) convergence
to the system output y (k) in (2),

arg min
W (�),V

N∑

k=1

[
ŷ (k) − y (k)

]2
, � = 1, 2, · · · ,m

where N the training data number.
In this paper, we use the stochastic gradient descent (SGD). The object is

arg min
W (�),V

[
ŷ (k) − y (k)

]2

where � = 1, 2, · · · ,m, k = 1, 2, · · · , N .
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Fig. 2 The hierarchical structure of CNN for system identification

The performance index is defined as

J (k) = 1

2
eo (k)2 , eo (k) = ŷ (k) − y (k) (12)

where eo (k) is the modeling error.
There are m convolutional layers, each layer has n filters. So there are m × n CNN cells.

We should update the weigh of each filter W (�) ∈ C
n and the weight in the full connection

layer V , see Fig. 2.
We first discuss the gradient descent algorithm in complex domain. For real values, the

weights in the output layer is updated as

V (k + 1) = V (k) − ηφ(�)eo (k) (13)

where φ
(�)
m (k) = [

φm,1 · · · φm,n
]T is the output of the convolution operation of the CNN

model (11), η > 0 is the learning rate.
For complex values, we need to calculate the gradient descent of a complex function,

which is defined as f : C → C.. The derivatives of complex valued function can be regard
as the derivative of a multivariate function, defined as f : �2 → �2.

If f (x) and f (x, y) are differentiable at points a ∈ �1 and (a, b) ∈ �2,

lim
x→α

f (x) − f (α)

x − α
= β

lim
(x,y)→(a,b)

‖ f (x, y) − f (a, b) − F(x − a, y − b)‖
‖(x − a, y − b)‖ = 0

(14)

where x, α, β ∈ �.
If f (x, y) = f [u(x, y), v(x, y)] and the derivative of f is denoted by Df ,

Df =
[

∂u
∂x

∂u
∂ y

∂v
∂x

∂v
∂ y

]

(15)

From Cauchy-Riemann Theorem [43]. A complex function f (x) = r(x) + is(x), r , s :
� → � is differentiable if and only if f (x�, x�) = (r(x�, x�), s(x�, x�)) is differentiable
in �2 → �2, and its partial derivatives satisfy

∂r

∂x�
= ∂s

∂x�
,

∂s

∂x�
= − ∂r

∂x�
(16)
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At the point a + ib, the Wirtinger derive is

lim
x�+i x�→a+ib

f (x� + i x�) − f (a + ib)

x� + i x� − (a + ib)
= ς� + iςIm (17)

where x� and x� are the variables in real and complex parts. The complex number ς =
ς� + iςIm . (17) becomes

lim
x�+i x�→a+ib

[
f (x� + i x�) − f (a + ib)

− (ς� + iςIm)(x� + i x� − (a + ib))

]

x� + i x� − (a + ib)
= 0 (18)

So the complex derivative of function f can be regarded as a linear transformation, which
is equivalent to the derivative of the function in �2 → �2. The complex derivatives are
special linear functions with orthogonal matrices and with positive determinant.

The differential of a complex valued function f (x) : S → C, S ⊆ C can be expressed by

d f = ∂ f (x)

∂x
dx + i

∂ f (x)

∂x∗ dx∗ (19)

where x∗ is in complex domain. Here its derivative of real function has a orthogonal matrix
with positive determinant.

In complex domain,

∂ J

∂V
= ∂ J

∂e

∂e

∂ ŷ

∂ ŷ

∂V
= eo

[
Vj,� + iVj,�

]
(20)

The Cauchy-Riemann equation are satisfy as r = ŷ� − y and s = ŷ�:
∣∣∣∣∣

∂r
∂ ŷ� = 1 ∂r

∂ ŷ� = 0
∂s

∂ ŷ� = 0 ∂s
∂ ŷ� = 1

∣∣∣∣∣
> 0,

∂e0
∂ ŷ

= 1 (21)

For the fully connected layer, two gradients are required. Since the Cauchy-Riemann
equations hold for r = ŷ� and s = ŷ�,

∣∣∣∣∣

∂r
∂V� = Φ

(m)
�

∂r
∂V� = −Φ

(m)
�

∂s
∂V = Φ

(m)
�

∂s
∂V� = Φ

(m)
�

∣∣∣∣∣
> 0 (22)

the partial derivative of ŷ respect to V is

∂ ŷ

∂V
= ∂r

∂V�
+ i

∂s

∂V�
= Φ

(m)
� + iΦ(m)

� = Φ(m) (23)

We can calculate the gradient of cost function respect V , and for the rest of the hyper-
parameters in the output layer using chain rule

∂ J

∂V
= ∂ J

∂e

∂e

∂ ŷ

∂ ŷ

∂V
= (eo)(1)Φ

(m)) = eΦ(m) (24)

The gradient of ŷ respect toΦ(m) is obtain with aid of the Cauchy-Riemann equation, r = ŷ�
and s = ŷ�:

∣∣∣∣∣∣

∂r
∂Φ

(m)
�

= V� ∂r
∂Φ

(m)
�

= −V�
∂s

∂Φ
(m)
�

= V� ∂s
∂Φ

(m)
�

= V�

∣∣∣∣∣∣
> 0 (25)
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So

∂ ŷ

∂Φ(m)
= ∂r

∂Φ
(m)
�

+ i
∂s

∂Φ
(m)
�

= V� + iV� = V (26)

The updating law for the output layer (13) is

V (k + 1) = V (k) − ηφ(�)
[
Vj,� + iVj,�

]
eo (k) (27)

The updating law for the parameters in the convolution operation is

Wi j (k + 1) = Wi j (k) − η
∂ J

∂Wi j

where J is defined in (12), Wi j is parameter of the convolution operation.

3.2 Backpropagation for Complex Valued Convolution Operation

The error is back-propagated from the layer � − 1 to the layer � as

e� (k) = e�−1 (k)
∂φ(�−1)

∂t
W (�−1) (28)

In backward order, the next layer is the activation layer with CReLU . It does not have
parameters,

∂ J

∂ϕ(�)
= ∂ J

∂φ(�)
ϕ(�) (29)

After activation layer, the convolutional layer with filters is updated.
For classical CNN,

∂ J

∂γ
(�)
j

=
N− f�∑

a=0

ϕ(�)
a φ

(�−1)
j+a (30)

where N is the size of the φ(�−1), γ (�)
j is one of the elements in the filter Γ (�). The training

law is

γ (�)
j (k + 1) = γ (�)

j (k) − η
∂ J

∂γ
(�)
j

∂ J

∂φ
(�−1)
j

=
f�−1∑

a=0

∂ J

∂ϕ
(�)
j−a

∂ϕ
(�)
j−a

∂φ
(�−1)
j

=
f�−1∑

a=0

∂ j

∂ϕ
(�)
j−a

γ (�)
a

(31)

The training object of [29] is to improve image classification, while our object is nonlinear
dynamic system modeling with respect to measurement noise and missing data. Unlike the
CNN and [29], we apply the convolution operation only in sum of the products of cells. We
also use two real-value equations for each layer training, we do not use complex-value to
train each layer as in [29]. These two differences between the proposed CVCNN and [29]
help us to simplify the training and the analysis, at the same time they do not affect modeling
accuracy.
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3.2.1 Feedforward Operation

The filters and the weights of CVCNN are defined as

Γ (�) =

⎡

⎢
⎢
⎣

γ
(�)
1,� + iγ (�)

1,�
...

γ
(�)
p,� + iγ (�)

p,�

⎤

⎥
⎥
⎦ ∈ C (32)

and

W (�) =
[
W (�)

1,� + iW (�)
1,� · · ·W (�)

m,� + iW (�)
m,�

]T ∈ C
m (33)

The input of CVCNN is φ(0) =

⎡

⎢
⎢
⎢
⎣

φ
(0)
1

φ
(0)
2· · ·

φ
(0)
l

⎤

⎥
⎥
⎥
⎦
. In the first layer, the convolution operation leads

into the feature map ϕ(1),

ϕ
(1)
1 = φ(0) ∗ Γ

(1)
1 =

⎡

⎢⎢
⎣

Ψ
(1)
1,1
...

Ψ
(1)
1,q

⎤

⎥⎥
⎦

=

⎡

⎢⎢
⎣

φ
(0)
1
...

φ
(0)
q

⎤

⎥⎥
⎦ ∗

⎡

⎢⎢
⎣

γ
(1)
1,� + iγ (1)

1,�
...

γ
(1)
p,� + iγ (1)

p,�

⎤

⎥⎥
⎦

(34)

where each element Ψ (1) ∈ C is obtained by the convolution

Ψ
(1)
1, j =

q∑

a=0

φ(0)
a γ j−a (35)

Then the CReLU is applied to the feature maps,

φ
(1)
1 = CReLU(ϕ

(1)
1 ) (36)

The elements of this vector are

φ
(1)
1 =

⎡

⎢⎢
⎣

Φ
(1)
1,1
...

Φ
(1)
1,q

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

CReLU(Ψ
(1)
1,1 )

...

CReLU(Ψ
(1)
1,q )

⎤

⎥⎥
⎦

=

⎡

⎢⎢
⎣

ReLU(Ψ
(1)
1,1,�) + iReLU(Ψ

(1)
1,1,�)

...

ReLU(Ψ
(1)
1,3,�) + iReLU(Ψ

(1)
1,p,�)

⎤

⎥⎥
⎦

(37)

The last layer of the convolution operation is

ŷ = W (m)φ(m−1) =
[
W (m)

1 · · ·W (m)
p

]
⎡

⎣
Φ

(m−1)
1· · ·

Φ
(m−1)
p

⎤

⎦ (38)
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The output of CVCNN is

ŷ = ŷ� + i ŷ�

where ŷ� and ŷ� are defined as:

ŷ� = W (m)
1,� Φ

(m−1)
1,� − W (m)

1,� Φ
(m−1)
1,� + · · ·

+W (m)
p,�Φ

(m−1)
p,� − W (m)

p,�Φ
(m−1)
p,�

...

ŷ� = W (m)
1,� Φ

(m−1)
1,� + W (m)

1,� Φ
(m−1)
1,� + · · ·

+W (m)
p,�Φ

(m−1)
p,� + W (m)

p,�Φ
(m−1)
p,�

(39)

here Φ
(m−1)
1,� and Φ

(m−12)
1,� are the real and imaginary part of the element Φ(m)

1 , respectively.

3.2.2 Backpropagation of CVCNN

The backpropagation of the convolution operation needs chain rule and partial derivatives to
calculate the gradient of the complex element. In the activation layer, the gradient is

r = ReLU(Ψ�)(m), s = ReLU(Ψ
(m)
� )

∣∣∣∣∣∣∣

∂r
∂Ψ

(m)
�

= Ψ
(m)
�

∂r
∂Ψ

(m)
�

= 0

∂s
∂Ψ

(m)
�

= 0 ∂s
∂Ψ

(m)
�

= Ψ
(m)
�

∣∣∣∣∣∣∣
> 0 (40)

This leads to

∂Φ(m)

∂Ψ (m)
= Ψ

(m)
� (41)

The gradient through a activation layer is determinate by addingΨ
(m)
ı j into the corresponding

vector ϕ
(m)
j ,

∂ J

∂ϕı
= ∂ J

∂φ
(m)
ı

ϕ(m)
ı (42)

The convolutional layer is similar to the fully connected layer. The convolution operation
can be regarded as the sum of products. Similar with (31),

∂ J

∂γ
(�)
j

=
N− f�∑

a=0

ϕ(�)
a φ

(�−1)
j+a (43)

and the gradient through a convolutional layer is

∂ J

∂φ
(�−1)
j

=
f�−1∑

a=0

∂ J

∂ϕ
(�)
j−a

∂ϕ
(�)
j−a

∂φ
(�−1)
j

=
f�−1∑

a=0

∂ j

∂ϕ
(�)
j−a

γ (�)
a (44)
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4 Simulations

In this section, we use three benchmarks to show the effectiveness of the complex valued
CNN (CVCNN) compared with the classical CNN, classical neural network (MLP), and
some other recent methods. The architecture of the CNN is the same as the CVCNN, but the
filters and the weights are different, they are real value and complex values.

CNN has two convolutional layer followed by a ReLU activation function and a max-
pooling layer. For each benchmark, the number of filters in the convolutional layers are
different. We use random walk to find the best possible combination. MLP has one hidden
layer, the activation function is tanh (·). The hidden nodes are different according to each
benchmark. The initial filters of CNN and CVCNN are chosen randomly in the range [−1, 1].
The weights of MLP are also chosen in [−1, 1].

In order to show the advantages of CVCNN for dynamic system modeling, we use the
following two neural network models:

(1) Series-parallel model as (5)

ŷ(k) = NN [y (k − 1) , · · · u (k) , · · · ] (45)

where both the input u (k) and the output y (k − 1) of identified system are fed to the
neural network NN [·] .

(2) Parallel model as (4)

ŷ(k) = NN [ŷ(k − 1), · · · + u (k) , · · · ] (46)

where only the input u (k) of identified system is fed to the neural network NN [·] . We
use the output of the neural networks ŷ(k − 1) as the other part of neural network input.
In the case of noise, (45) becomes

ŷ(k) = NN [y (k − 1) + ρ, · · · + u (k) , · · · ] (47)

where ρ is the random noise. (46) becomes

ŷ(k) = NN [ŷ(k − 1) + ρ, · · · u (k) , · · · ]
In the case of missing data, (45) becomes

ŷ(k) = NN [ȳ (k − 1) , · · · ū (k) , · · · ] (48)

where ȳ (k − 1) and ū (k) are from the data sets {y (1) , · · · y (N )} and {u (1) , · · · u (N )}.
(46) becomes

ŷ(k) = NN [ỹ (k − 1) , · · · ũ (k) , · · · ]
where ỹ (k − 1) and ũ (k) are from the data sets

{
ŷ (1) , · · · ŷ (N )

}
and {u (1) , · · · u (N )}.

In this paper, we select 30% of the data as missing data.

4.1 Searching Hyper-parameters

There are not optimal methods to define the neural structure. Most of them use trial and error
to find a good structure. We will use random search method to decide the hyper-parameters
of the neural model. It is similar with [44].

We first randomly select the combinations of the hyper-parameters in total set. Then we
search the best score, i.e. minimizing a hyper-parameter response function Υ . The algorithm
is as follows for CNN:
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1. Choose the number of convolutional layers in CNN from (1,2 or 3 layers).
2. Define the number of filters in each layer (1–100 filters) and its dimension(3-6 of length).
3. Initialize the filters and synaptic weights of the output layer (range: −1 to 1).
4. Carry out the simulation and obtain the score of the function Υ

5. Repeat previous steps 15 times with randomly hyper-parameter settings.
6. Choose the structure with the best score.

In case of MLP, the algorithm is as follows:

1. define a two-layer MLP.
2. Define the number of neurons or nodes in the hidden layer (1–100 nodes).
3. Initialize the synaptic weights (range: −1 to 1).
4. Carry out the simulation and obtain the score of the function Υ

5. Repeat previous steps 10 times with randomly hyper-parameter settings.
6. Choose the structure with the best score.

In both cases, data set is used without preprocessing. With these algorithms, the hyper-
parameters are decided and shown in the following sections, which are the best score in the
hyper-parameter response function Υ according to the random search algorithm.

4.2 Gas Furnace Modeling

The data set of gas furnace is a benchmark example for nonlinear system modeling [45].
The input signal u (k) is the flow rate of the methane gas. The output signal y (k) is the
concentration of CO2. There are 296 samples in 9 seconds. We use 200 samples for training,
the other 96 samples for testing. We compare our CVCNN with CNN and MLP.

For the series-parallel models (45), (47) and (48), the input vector to the neural models
are

[y (k − 1) , · · · y (k − 5) , u (k) , · · · u (k − 4)]

For the parallel model (46), the input vector to the neural models are
[
ŷ (k − 1) , u (k) , · · ·

u (k − 10)]. Each convolutional layer of CVCNN and CNN has 3 filters, the size of each
filter is 3. The MLP has 50 nodes in the hidden layer. The amplitude of the noise is about
10% of the output amplitude. The modeling errors of testing phase for gas furnace with the
parallel model (46) are shown in Fig. 3.

The performance of the MLP becomes worse if we reduce the percentage of training data
from 60% to 40%, i.e, data number is from 200 to 120. The root mean square error (RMSE)
goes from 0.1257 to 0.2435. The same occurs for CNN, increasing from 0.1466 to 0.1935
and for the CVCNN, the RMSE also increase, from 0.0829 to 0.1458. Reducing the amount
of training data does increase the RMSE value. Both CNNs have less problems in deducing
training data compared with MLP. The quantity of 200 data is chosen, because this quantity
is commonly used for this benchmark.

4.3 First Order Nonlinear System

The following discrete-time first-order nonlinear system is another popular benchmark [38],

y(k + 1) = y(k)

1 + y2(k)
+ u3(k) (49)
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Fig. 3 Modeling errors of parallel model for gas furnace

The control input u(k) is periodic, u(k) = B sin
(

πk
50

) + C sin
(

πk
20

)
. In training phase,

B = C = 1. In testing phase, A = 0.9, B = 1.1. We use 5000 data generated by (49) to
train the neural models, and use 100 data for the testing.

For the series-parallel models (45), (47) and (48), the input vector to the neural models is

[y (k − 1) , · · · y (k − 10) , u (k) , · · · u (k − 13)]

For the parallel model (46), the input vector to the neural models are
[
ŷ (k − 1) , u (k) , · · ·

u (k − 12)]. The CVCNN and CNN have 8 filters in each convolutional layer. MLP has 35
nodes in the hidden layer. The amplitude of the noise is around 10% of the output amplitude.

The system identification of the testing results for the first-order nonlinear system with
the parallel model (46) are shown in Fig. 4.

4.4 Wiener-Hammerstein System

Wiener-Hammerstein system is the series connection of a linear system, a static non linearity
and another linear system. It is a electrical circuit consisting of three cascade blocks [46].
This benchmark system has 14, 000 samples. We use 1, 000 for testing, the other part data
are used for training. For the series-parallel models (45), (47) and (48), the input vector to
the neural models are [y (k − 1) , · · · y (k − 4) , u (k) , · · · u (k − 5)], with noise amplitude
around 10% of output amplitude For the parallel model (46), the input vector to the neural
models are

[
ŷ (k − 1) , · · · ŷ (k − 3) , u (k) , · · · u (k − 80)

]
. For CVCNN and CNN, each

convolutional layer has 15 filters, the seize is 6. The MLP is the same as the model of the gas
furnace, using 80 nodes in the hidden layer. The modeling errors of the series-parallel model
with noise data (47) are shown in Fig. 5. The modeling errors of the parallel model (46) are
shown in Fig. 6. We can see that the parallel model with the CVCNN is alternative in the
context of system modeling, due to its better performances compared to other methods.
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Fig. 4 The modeling errors of parallel model for first-order system
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Fig. 5 Modeling errors of series-parallel model with noisy data for the Wiener-Hammerstein system

4.5 Discussion

The main metric to evaluate performance is the mean square error (MSE) defined by

1

N
ΣN

k=1

[
y(k) − ŷ(k)

]2
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Fig. 6 Modeling errors of parallel model for the Wiener-Hammerstein system

Table 1 Performance metrics for
gas furnace benchmark using
series parallel model

R2 WI MSE MAE RMSE

CVCNN 0.8784 0.9669 0.0069 0.0729 0.0829

Filters: 3

MLP 0.7207 0.9166 0.0158 0.1279 0.1257

Nodes: 50

CNN 0.6200 0.8833 0.0215 0.1313 0.1466

Filters: 3

We also use the other metrics as

R2 : 1 −
1
N ΣN

k=1

[
y(k) − ŷ(k)

]2

1
N ΣN

k=1 [y(k) − ȳ(k)]2

Mean absolute error(MAE):
1

N
ΣN

k=1

∣∣y(k) − ŷ(k)
∣∣

Root mean squared error (RMSE):

√
1

N
ΣN

k=1

[
y(k) − ŷ(k)

]2

For the above three benchmarks, we use five metrics to compare our CVCNN with CNN
and MLP. The MLP has one hidden layer. CNN and CVCNN have the same structure as
above.

Tables 1, 2, 3, 4 show the comparison results of the three models. We can see that in the
most cases, the proposed CVCNN performance better than the others

Table 5 shows the modeling errors of different recent methods. In order to do a fair
comparison, we use the same models as the Arima model and PEC-WNN in [47]. We form
the problems of prediction, modeling and identification into the same sense: we use the
trained model to estimate the next value in the time series, and the objects are the same. We
can see that our CVCNN has better performances than the other methods in missing data
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Table 2 Performance metrics for
gas furnace benchmark using
parallel model

R2 WI MSE MAE RMSE

CVCNN 0.4042 0.8270 0.0337 0.1914 0.1835

Filters: 3

MLP −1.1887 0.0983 0.1237 0.3222 0.3518

Nodes: 50

CNN 0.5052 0.8657 0.0280 0.1742 0.1672

Filters: 3

Table 3 Performance metrics for
gas furnace benchmark using
series parallel model with noise
data

R2 WI MSE MAE RMSE

CVCNN 0.8785 0.9669 0.0074 0.0980 0.0860

Filters: 3

MLP −3.4390 0.4211 13.9291 1.7413 3.7322

Nodes: 50

CNN 0.8159 0.7255 0.9420 0.1015 0.1293

Filters: 3

Table 4 Performance metrics for
gas furnace benchmark using
series parallel model with
missing data

R2 WI MSE MAE RMSE

CVCNN 0.9305 0.9841 0.0042 0.0736 0.0650

Filters: 3

MLP −0.6885 −0.3736 0.0953 0.3530 0.3087

Nodes: 50

CNN 0.6803 0.9454 0.0195 0.1041 0.1395

Filters: 3

case. PEC-WNN is better than ours, but it has to use complete data set. None of the other
methods considers missing data.

For this benchmark we can conclude that:

– In the cases of big noise and missing data, CVCNN gives good modeling accuracy than
CNN and MLP.

– If the parallel model is used, both CVCNN and CNN work well.
– If the series-parallel model can be used, both CNN and MLP work well.

Tables 6, 7, 8, 9 shown the comparison results of Wiener-Hammerstein system. We can
see that similar with the gas furnace modeling, our method gives better results for Wiener-
Hammerstein system. It should be noted that our method has better performances in the cases
of missing data and big disturbances. CVCNN, CNN andMLP give good modeling accuracy
with series-parallel. For the cases of noise and missing data, the CVCNN and CNN work
well, but MLP cannot model correctly.

Table 10 presents the results of other four methods for dynamic system modeling: LSTM
and SVM are popular sadistical learning methods, BLA uses Spearman correlation for model
optimization, PNLSS uses polynomial nonlinear state-space model. All of these methods use
the trained model to estimate the next value in the time series, and the modeling objects
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Table 5 Performances of the
other recent methods for the gas
furnace modeling

Model RMSE

Arima 0.843

Tong’s model 0.685

Xu’s model 0.573

Sugeno’s model 0.596

Surmans’s model 0.4

ANFIS 0.405

Generalized fuzzy NN 0.273

PEC-WNN 0.0589

OSELM-K [48] 0.3341

LSTM [49] 0.9730

CVCNN 0.0829

Table 6 Performance metrics for
Wiener-Hammerstein benchmark
using series parallel model

R2 WI MSE MAE RMSE

CVCNN 0.9991 0.9998 0.000076 0.0.0018 0.0087

Filters: 15

MLP 0.9551 0.9884 0.0038 0.0641 0.0617

Nodes: 50

CNN 0.9975 0.9994 0.00021 0.0127 0.0146

Filters: 15

Table 7 Performance metrics for
Wiener-Hammerstein benchmark
using parallel model

R2 WI MSE MAE RMSE

CVCNN 0.9503 0.9867 0.0042 0.0684 0.0649

Filters: 15

MLP 0.3588 0.7217 0.0544 0.2458 0.2322

Nodes: 80

CNN 0.8747 0.9734 0.0106 0.0992 0.1031

Filters: 15

Table 8 Performance metrics for
Wiener-Hammerstein benchmark
using series parallel model with
noisy data

R2 WI MSE MAE RMSE

CVCNN 0.9734 0.993 0.00018 0.0155 0.0138

Filters: 15

MLP −0.0350 −0.0237 0.0878 0.3445 0.2963

Nodes: 80

CNN 0.1471 0.5112 0.0723 0.3082 0.2690

Filters: 15
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Table 9 Performance metrics for
Wiener-Hammerstein benchmark
using series parallel model with
missing data

R2 WI MSE MAE RMSE

CVCNN 0.8753 0.9702 0.00089 0.0100 0.0298

Filters: 15

MLP 0.7890 0.9344 0.0015 0.0430 0.0388

Nodes: 80

CNN 0.7129 0.9341 0.0020 0.0106 0.0453

Filters: 15

Table 10 Performance of
Wiener-Hammerstein system
modeling using the other methods

Model RMSE

LSTM [49] 0.011

BLA [50] 0.00607

SVM [51] 0.047

PNLSS [52] 0.00042

CVNN 0.0087

Table 11 Performance metrics
for nonlinear system benchmark
using series parallel model

R2 WI MSE MAE RMSE

CVCNN 0.9993 0.9998 3.97×10−5 0.0061 0.0063

Filters: 8

MLP 0.9501 0.9884 0.0030 0.0585 0.0551

Nodes: 35

CNN 0.9936 0.9984 3.90×10−4 0.0222 0.0198

Filters: 8

Table 12 Performance metrics
for nonlinear system benchmark
using parallel model

R2 WI MSE MAE RMSE

CVCNN 0.9179 0.9829 0.0050 0.0799 0.0707

Filters: 8

MLP −1.3991 0.7553 0.1461 0.3007 0.3822

Nodes: 35

CNN 0.5012 0.9167 0.0304 0.2033 0.1743

Filters: 8

are the same. We can see that our CVCNN has very similar results with the other for this
benchmark. But for the cases of big noise and missing data, they did not show results.

Tables 11, 12, 13, 14 give the modeling results of the nonlinear system. Clearly, CVCNN
performs better than the other methods. We can see that for the first-order nonlinear system,
CVCNN, CNN and MLP give good modeling accuracy with series-parallel. For the cases of
noises and missing data, CVCNN and CNN work well, but MLP cannot.
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Table 13 Performance metrics
for nonlinear system benchmark
using series parallel model with
noise data

R2 WI MSE MAE RMSE

CVCNN 0.9122 0.9758 0.3111 0.6106 0.5577

Filters: 8

MLP 0.8710 0.9645 0.4572 0.7495 0.6761

Nodes: 35

CNN 0.8915 0.9710 0.3846 0.6767 0.6201

Filters: 8

Table 14 Performance metrics
for nonlinear system benchmark
using series parallel model with
missing data

R2 WI MSE MAE RMSE

CVCNN 0.9760 0.9940 0.0850 0.2423 0.2915

Filters: 8

MLP −2.1640 0.5257 11.2123 1.0461 3.3485

Nodes: 35

CNN 0.9560 0.9895 0.1561 0.1512 0.3951

Filters: 8

5 Conclusion

Measurement noise and missing data are important disturbances in system identification,
which can affect directly modeling accuracy. CVCNN has much power and better modeling
accuracy than the other classicalmodelingmethods for these cases, although themathematical
analysis of CVCNN is more difficult. So CVCNN is efficient and robust model compare to
classic ones for nonlinear dynamic systemmodeling with bid uncertainties. Our further work
will be on CVCNN based robust control.
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