
Neural Processing Letters (2021) 53:1523–1544
https://doi.org/10.1007/s11063-021-10463-4

Compact Deep Color Features for Remote Sensing Scene
Classification

Rao Muhammad Anwer1,2 · Fahad Shahbaz Khan1 · Jorma Laaksonen2

Accepted: 8 February 2021 / Published online: 27 February 2021
© The Author(s) 2021

Abstract
Aerial scene classification is a challenging problem in understanding high-resolution remote
sensing images.Most recent aerial scene classification approaches are based onConvolutional
Neural Networks (CNNs). These CNN models are trained on a large amount of labeled data
and the de facto practice is to use RGB patches as input to the networks. However, the
importance of color within the deep learning framework is yet to be investigated for aerial
scene classification. In this work, we investigate the fusion of several deep color models,
trained using color representations, for aerial scene classification. We show that combining
several deep color models significantly improves the recognition performance compared to
using the RGB network alone. This improvement in classification performance is, however,
achieved at the cost of a high-dimensional final image representation. We propose to use an
information theoretic compression approach to counter this issue, leading to a compact deep
color feature set without any significant loss in accuracy. Comprehensive experiments are
performed on five remote sensing scene classification benchmarks: UC-Mercedwith 21 scene
classes, WHU-RS19 with 19 scene types, RSSCN7 with 7 categories, AID with 30 aerial
scene classes, and NWPU-RESISC45 with 45 categories. Our results clearly demonstrate
that the fusion of deep color features always improves the overall classification performance
compared to the standard RGB deep features. On the large-scale NWPU-RESISC45 dataset,
our deep color features provide a significant absolute gain of 4.3% over the standard RGB
deep features.

Keywords Remote sensing · Deep learning · Scene classification · Color features · Feature
compression

1 Introduction

Remote sensing scene classification is a challenging research problem, where the task is to
associate each aerial image, comprising a variety of land cover types and ground objects,
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with its respective semantic scene category. The problem is important for understanding
remote sensing image data and has many potential applications, including disaster monitor-
ing, vegetation mapping, land resource management, urban planning, traffic supervision,
and environmental monitoring. Most previous methods either rely on employing hand-
crafted visual features [13,24,47,77], such as color and shape, or using mid-level holistic
image representations [11,33,44,75,76] constructed by encoding hand-crafted visual fea-
tures. Recently, deep Convolutional Neural Networks (CNNs) have revolutionized computer
vision by significantly advancing the state-of-the-art in many areas such as, image classifi-
cation [8,20,31,38,43,64], object detection/segmentation [19,28,30,40,53,57,68,69,81] and
action recognition [26,48,51,63]. Similarly, deep learning techniques have also made an
impact on satellite image analysis, including aerial scene classification [2,32,54,73] and
hyperspectral image analysis [14,15,66].

Generally, deep convolutional neural networks or CNNs take a fixed-sized image as input
to a series of convolution, local normalization and pooling operations (termed as layers). The
final layers of the convolutional neural network are fully connected (FC), and are typically
used to extract deep features that are generic and used for a variety of vision applications
[5], including remote sensing scene classification [54,73]. The standard input to a deep
convolutional neural network is RGB pixel values, with training performed on the large-scale
ImageNet dataset. Most existing remote sensing scene categorization approaches employ
these CNNs, pre-trained on the ImageNet dataset, as feature extractors. The exploration of
different color spaces and their combination for remote sensing scene classification is still
an open research problem. The work of [56] investigated different color spaces for vehicle
color identification. The work of [23] explored YCbCr and RGB color channels for image
super resolution. A collaborative facial color feature learning approach, combining multiple
color spaces, was proposed by [41] for face recognition. Here, we investigate a variety of
color features within a deep learning framework for remote sensing scene classification.

Prior to deep learning, the impact of multiple color features was well studied for object
recognition and detection [3,4,39,67]. The work of [67] studied the invariance properties of
different color descriptors and showed that different color features are complementary and
their combination provides a consistent improvement in overall classification performance.
Khan et al. [39] proposed an attention based framework to combine multiple color features
with shape features. Within the deep learning framework, the complementary characteristics
of these color features are yet to be investigated for remote sensing scene classification. Fig-
ure 1 shows visualizations of filter weights from the first convolutional layer of CNNs, trained
from scratch on ImageNet, using different color features. Visualizations are shown for RGB,
Opponent, YCbCr, and Lab based CNNs. The visualizations show that the corresponding
activation maps for different color spaces have different responses due to variations in filter
weights. Further, the trained image representations in different color features based CNNs
are represented in different feature subspaces that likely provide complementary information.
In this work, we investigate the effectiveness of combining multiple color features, within a
deep learning framework, for remote sensing scene classification.

As discussed above, the common strategy employed by most remote sensing scene clas-
sification methods is to extract deep features from the activations of the FC layers of a
pre-trained deep convolutional neural network. However, such a strategy will encounter the
inherent problem of a high-dimensional final image representation when combining acti-
vations from multiple deep color convolutional neural networks. Therefore, it is desired to
obtain a compact final image representation without sacrificing the improvements obtained
from the complementary characteristics of multiple deep color features. Recently, Khan et
al. [37] proposed to use a divisive information theoretic clustering (DITC) technique [22] to
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Fig. 1 Visualization of filter weights from different color features. Top row: RGB space-based deep con-
volutional neural network (left) and Opponent color space-based deep convolutional neural network (right).
Bottom row: YCbCr color space-based deep convolutional neural network (left) and Lab color space-based
deep convolutional neural network (right). All networks employ the same architecture. (Color figure online)

combine heterogenous texture descriptors for texture classification. Their work showed that
a notable reduction in the dimensionality of the final image representation can be obtained
using the DITC technique, without significant loss in classification performance. Motivated
by this, we propose to use the DITC technique to compress the dimensionality of a multi-
color deep representation for remote sensing scene classification. The DITC approach has
previously been employed to compress the high-dimensionality of bag-of-words based spatial
pyramids and hand-crafted heterogenous texture representations [25,37]. To the best of our
knowledge, we are the first to investigate the DITC technique to compress deep multi-color
image representations for scene classification in remote sensing images.
Contributions In this work, we study the problem of remote sensing scene classification with
the following contributions.

– We investigate the contribution of color in a deep learning framework for scene classifi-
cation in remote sensing images. We further demonstrate the effectiveness of combining
multiple color features within the deep learning framework. Furthermore, we propose the
usage of an information theoretic compression approach to compress high-dimensional
multi-color deep features into a compact image representation.

– Comprehensive experiments are performed on several remote sensing datasets: UC-
Merced with 21 scene classes, WHU-RS19 with 19 scene types, RSSCN7 with 7
categories, AID with 30 aerial scene classes, and NWPU-RESISC45 with 45 categories.
The results of our experiments clearly demonstrate that combining multi-color deep fea-
tures significantly improves the classification performance compared to standard RGB
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deep features alone. Furthermore, our results show that multi-color deep features can be
efficiently compressed without any significant loss in classification performance. Finally,
our compact multi-color deep features provide competitive classification results com-
pared to existing remote sensing image classification approaches in the literature.

The rest of this paper is organized as follows.Wepresent relatedwork in Sect. 2.Ourmethod is
described in detail in Sect. 3. We present the remote sensing scene classification experiments
and results in Sect. 4. Finally, our conclusions are drawn along with potential future research
directions in Sect. 5.

2 RelatedWork

The impact of color features for remote sensing scene analysis has been extensively stud-
ied [11,24,59,65,76,78]. The work of [76] investigated integrating color information within
Gabor features for remote sensing scene classification. dos Santos et al. [24] evaluated a
variety of hand-crafted color and texture feature description approaches for remote sensing
image classification and retrieval. Chen et al. [11] performed an evaluation of local features,
such as structure, texture and color for remote sensing scene classification. The work of [65]
studied a variety of feature description baselines in different color spaces for remote sensing
images.

Combining multiple hand-crafted color features has also been investigated in the litera-
ture [39,60,67]. The work of [67] investigated integrating color and shape features, within the
bag-of-words framework, for object recognition. Their evaluation recommends employing
opponent color features with SIFT descriptor for object recognition and also showed the
importance of fusing multiple color representations to achieve further improvement in clas-
sification performance. Khan et al. [39] proposed an approach where multiple hand-crafted
color features are employed to modulate shape features for object recognition. The work of
[1] proposed an approach to combine colormodels that are learned to achieve color invariance
for object detection. The work of [21] investigate the impact of color information for oint
set registration. Different to these previous works using hand-crafted features, recent works
have also investigated combining multiple color features within a deep learning framework
for face recognition [41], image super resolution [23] and vehicle classification [56]. How-
ever, to our knowledge, the effectiveness of combining multiple color features within a deep
learning framework is yet to be investigated for remote sensing scene analysis.

In recent years, several deep learning-based approaches have been introduced for remote
sensing scene classification. The work of [54] evaluated off-the-shelf CNNs features and
compared their performance with low-level descriptors for remote sensing scene classifica-
tion. Marmanis et al. [49] proposed a two-stream approach where pre-trained CNNs features
are first used to represent the images. Then, the extracted representations were input to shal-
low CNN classifiers. The work of [72] introduced a hybrid architecture where multi-column
stacked denoising sparse auto-encoder is combined with Fisher vector to learn features in a
hierarchical manner for land use scene classification. Yan et al. [74] proposed an approach
based on improved category-specific codebook using kernel collaborative representation
based classification which is integrated with Spatial pyramid matching. Their approach then
employed SVM classifier to classify remote sensing images. The work of [73] introduced a
large-scale remote sensing scene classification dataset and also evaluated several pre-trained
CNNs on their large dataset. Cheng et al. [17] introduced a method based on bag of convo-
lutional features where CNNs features are employed in place of hand-crafted local features
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to construct bag-of-words based image representation. The work of [2] investigated a fusion
approach where standard RGB deep features are combined with LBP-based deep texture
features to classify remote sensing images. Chen et al. [10] proposed a CNN based approach
under the guidance of a human visual attention mechanism. In their approach, a computa-
tional visual attention model is utilised to extract salient regions. Afterwards, sparse filters
are employed for learning features from extracted regions. A superpixel-guided layer-wise
embedding CNN based approach is introduced by [46] to exploit information from both
labeled and unlabeled examples. The work of [29] introduced a center-based structured met-
ric learning approach where both deep metrics and center points are taken into account to
penalize pairwise correlation and class-wise information between categories. Most of these
approaches employ CNN models trained using RGB patches as input. Different to these
approaches based on the de facto practice of using RGB patches for CNN training, we inves-
tigate the contribution color in deep learning framework and demonstrate the effectiveness
of integrating multiple deep color features. Our extensive experiments on five benchmarks
demonstrate the effectiveness of combining multiple deep color features for remote sensing
scene classification.

3 Our Approach

Here, we first discus the motivation behind the proposed approach. Then, we describe how
the deep color models are constructed.Afterwards, we investigate the fusion of deep color
features and counter the problem of the high-dimensionality of fused deep color features for
classification.

MotivationAs discussed earlier, most existing state-of-the-art remote sensing image clas-
sification methods are based on CNNs. Here, CNNs are generally pre-trained on a large-scale
generic object recognition dataset (ImageNet) using raw RGB pixel values as an input. Pre-
viously, combining multiple hand-crafted local color features have been investigated, within
the bag-of-words framework, for object recognition. Motivated by these previous works, we
investigate the contribution of color within a deep learning framework (CNNs) and demon-
strate the impact of integratingmultiple deep color features for remote sensing scene analysis.
To the best of our knowledge, we are the first to investigate the effectiveness of integrating
multiple color features, within a deep learning framework (CNNs), for remote sensing scene
classification.

3.1 Deep Color Convolutional Neural Networks

Most existing state-of-the-art remote sensing image classification methods are based on
deep models. These deep models are generally pre-trained on a large-scale generic object
recognition dataset (ImageNet) using raw RGB pixel values as an input. Here, we analyze a
variety of color features within deep learning framework to evaluate their impact on remote
sensing scene classification. We investigate the contribution of color in a standard deep
convolutional neural network (CNN) architecture [8,43,64].

To analyze the impact of color for remote sensing image classification,we employ a variety
of color features popular in object recognition. The selected color features are based on differ-
ent color space transformations: HSV , YCbCr , Opponent , C , Lab, and the colornames.
Furthermore, themotivation of these color representations differ from photometric invariance
to discriminative power.
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RGB In this work, we use the standard three-channel RGB color space as the baseline.
HSV In the HSV color space, the H model is scale-invariant. Further, it is shift-invariant with
respect to light intensity [67]. The HSV color space has been previously investigated with
the hand-crafted SIFT descriptor for scene recognition [7].

YCbCr In the YCbCr color space, Y is the luminance component and Cb and Cr are the
blue-difference and red-difference chroma components. This color space is approximately
perceptually uniform and has been used previously for remote sensing images [34,65].

Lab The three dimensions of the Lab color space correspond to L for lightness and a
and b for the color components green–red and blue–yellow. This color space is perceptually
uniform implying that colors at an equal distance are also perceptually equally far apart.

Opponent In this color space, the O1 and O2 channels encode the color information in
the image. The O3 channel describes the intensity information. The image is transformed as
in [45]:

⎛
⎜⎜⎜⎝

O1

O2

O3

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

1√
2

− 1√
2

0

1√
6

1√
6

−2√
6

1√
3

1√
3

1√
3

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

R

G

B

⎞
⎟⎟⎟⎠ . (1)

The opponent color representation possesses invariance with respect to specularities. In
the evaluation performed by van de Sande et al. [67], the opponent color space in conjunction
with the hand-crafted SIFT feature descriptor, was shown to provide improved results for
visual object recognition.

C The C representation, defined as C = (
O1
O3

O2
O3 O3

)T
, aims at adding photometric

invariance with respect to shadow-shading to the opponent representation. The invariance
is achieved by normalizing the first two dimensions with the luminance channel O3. The C
representation was initially proposed by [27] and later employed with the SIFT descriptor
by [67].
Color names Most of the aforementioned color representations aim at employing specific
photometric invariance properties. Different to these representations, the color names are lin-
guistic color labels assigned by humans to represent world colors. It involves the assignment
of linguistic color labels to image pixels. A linguistic study by [6] identified that the 11 basic
color terms of the English language are white, blue, grey, brown, orange, green, red, black,
purple, yellow, and pink. The work of [70] proposed an approach to automatically learn from
images retrieved with Google-image search. The descriptor is based on the 11 basic color
terms. Color names representation [70] CN is defined as a feature vector comprising the
probability of a color name for an image Img:

CN = {p (cns1|Img) , p (cns2|Img) , . . . , p (cns11|Img)} (2)

with

p
(
cns j |Img

) = 1

P

∑
x,y∈Img

p
(
cns j |f (x, y)

)
(3)

here cns j is the j-th color name, f = {L∗a∗, b∗} and x, y are the spatial coordinates of the P
pixels in the image Img, Further, p

(
cns j |f

)
is the probability of a color name given a pixel

value in the image, computed from an image dataset collected fromGoogle. Since the images
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Fig. 2 The proposed color fusion in a deep convolutional neural network architecture. Here, the function
f (RGB) denotes a RGB pixel values mapping to another color-space representation. Deep color models are
trained separately, from scratch, using different color spaces. We extract activations from FC6 and FC7 layers
of each deep color network, respectively. These activations are then concatenated (indicated by a ‘plus’) to be
used as image features and input to a classifier. See text for more details. (Color figure online)

are acquired from the web, the issue of retrieving noisy images is addressed by employing
PLSA approach [70]. Figure 2 shows the proposed color fusion in a deep convolutional
neural network architecture. We use same architecture to train all deep color convolutional
neural networks. Each deep color network is trained separately. The details of the underlying
network architecture is provided in Sect. 4.1.

3.2 Compact Deep Color Features

As discussed earlier, the final layers of the deep convolutional neural network (FC layers)
are typically employed to extract deep features since they are generic and previously used
for a variety of vision applications [5], including remote sensing scene classification [54,73].
Here, we extract 4096 dimensional activations from the FC7 (second last) and FC6 (third
last) layers of each deep color network respectively. These activations are then concate-
nated and used as image features, D = [dc1, dc2, dc3, . . . , dcn]. However, the combination
of these activations from multiple deep color convolutional neural networks has the dis-
advantage of being high-dimensional (more than 57k in size) for each image. Here, we
propose to use an information theoretic compression approach (DITC) [22] to compress
the high-dimensional multi-color deep representation. The DITC algorithm works by dis-
criminatively learning a pre-determined compact representation by minimizing the loss in
mutual information between clusters and the class labels of training samples. The approach
operates on the class-conditional distributions over deep multi-color image representations.
The class-conditional estimation is measured by the probability distributions p (R|d), where
R = {r1, r2, . . . , rCL } is the set of CL classes. The approach then estimates the drop in
mutual information MI between the combined deep color representation D and the category
labels R. The high-dimensional deep multi-color image representation is then transformed to
a compact representation DR = {D1, D2, . . . , DJ } (where each Dj represents a collection
of bins in the original uncompressed high-dimensional representation) as

ΔMI = MI (R; D) − MI
(
R; DR

)

=
J∑

j=1

∑
d∈Dj

p (d) K L(p(R|d), p(R|Dj )), (4)

where KL is the Kullback-Leibler (KL) divergence. The Kullback-Leibler divergence
between the two distributions is defined by

123



1530 R. M. Anwer et al.

K L(p1, p2) =
∑
y∈Y

p1(y) log
p1(y)

p2(y)
. (5)

It is worth mentioning that the category information is exploited using only the training
samples. The high-dimensional deep multi-color image representation is compressed by
merging the bins, over the classes, with similar discriminative powers. We refer to [22] for
additional details of the DITC algorithm.

4 Experimental Results

4.1 Experimental Setup

We first describe the underlying deep convolutional neural network architecture employed
to obtain our deep color models. The deep convolutional neural network is based on the
VGG architecture and is similar to [43]. The deep convolutional neural network consists of 5
convolutional layers (C1,C2,C3,C4, andC5) and 3 fully-connected (FC) layers (FC6, FC7
and FC8). The deep convolutional neural network takes as input an image of size 224×224.
Throughout our experiments, images are resized to 224 × 224 pixels and then input to the
network. The first convolutional layer C1 contains 64 convolutional filters with a filter size
of 11 × 11. The convolution stride is set to 4 and a max-pooling downsampling factor of 2.
The second convolutional layer C2 comprises of 256 convolutional filters with a filter size
of 5 × 5. The convolution stride is set to 1, spatial padding is set to 2, and a max-pooling
downsampling factor of 2. For the third, fourth and fifth convolutional layer C3, C4 and
C5, the number of convolutional filters is 256, filter size is 3× 3, and the convolution stride
and spatial padding are 1. For the fifth convolutional layer, a max-pooling downsampling
factor of 2 is employed. Furthermore, the first two FC layers (FC1 and FC2) are regularised
using dropout [43] with dropout ratio set to 0.5. Consequently, the last FC layer FC3 is a
multi-class soft-max classifier. Other than the FC3 layer, the activation function for the rest
of the weight layers is the Rectified Linear Unit (ReLU) [35,43,50].

We train all deep color convolutional neural networks, described in Sect. 3.1, from scratch
on the ImageNet 2012 training set. We use the same set of hyper-parameters as in [43] during
network training in our experiments. For all CNNs training, the learning rate is set to 0.001
and momentum is set to 0.9. The initial learning rate is decreased by a factor of 10, in case the
validation error stops to decrease further.We initialize the layers from aGaussian distribution
with a zero mean and variance equal to 10−2. A similar data augmentation, as in [8], in the
form of random crops, horizontal flips, and RGB color jittering is employed during training.
For a fair comparison, we train the baseline standard RGB by increasing the depth of the
network architecture with a factor of seven resulting in same number of network parameters
as our color fusion. Furthermore, pre-trained deep color convolutional neural networks are
employed as feature extractors by extracting 4096 dimensional activations from the FC7
and FC6 layers as image features. All the image features are L2-normalized and input to a
one-versus-all linear SVM classifier.

Throughout all experiments, the classification results are reported in terms of average
recognition accuracy over all scene categories in a remote sensing scene classification dataset.
From the classifier, the scene class label providing the highest confidence is assigned to the test
image. The overall recognition results are obtained by computing the average classification
score over all scene categories in a remote sensing scene classification dataset. As in [16,73],
each dataset is randomly split into training and test sets for performance evaluation. For
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Fig. 3 Example images from the five high resolution remote sensing datasets used in our experiments. The top
row, second row, third row, fourth row and bottom rowcontains example images fromUC-Merced,WHU-RS19
RSSCN7, AID and NWPU-RESISC45, respectively

all datasets, the ratio of training to test images is set to 50:50, where images are randomly
selected from each aerial scene category. To obtain a reliable performance comparison, we
repeat the evaluation procedure ten times. The final classification results are then reported as
the mean over these ten runs together with the standard deviation.

4.2 Datasets

We conduct experiments on multiple datasets (see Fig. 3).
UC-Merced is a commonly used remote sensing dataset [76] that is publicly available and

comprises of 2100 images. There are 21 classes in this dataset. Some of the scene categories
in this dataset are: agriculture, golf course, baseball diamond, dense residential, medium
density residential, forest, river, sparse residential, overpass, parking lot, storage tanks, and
tennis courts. The images in the dataset are cropped to 256 × 256 pixels and are collected
from 20 regions across the USA.

WHU-RS19 is a public dataset [62] with 950 aerial images acquired from Google Earth
imagery. There are 50 samples per scene class in the dataset whereas the images are of
size 600 × 600 pixels. There are 19 aerial scene categories in this dataset. Some of the
scene categories in the dataset are: airport, meadow, pond, parking, port, beach, bridge, river,
railway station, viaduct, commercial area, desert, farmland, industrial area, and park. The
dataset poses several challenges due to scale and illumination variations.

RSSCN7 is a dataset [84] with seven aerial scene categories: farmland, grassland forest,
industrial region, lake, parking lot, residential region, and river. The dataset was released in
2015 and is publicly available. Each aerial scene category contains 400 images. The images
in the dataset are of size 400 × 400 pixels with sampling performed at varying scales (four).

AID is a large scale public dataset [73] with 30 classes and 10,000 images. The dataset
consists of 30 aerial scene categories. Some of the scene categories in the dataset are: play-
ground, sparse residential, medium residential, bare land, center, desert, farmland, mountain,
park, parking, forest, resort, school, church, square, river, storage tanks, and viaduct. The
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images in the AID dataset are collected from different countries, including China, USA,
Germany, France, UK, and Italy.

NWPU-RESISC45 is another large scale public dataset [16] with 31500 images having
700 images per category. The images in the dataset are of size 256 × 256 pixels. The dataset
comprises 45 aerial scene categories where some of the classes in the dataset are: airplane,
railway, railway station, bridge, church, stadium, sparse residential, forest, ship, terrace,
freeway, storage tank, golf course, lake, ground track field, baseball diamond, mountain,
parking lot, wetland, river, and roundabout.

Here, we evaluate different deep color features, described in Sect. 3.1, on a variety of five
datasets. In all cases, we employ activations from the FC7 layer of the CNNs as deep color
features. For the color fusion, we concatenate all the deep color features resulting in a 28672
dimensional feature vector. Table 1 shows the comparison of deep color features on the UC-
Merced, WHU-RS19, RSSCN7, AID, and NWPU-RESISC45 datasets. On the UC-Merced
dataset, the baseline approach provides a mean recognition rate of 94.7%. Image features
from the color names and HSV based CNNs achieve mean classification scores of 93.7% and
93.8%, respectively. Deep features from theC andLab color space basedCNNs providemean
recognition scores of 93.6% and 93.9%, respectively. Deep features from the opponent color
space-based deep convolutional neural network provides an average classification accuracy
of 94.5%. Furthermore, the proposed deep color feature fusion significantly improves the
classification performance, achieving a mean recognition score of 96.3%. The proposed deep
color feature fusion provides an absolute gain of+1.6% in terms of classification performance
compared to the baseline standard RGB deep features.

On the WHU-RS19 dataset, the baseline (RGB) network provides an average recognition
rate of 96.0%. Deep features from the color names, C and HSV color space based CNNs
achieve mean recognition scores of 95.1%, 94.7% and 94.4%, respectively. Furthermore,
image features from the YCbCr and Lab color space based CNNs provide mean recognition
rates of 95.4%and 95.0%, respectively. On this dataset, deep features from the opponent color
space based deep convolutional neural network achieves similar performance with a mean
classification score of 96.0%, compared to the baseline RGB features (96.0%). Moreover,
the combined set of deep color features improves the classification performance with an
absolute gain of +1.4%, compared the baseline standard RGB deep features. Similarly on
the RSSCN7 dataset, deep features from the opponent color space-based deep convolutional
neural network provide similar classification results with a mean recognition rate of 89.4%,
compared to the baseline RGB features (89.5%). Furthermore, the classification performance
is improved by employing the combined set of deep color features, which obtains an average
recognition accuracy of 92.3%.

We also evaluate different deep color features on two recently introduced large scale
AID and NWPU-RESISC45 datasets. On the AID dataset, the baseline standard RGB color
space-based deep convolutional neural network achieves an average classification score of
90.3%. The deep features from most other color spaces provide slightly inferior results
compared to the standard RGB. However, deep features from the opponent color space-
based deep convolutional neural network again provide similar performance, with an average
classification accuracy of 89.9%, compared to the baseline RGB features. Furthermore, the
proposed deep color feature fusion significantly improves the classification performance,
with an absolute gain of +3.1% in terms of classification performance, compared to the
baseline standard RGB deep features. Finally on the NWPU-RESISC45 dataset, the baseline
standard RGB deep network provides a mean recognition rate of 85.7%. Image features from
the color names, HSV and C based deep convolutional neural networks (CNNs) obtain mean
classification scores of 83.2%, 83.1%and 82.7%, respectively.Deep features from theYCbCr
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Fig. 4 Category-specific classification performance comparison (accuracy in %) of the proposed method,
compared to the baseline RGB deep features, on the large scale NWPU-RESISC45 dataset. Our deep color
feature fusion improves the classification performance on 43 out of 45 aerial scene categories. Notably, a
significant gain in classification accuracy is achieved for tennis court (+18%), palace (+15%), commercial
area (+12%), medium residential (+11%), and basketball court (+11%) aerial scene classes, compared to the
baseline (standard RGB). (Color figure online)

and Lab color space based deep convolutional neural networks (CNNs) achieve average
classification scores of 84.3% and 83.0%, respectively. The proposed deep color feature
fusion provides significant improvement in classification performance with an absolute gain
of +4.3%, compared to the baseline standard RGB deep features.

Figure 4 shows a per-category recognition performance comparison between the deep
color feature fusion and the baseline RGB deep convolutional neural network on the
NWPU-RESISC45 dataset. The combined set of deep color features provides consistent
improvements on 43 out of 45 aerial scene categories compared to the baseline RGB fea-
tures. Particularly significant gains in classification performance are achieved for the tennis
court (+18%), palace (+15%), commercial area (+12%), medium residential (+11%), and
basketball court (+11%) aerial scene categories.

4.3 Deep Color Features Evaluation

We also perform a comparison between convolutional features (Conv1, Conv2, Conv3,
Conv4 and Conv5) and FC features (FC6 and FC7). Table 2 shows the comparison for
both the baseline RGB and our color fusion. In all cases, superior classification results are
obtained using features from FC layers. Note that no significant improvement in performance
is observed when combining convolutional and FC layer features.

To summarize, the deep color feature fusion provides consistent improvements on all
five datasets, compared to the baseline RGB features. It is worth mentioning that the most
considerable gains in performance are obtained on large-scale AID and NWPU-RESISC45
datasets. These results suggest that different deep color features possess complementary
information as their combination leads to a significant performance boost for remote sensing
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scene classification. Furthermore, superior results are obtained using features from the FC
layers, compared to convolutional layer features.

4.4 Compact Deep Color Features

As demonstrated above, the combined set of deep color features always improves the clas-
sification performance compared to the baseline RGB. However, this gain in classification
performance comes at the cost of high-dimensionality. When fusing deep color features from
the FC6 and FC7 layers of the networks, the resulting dimensionality becomes significantly
higher (57K). To tackle this issue, we evaluate the compression of deep color feature fusion
using the approach described in Sect. 3.2.

Table 3 shows the results obtained when compressing the combined set of deep color
features using the DITC approach. The final dimensions of the compact deep color fusion
image representation are fixed to 8k so that it is similar to the dimensionality of the standard
RGB deep features commonly employed for classification. The DITC compression approach
compresses the combined set of deep color features from 57k to 8k without any substantial
deterioration in classification accuracy for all datasets. In the case of UC-Merced andWHU-
RS19, there is even a slight improvement in performance when compressing the combined
set of deep color features indicating an increase in discriminative power by removing the
redundancy. In the case of the RSSCN7, AID and NWPU-RESISC45 datasets, there is a
marginal reduction in accuracy compared to the original combined set of deep color features.
In all cases, the compact deep color feature fusion significantly reduces the dimensionality
without sacrificing the classification accuracy.

We additionally analyze the extreme compression of the deep color feature fusion and
compare it with several commonly used dimensionality reduction techniques: principle com-
ponent analysis (PCA), partial least squares (PLS) and diffusion maps (DM). Among these
existing approaches, PLS is a category-aware dimensionality reduction statistical technique
that models relations between sets of observations by means of latent variables. We perform
the comparison to obtain very low-dimensional (100 to 500 dimensional) deep color feature
fusion based image representations. Figure 5 shows the results of extreme compression (even
to 100 dimensions) on the UC-Merced dataset. The DITC compression technique provides
superior classification results even in the case of extreme compression of the deep color fea-
ture fusion based image representation. Figure 6 shows the results on the NWPU-RESISC45
dataset.

4.5 State-of-the-art Performance Comparison

Finally, we compare our compact deep color feature fusion representation with state-of-
the-art methods in the literature. Table 4 shows the results on the five remote sensing scene
classification datasets. For fair comparison, we adopt the same sampling setting as [32,62,76],
taking 80 images per class for training for the UC-Merced dataset. In the case of the WHU-
RS19 dataset, 30 images per aerial scene category are used for training and the rest for testing.
For the RSSCN7 and AID datasets, 50 images per aerial scene category are employed for
training. Furthermore, 20 images per class are employed for training in the case of the
NWPU-RESISC45 dataset.

On theUC-Merced dataset, thework of [76] proposed an approach that extends the bag-of-
visual-words (BOVW) frameworkwith the spatial co-occurrence kernel, achieving an average
classification accuracy of 77.7%. In their work, the integration of color features within a
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Fig. 5 Comparison of different compression techniques in terms of classification performance (overall accu-
racy (OA) in %) on the UC-Merced dataset. The DITC based compression technique achieves the best results
when performing extreme compression (100 dimensions from the original 57K) of the combined set of deep
color features

Fig. 6 Comparison of different compression techniques in terms of classification performance (overall accu-
racy (OA) in %) on the NWPU-RESISC45 dataset. The DITC based compression technique obtains favorable
results when employing extreme compression (100 dimensions from the original 57K) of the combined deep
color features

Gabor representation was also investigated, leading to a mean recognition rate of 80.5%. The
impact of texture information on remote sensing scene classification has been investigated by
previous works [9,58,82]. One such texture description based on multi-scale completed LBP
features achieved an average classification accuracy of 90.6%. A pyramidal co-occurrence
feature representation, accounting for both photometric and geometric aspects of an image,
was proposed by [75] achieving a classification accuracy of 77.4%. With the recent advent
of deep features, a considerable jump in classification performance has been observed. The
work of [72] proposed deep filter banks based onCNNs and obtained a classification accuracy
of 92.7%. Previous works have also investigated transferring pre-trained deep features from
both the FC and the convolutional (conv) layers of the CNNs. The work of [72] investigated
transferability of deep CNNs with respect to both FC and convolutional layers. In case of FC
layers (Case I: FC features), their approach achieved an accuracy of 96.8% whereas a mean
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Table 4 State-of-the-art performance comparison (overall recognition rate in %) on five datasets used in our
evaluation. Our approach, while being compact, provides favorable results compared to the existing works in
literature

Approach UC-Merced WHU-RS19 RSSCN7 AID NWPU-RESISC45

Color Gabor [76] 80.5 – – – –

BOVW+spatial
co-occurrence kernel [76]

77.7 – – – –

SPCK+SPM [75] 77.4 – – – –

Unsupervised feature
learning [18]

81.1 – – – –

Saliency-based feature
learning [80]

82.7 – – – –

Circle-structured Concentric
BOVW [83]

86.6 – – – –

Wavelet BOVW [82] 87.4 – – – –

Structural texture similarity
[58]

86.0 – – – –

Multifeature concatenation
[61]

89.5 – – – –

Pyramid-of-spatial-relations
[12]

89.1 – – – –

CLBP [9] 85.5 – – – –

MS-CLBP [9] 90.6 – – – –

HHCV [71] 91.8 – 86.4 – –

DBN based feature selection
[84]

- - 77.0 - -

Dirichlet [42] 92.8 – – – –

VLAT [52] 94.3 – – – –

Deep Filter Banks [72] 92.7 – 90.4 – –

Transferring CNNs (Case I:
FC features) [32]

96.8 96.7 – – –

Transferring CNNs (Case II:
Conv features) [32]

96.9 98.6 – – –

Category-Specific
Vocabulary+Two-Step
Categorisation [74]

93.8 93.7 – – –

CaffeNet [73] 95.0 94.8 88.2 89.5 –

GoogleNet [73] 94.3 92.9 85.8 86.3 –

VGG-VD-16 [73] 95.2 95.1 87.1 89.6 –

MDDC [55] 96.9 98.3 – – –

SSF-AlexNet [10] – – – 88.7 –

BAFF [36] – – – 93.6 –
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Table 4 continued

Approach UC-Merced WHU-RS19 RSSCN7 AID NWPU-RESISC45

BoVW+SPM [16] – – – – 33.0

CNN [16] – – – – 79.8

LASC-CNN (single-scale)
[79]

– – – – 83.6

LASC-CNN (multiscale) [79] – – – – 84.3

BOCF [17] – – – – 84.3

This paper 98.1 96.6 92.9 94.0 87.5

Bold values highlight the results

Table 5 Absolute gain (overall accuracy in %) in classification performance obtained using the proposed
compact deep color feature fusion compared to deep features using the standard RGB representation

Dataset UC-Merced WHU-RS19 RSSCN7 AID NWPU-RESISC45

Gain +2.7 +2.7 +3.5 +3.8 +5.4

recognition rate of 96.9% is obtained when using features from convolutional layers (Case
II: Conv features) in conjunction with VLAD encoding strategy. The work of [55] proposed
a multi-scale deeply described correlations-based model and achieved an accuracy of 96.9%.
Our proposed approach, while being compact, achieves an average classification accuracy of
98.1%.

On theWHU-RS19 dataset, thework of [74] based on class-specific vocabulary employing
kernel collaborative representation obtained an average classification accuracy of 93.7%.
Among the deep learning approaches, CaffeNet model achieved an average classification
accuracy of 94.8%. Our compact deep color feature fusion approach also employing FC layer
features obtains an average classification accuracy of 96.6%. The best result (98.6%) on this
dataset is obtained by transferring deep features from the conv layers together with VLAD
encoding technique. Such an encoding of conv features is complementary to our approach
using FC features. In the case of RSSCN7 dataset, the work of [71] based on hierarchical
coding vectors based classification obtained amean recognition accuracy of 86.4%. Thework
of [72] based on deep filter banks achieved a mean recognition rate of 90.4%. Our approach
obtains outperforms state-of-the-art methods on this dataset with a mean recognition rate of
92.9%.

For the AID dataset, the work of [10] proposed a deep convolutional neural network pre-
training approach (SSF-AlexNet) and achieved a mean recognition accuracy of 88.7%. The
work of [36] proposed a fusion approach (BAFF) to integrate SIFT and deep features. Their
approach achieved a mean recognition rate of 93.6%. Our approach provides superior results
with an average classification accuracy of 94.0%. Finally, on the NWPU-RESISC45 dataset,
the work of [79] based on single-scale deep features achieved a mean recognition rate of
83.6%. The multi-scale variant of their approach obtained an average classification score of
84.3%. The bag-of-convolutional feature approach of [17] achieved a mean recognition rate
of 84.3%. Our approach again provides superior classification performance by achieving an
average classification accuracy of 87.5%.
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5 Conclusions

In this paper, we investigated the contribution of color within a deep learning framework
(CNNs) for the problemof remote sensing scene classification.Wedemonstrated that different
deep color features possess complementary information and combining them leads to a
significant performance boost for the remote sensing scene classification task. Additionally,
we addressed the high-dimensionality of deep color feature fusion and compressed them to
obtain a compact final image representationwithout a significant deterioration in classification
performance. To validate our approach, we perform comprehensive experiments on five
challenging remote sensing scene classification datasets. The results from our experiments
clearly demonstrated the effectiveness of the proposed approach. Table 5 shows the gain in
classification performance obtained using the proposed compact deep color feature fusion,
compared to the standard RGB deep features, on the five remote sensng scene classification
datasets.

A potential future research direction is to investigate the fusion of other available spectral
bands (, near infrared) besides RGB in the form of different color transformations. Addi-
tionally, integrating other visual cues, such as texture features with color features in a deep
learning framework may improve remote sensing scene classification performance and is
therefore a promising research direction. Another future research direction is to investigate
the impact of integratingmultiple deep color features for other remote sensing image analysis
tasks, such as object detection (simultaneous classification and localization).
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