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Abstract
We introduce a novel boosting algorithm called ‘KTBoost’ which combines kernel boosting
and tree boosting. In each boosting iteration, the algorithm adds either a regression tree
or reproducing kernel Hilbert space (RKHS) regression function to the ensemble of base
learners. Intuitively, the idea is that discontinuous trees and continuous RKHS regression
functions complement each other, and that this combination allows for better learning of
functions that have partswith varying degrees of regularity such as discontinuities and smooth
parts. We empirically show that KTBoost significantly outperforms both tree and kernel
boosting in terms of predictive accuracy in a comparison on a wide array of data sets.

Keywords Gradient and newton boosting · Reproducing kernel Hilbert space (RKHS)
regression · Ensemble learning · Supervised learning

1 Introduction

Boosting algorithms [8,15,17,18,28] enjoy large popularity in both applied data science and
machine learning research, among other things, due to their high predictive accuracy observed
on a wide range of data sets [11]. Boosting additively combines base learners by sequentially
minimizing a risk functional. Despite the fact that there is almost no restriction on the type
of base learners in the seminal papers of Freund and Schapire [15] and Freund and Schapire
[16], very little research has been done on combining different types of base learners. To
the best of our knowledge, except for one reference [22], existing boosting algorithms use
only one type of functions as base learners. To date, regression trees are the most common
choice of base learners, and a lot of effort has beenmade in recent years to develop tree-based
boosting methods that scale to large data [11,26,35,36].

In this article,we relax the assumption of using only one type of base learners by combining
regression trees [7] and reproducing kernel Hilbert space (RKHS) regression functions [4,39]
as base learners. In short, RKHS regression is a form of non-parametric regression which
shows state-of-the-art predictive accuracy for many data sets as it can, for instance, achieve
near-optimal test errors [1,2], and kernel classifiers parallel the behaviors of deep networks
as noted in Zhang et al. [46]. As there is now growing evidence that base learners do not

B Fabio Sigrist
fabio.sigrist@hslu.ch

1 Lucerne University of Applied Sciences and Arts, Suurstoffi 1, 6343 Rotkreuz, Switzerland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11063-021-10434-9&domain=pdf
http://orcid.org/0000-0002-3994-2244


1148 F. Sigrist

necessarily need to have low complexity [44], continuous, or smooth, RKHS functions have
thus the potential to complement discontinuous trees as base learners.

1.1 Summary of Results

We introduce a novel boosting algorithm denoted by ‘KTBoost’ which combines kernel and
tree boosting. In each boosting iteration, the KTBoost algorithm adds either a regression
tree or a penalized RKHS regression function, also known as kernel ridge regression [30],
to the ensemble. This is done by first learning both a tree and an RKHS function using
one step of functional Newton’s method or functional gradient descent, and then selecting
the base learner whose addition to the ensemble results in the lowest empirical risk. The
KTBoost algorithm thus chooses in each iteration a base learner from two fundamentally
different function classes. Functions in an RKHS are continuous and, depending on the
kernel function, they also have higher regularity. Trees, on the other hand, are discontinuous
functions.

Intuitively, the idea is that the different types of base learners complement each other, and
that this combination allows for better learning of functions that exhibit parts with varying
degrees of regularity. We demonstrate this effect in a simulation study in Sect. 4.1. To briefly
illustrate that the combination of trees and RKHS functions as base learners can achieve
higher predictive accuracy, we report in Fig. 1 test mean square errors (MSEs) versus the
number of boosting iterations for one data set (wine). The solid lines show average test
MSEs over ten random splits into training, validation, and test data sets versus the number of
boosting iterations. The confidence bands are obtained after point-wise excluding the largest
and smallest MSEs. Tuning parameters of all methods are chosen on the validation data sets.
See Sect. 4 for more details on the data set and the choice of tuning parameters.1 The figure
illustrates how the combination of tree and kernel boosting (KTBoost) results in a lower test
MSE compared to both tree and kernel boosting. In our extensive experiments in Sect. 4.2,
we show on a large collection of data sets that the combination of trees and RKHS functions
leads to a lower generalization error compared to both only tree and only kernel boosting.
Our approach is implemented in the Python package KTBoostwhich is openly available on
the Python Package Index (PyPI) repository.2

1.2 RelatedWork

Combining predictions from several models has been successfully applied in many areas of
machine learning such as diversity inducing methods [29] or multi-view learning; see e.g.
Peng et al. [34] for a recent example of a boosting application. However, the way boosting
combines base learners is different from traditional ensembles consisting of several models
trained on potentially different data sets since, for instance, boosting reduces both variance
and bias. Very little research has been done on combining different types of base learners in
a boosting framework, and, to the best of our knowledge, there is no study which investigates
the effect on the predictive accuracy when boosting different types of base learners.

ThemboostRpackage ofHothorn et al. [22] allows for combining different base learners
which include linear functions, one- and two-dimensional smoothing splines, spatial terms,

1 For better comparison, the shrinkage parameter ν, see Eq. (4), is set to a fix value (ν = 0.1) in this example.
In the experiments in Sect. 4.2, the shrinkage parameter is also chosen using cross-validation.
2 See https://github.com/fabsig/KTBoost for more information.
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KTBoost: Combined Kernel and Tree Boosting 1149

Fig. 1 Test mean square error (MSE) versus the number of boosting iteration for KTBoost in comparison with
tree and kernel boosting for one data set (wine)

regression trees, as well as user-defined ones. This approach is different from ours since
mboost uses a component-wise approach where every base learner typically depends on
only a few features, and in each boosting update, the term which minimizes a least squares
approximation to the negative gradient of the empirical risk is added to the ensemble. In
contrast, in our approach, the tree and the kernel machine depend on all features by default,
base learners are learned using Newton’s method or gradient descent, and we select the base
learner whose addition to the ensemble directly results in the lowest empirical risk.

The idea that machine learning methods should be able learn both smooth as well as
non-smooth functions has recently received attention also in other areas of machine learning.
For instance, Imaizumi and Fukumizu [24] and Hayakawa and Suzuki [20] argue that one
of the reasons for the superior predictive accuracy of deep neural networks, over e.g. kernel
methods, is their ability to also learn non-smooth functions.

2 Preliminaries

2.1 Boosting

There exist population as well as sample versions of boosting algorithms. For the sake of
brevity, we only consider the latter here. Assume that we have data {(xi , yi ) ∈ R

p × R, i =
1, . . . , n} from a probability distribution PX ,Y . The goal of boosting is to find a function
F : Rp → R for predicting y given x , where F is in a function space ΩS with inner product
〈·, ·〉 given by 〈F, F〉 = EX

(
F(X)2

)
, and the expectation is with respect to the marginal

distribution PX of PX ,Y . Note that y can be categorical, discrete, continuous, or of mixed type
depending on whether the conditional distribution PY |X is absolutely continuous with respect
to the Lebesgue, a counting measure, or a mixture of the two; see, e.g., Sigrist and Hirnschall
[42] for an example of the latter. Depending on the data and the goal of the application,
the function can also be multivariate. For the sake of notational simplicity, we assume in the
following that F is univariate. The extension to themultivariate case F = (Fk), k = 1, . . . , d ,
is straightforward; see, e.g., Sigrist [41].
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1150 F. Sigrist

The goal of boosting is to find a minimizer F∗(·) of the empirical risk functional R(F):

F∗(·) = argmin
F(·)∈ΩS

R(F) = argmin
F(·)∈ΩS

n∑

i=1

L(yi , F(xi )), (1)

where L(Y , F) is an appropriately chosen loss function such as the squared error for regres-
sion or the logistic regression loss for binary classification, and ΩS = span(S) is the span
of a set of base learners S = { f j : Rp → R}. Boosting finds F∗(·) in a sequential way by
iteratively adding an update fm to the current estimate Fm−1:

Fm(x) = Fm−1(x) + fm(x), fm ∈ S, m = 1, . . . , M, (2)

such that the empirical risk is minimized

fm = argmin
f ∈S

R (Fm−1 + f ) . (3)

Since this usually cannot be found explicitly, one uses an approximateminimizer. Depend-
ing on whether gradient or Newton boosting is used, the update fm is either obtained as the
least squares approximation to the negative functional gradient or by applying one step of
functional Newton’s method which corresponds to minimizing a second order Taylor expan-
sion of the risk functional; see Sect. 3 or Sigrist [41] for more information. For increased
predictive accuracy [18], an additional shrinkage parameter ν > 0 is usually added to the
update equation:

Fm(x) = Fm−1(x) + ν fm(x). (4)

2.2 Reproducing Kernel Hilbert Space Regression

Assume that K : Rd × R
d → R is a positive definite kernel function. Then there exists

a reproducing kernel Hilbert space (RKHS) H with an inner product 〈·, ·〉 such that (i) the
function K (·, x) belongs to H for all x ∈ R

d and (ii) f (x) = 〈 f , K (·, x)〉 for all f ∈ H.
Suppose we are interested in finding the minimizer

argmin
f ∈H

n∑

i=1

(yi − f (xi ))
2 + λ‖ f ‖2H, (5)

where λ ≥ 0 is a regularization parameter. The representer theorem [40] then states that there
is a unique minimizer of the form

f (·) =
n∑

j=1

α j K (x j , ·)

and (5) can be written as

argmin
α∈Rn

‖y − Kα‖2 + λαT Kα,

where y = (y1, . . . , yn)T , K ∈ R
n×n with Ki j = K (xi , x j ), and α = (α1, . . . , αn)

T . Taking
derivatives and equaling them to zero, we find the explicit solution as

α = (K + λIn)
−1y,

where In denotes the n-dimensional identity matrix.
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KTBoost: Combined Kernel and Tree Boosting 1151

There is a close connection between Gaussian process regression and kernel regression.
The solution to (5) is the posterior mean conditional on the data of a zero-mean Gaussian
process with covariance function K . Further, since

f (x) = k(x)T (K + λIn)
−1y,

where

k(x) = (K (x1, x), . . . , K (xn, x))
T , (6)

kernel regression can also be interpreted as a two-layer neural network.

2.3 Regression Trees

We denote by T the space which consists of regression trees [7]. Following the notation used
in Chen and Guestrin [11], a regression tree is given by

f T (x) = ws(x),

where s : Rp → {1, . . . , J }, w ∈ R
J , and J ∈ N denotes the number of terminal nodes

of the tree f T (x). s determines the structure of the tree, i.e., the partition of the space, and
w denotes the leaf values. As in Breiman et al. [7], we assume that the partition of the
space made by s is a binary tree where each cell in the partition is a rectangle of the form
R j = (l1, u1] × · · · × (l p, u p] ⊂ R

p with −∞ ≤ lm < um ≤ ∞ and s(x) = j if x ∈ R j .

3 Combined Kernel and Tree Boosting

Let R2(Fm−1 + f ) denote the functional, which is proportional to a second order Taylor
approximation of the empirical risk in (1) at the current estimate Fm−1:

R2(Fm−1 + f ) =
n∑

i=1

gm,i f (xi ) + 1

2
hm,i f (xi )

2, (7)

where gm,i and hm,i are the functional gradient and Hessian of the empirical risk evaluated
at the functions Fm−1(x) and I{x=xi }(x), where I{x=xi }(x) = 1 if x = xi and 0 otherwise:

gm,i = ∂

∂F
L(yi , F)

∣∣∣
F=Fm−1(xi )

,

hm,i = ∂2

∂F2 L(yi , F)

∣∣∣
F=Fm−1(xi )

.

(8)

The KTBoost algorithm presented in Algorithm 1 works as follows. In each boosting
iteration, a candidate tree f Tm (x) and RKHS function f Km (x) are found as minimizers of the
second order Taylor approximation R2(Fm−1 + f ). This corresponds to applying one step
of a functional version of Newton’s method. It can be shown that candidate trees f Tm (x) can
be found as weighted least squares minimizers; see, e.g., Chen and Guestrin [11] or Sigrist
[41]. Further, the candidate penalized RKHS regression functions f Km (x) can be found as
shown in Proposition 1 below. The KTBoost algorithm then selects either the tree or the
RKHS function such that the addition of the base learner to the ensemble according to
Eq. (4) results in the lowest risk. Note that for the RKHS boosting part, the update equation
Fm(x) = Fm−1(x) + ν fm(x) can be replaced by simply updating the coefficients αm .
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1152 F. Sigrist

Algorithm 1: KTBoost
1: Initialize F0(x) = argminc∈Rd R(c).
2: for m = 1 to M do
3: Compute the gradient gm,i and Hessian hm,i as defined in (8)
4: Find the candidate regression tree f Tm (x) and RKHS function f Km (x)

f Tm (x) = argmin f ∈T R2(Fm−1 + f )

f Km (x) = argmin f ∈H R2(Fm−1 + f ) + 1
2λ‖ f ‖2H

where the approximate risk R2(Fm−1 + f ) is defined in (7)

5: if R
(
Fm−1 + ν f Tm (x)

)
≤ R

(
Fm−1 + ν f Km (x)

)
then

6: fm (x) = f Tm (x)
7: else
8: fm (x) = f Km (x)
9: end if
10: Update Fm (x) = Fm−1(x) + ν fm (x)
11: end for

If either the loss function is not twice differentiable in its second argument or the second
derivative is zero or constant on a non-null set of the support of X , one can alternatively
use gradient boosting. The gradient boosting version of KTBoost is obtained as a special
case of the Algorithm 1 by setting hm,i = 1. Gradient boosting has the advantage that it
is computationally less expensive than Newton boosting since, in contrast to (9), the kernel
matrix does not depend on the iteration number m; see Sect. 3.1 for more details.

Proposition 1 The kernel ridge regression solution f Km (x) in the regularizedNewton boosting
update step is given by f Km (x) = k(x)Tαm, where k(x) is defined in (6) and

αm = Dm (DmK Dm + λIn)
−1 Dmym, (9)

where Dm = diag
(√

hm,i
)
, hm,i > 0, ym = (−gm,1/hm,1, . . . ,−gm,n/hm,n)

T , and In is
the identity matrix of dimension n.

Proof We have

argmin
f ∈H

n∑

i=1

gm,i f (xi ) + 1

2
hm,i f (xi )

2 + 1

2
λ‖ f ‖2H

= argmin
f ∈H

n∑

i=1

hm,i

(
− gm,i

hm,i
− f (xi )

)2

+ λ‖ f ‖2H

= argmin
α

‖Dmym − DmKα‖2 + λαT Kα.

If we take derivatives with respect to α, equal them to zero, and solve for α, we find that

αm = (
K D2

mK + λK
)−1

K D2
m ym

= (
D2
mK + λIn

)−1
D2
m ym

= Dm (DmK Dm + λIn)
−1 Dmym .

�
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3.1 Reducing Computational Costs for Large Data

Concerning the regression trees, finding the splits when growing the trees is the compu-
tationally demanding part. There are several approaches in the literature on how this can
be done efficiently for large data; see, e.g., Chen and Guestrin [11] or Ke et al. [26]. The
computationally expensive part for finding the kernel regression updates is the factorization
of the kernel matrix which scales with O(n3) in time. There are several approaches that
allow for computational efficiency in the large data case. Examples of this include low rank
approximations based on, e.g., the Nyström method [43] and extensions of it such as divide-
and-conquer kernel ridge regression [47,48], early stopping of iterative optimizationmethods
[6,27,38,45], stochastic gradient descent [10,12], random feature approximations [37], and
compactly supported kernel functions [5,19] which results in a sparse kernel matrix K which
can be efficiently factorized.

Note that if gradient descent is used instead of Newton’s method, the RKHS function
f Km (x) can be found efficiently by observing that, in contrast to (9), the kernel matrix K +λIn
does not depend on the iteration number m, i.e., its inverse or a Cholesky factor of it needs
to be calculated only once. Further, the two learners can be learned in parallel.

In our empirical analysis, we use the Nyström method for dealing with large data sets.
The Nyström method approximates the kernel K (·, ·) by first choosing a set of l so-called
Nyström samples x∗

1 , . . . , x
∗
l . Often these are obtained by sampling uniformly from the data.

Denoting the kernel matrix that corresponds to these points as K ∗, the Nyström method then
approximates the kernel K (·, ·) as

K (x, y) ≈ kl(x)
T K ∗

l,l
−1kl(y),

where kl(x) = (K (x, x∗
1 ), . . . , K (x, x∗

l ))T and
(
K ∗
l,l

)

j,k
= K (x∗

j , x
∗
k ), 1 ≤ j, k ≤ l. In

particular, the reduced-rank Nyström approximation to the full kernel matrix K is given by

K ≈ K ∗
n,l K

∗
l,l

−1K ∗
n,l

T
,

where
(
K ∗
n,l

)

j,k
= K (x j , x∗

k ), 1 ≤ j ≤ n, 1 ≤ k ≤ l.

4 Experimental Results

4.1 Simulation Study

We first conduct a small simulation study to illustrate that the combination of discontinuous
trees and continuous kernel machines can indeed better learn functions with both discontin-
uous and smooth parts. We consider random functions F : [0, 1] → R with five random
jumps in [0, 0.5]:

F(x) =
5∑

i=1

gi1(ti ,1](x) + sin(8πx),

ti
iid∼ Unif(0, 0.5), gi

iid∼ Unif(0, 5)

(10)

and data according to

yi = F(xi ) + N (0, 0.252), xi
iid∼ Unif(0, 1), i = 1, . . . , 1000.
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1154 F. Sigrist

Fig. 2 An example of a random function with five random jumps in [0, 0.5] and corresponding observed
data (left plot) and pointwise mean square error (MSE) for tree and kernel boosting as well as the combined
KTBoost algorithm (right plot)

In Fig. 2 on the left-hand side, an example of such a function and corresponding data is
shown. We simulate 1000 times such random functions as well as training, validation, and
test data of size n = 1000. For each simulation run, learning is done on the training data. The
number of boosting iterations is chosen on the validation data with the maximum number of
boosting iterations being M = 1000. We use a learning rate of ν = 0.1 as this is a reasonable
default value [8] and trees of depth = 1 as there are no interactions. Further, for the RKHS
ridge regression, we use a Gaussian kernel

K (x1, x2) = exp
(−‖x1 − x2‖2/ρ2) , (11)

with ρ = 0.1 and λ = 1. In Fig. 2 on the right-hand side, we show the pointwise test mean
square error (MSE) for tree and kernel boosting as well as the combined KTBoost algorithm.
We observe that tree boosting performs better than kernel boosting in the area where the
discontinuities are located and, conversely, kernel boosting outperforms tree boosting on the
smooth part. The figure also clearly shows that KTBoost outperforms both tree and kernel
boosting as it achieves the MSE of tree boosting on the interval with jumps and the MSE of
kernel boosting on the smooth part.

For the purpose of illustration, we have considered a one-dimensional example. However,
in practice discontinuities, or strong non-linearities, as well as smooth parts are likely to
occur at the interaction level in higher dimensions of a feature space.

4.2 Real-World Data

In the following, we compare the KTBoost algorithm with tree and kernel boosting using the
following Delve, Keel, Kaggle, and UCI data sets: abalone, ailerons, bank8FM, elevators,
energy, housing, liberty, NavalT, parkinsons, puma32h, sarcos, wine, adult, cancer, ijcnn,
ionosphere, sonar, car, epileptic, glass, and satimage. Detailed information on the number of
samples and features can be found in Table 1. We consider both regression as well as binary
and multiclass classification data sets. Further, we include data sets of different sizes in order
to investigate the performance on both smaller and larger data sets, as small- to moderately-
sized data sets continue to be widely used in applied data science despite the recent focus on
very large data sets in machine learning research. We use the squared loss for regression, the
logistic regression loss for binary classification, and the cross-entropy loss with the softmax
function for multiclass classification.
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KTBoost: Combined Kernel and Tree Boosting 1155

Table 1 Summary of data sets Data # classes Nb. samples Nb. features

abalone Regression 4177 10

ailerons Regression 13,750 40

bank8FM Regression 8192 8

elevators Regression 16,599 18

energy Regression 768 8

housing Regression 506 13

liberty Regression 50,999 117

NavalT Regression 11,934 16

parkinsons Regression 5875 16

puma32h Regression 8192 32

sarcos Regression 48,933 21

wine Regression 4898 11

adult 2 48,842 108

cancer 2 699 9

ijcnn 2 141,691 22

ionosphere 2 351 34

sonar 2 208 60

car 4 1728 21

epileptic 5 11,500 178

glass 7 214 9

satimage 6 6438 36

For the regression data sets, we use gradient boosting, and for the classification data sets,
we use boosting with Newton updates since this can result in more accurate predictions [41].
For some classification data sets (adult, ijcnn, epileptic, and satimage), Newton boosting
is computationally infeasible on a standard single CPU computer with the current imple-
mentation of KTBoost, despite the use of the Nyström method with a reasonable number of
Nyström samples, say 1000, since the weighted kernel matrix in Eq. (9) needs to be factor-
ized in every iteration. We thus also use gradient boosting for these data sets. Technically,
it would be possible for these cases to learn the trees using Newton’s method, or using the
hybrid gradient-Newton boosting version of Friedman [18], but this would result in an unfair
comparison that is biased in favor of the base learner which is learned with the better opti-
mization method. For the larger data sets (liberty, sarcos, adult, ijcnn), we use the Nyström
method described in Sect. 3.1. Specifically, we use l = 1000 Nyström samples, which are
uniformly sampled from the training data. In general, the larger the number of Nyström
samples, the lower the approximation error but the higher the computational costs. Williams
and Seeger [43] reports good results with l ≈ 1000 for several data sets. All calculations
are done with the Python package KTBoost on a standard laptop with a 2.9 GHz quad-core
processor and 16 GB of RAM.

All data sets are randomly split into three non-overlapping parts of equal size to obtain
training, validation and test sets. Learning is done on the training data, tuning parameters
are chosen on the validation data, and model comparison is done on the holdout test data.
All input features are standardized using the training data to have approximately mean zero
and variance one. In order to measure the generalization error and approximately quantify
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variability in it, we use ten different random splits of the data into training, validation and
test sets. We note that when using a resampling approach, standard statistical tests, such as
a paired t-test, cannot be used to do a pairwise comparison of the different algorithms on a
dataset basis since training and test datasets in different splits are dependent due to overlap
[3,13,14]. In particular, this can result in biased standard error estimates for the generalization
error.

For the RKHS ridge regression, we use again a Gaussian kernel; see Eq. (11). Concerning
tuning parameters, we select the number of boosting iterations M from {1, 2, . . . , 1000}, the
learning rate ν from {1, 10−1, 10−2, 10−3}, themaximal depth of the trees from {1, 5, 10}, and
the kernel ridge regularization parameterλ from {1, 10}. Further, the kernel range parameterρ
is chosen using k-nearest neighbors distances as described in the following.We first calculate
the average distance of all k-nearest neighbors in the training data, where k is a tuning
parameter selected from {5, 50, 500, 5000, n − 1} and n is the size of the training data. We
then choose ρ such that the kernel function has decayed to a value of 0.01 at this average
k-nearest neighbors distance. This is motivated by the fact that for a corresponding Gaussian
process with such a covariance function, the correlation has decayed to a level of 1% at this
k-nearest neighbor distance. If the training data contains less than 5000 (or 500) samples,
we use n − 1 as the maximal number for the k-nearest neighbors. In addition, we include ρ

which equals the average (n−1)-nearest neighbor distance. The latter choice is done in order
to also include a range which results in a kernel that decays slowly over the entire space. For
the large data sets where the Nyström method is used, we calculate the average k-nearest
neighbors distance based on the Nyström samples. I.e., in this case, the maximal k equals
l − 1.

The results are shown in Table 2. For the regression data sets, we show the average test
mean square error (MSE) over the different sample splits, and for the classification data sets,
we calculate the average test error rate (=misclassification rate). The numbers in parentheses
are approximate standard deviations over the different sample splits. In the last row, we report
the average rank of every method over the different data sets. We find that KTBoost achieves
higher predictive accuracy thanboth tree andkernel boosting for the largemajority of data sets.
Specifically, KTBoost has an average rank of 1.24 and achieves higher predictive accuracy
than both tree and kernel boosting for seventeen out of twenty-one data sets. A Friedman test
with an Iman and Davenport correction [25] gives a p value of 7.84 × 10−6 which shows
that the differences in the three methods are highly significant. We next assess whether the
pairwise differences in accuracy between the different methods are statistically significant
using a sign test. Further, we apply a Holm–Bonferroni correction [21] to account for the fact
that we do multiple tests. Despite the sign test having low power and the application of the
conservative Holm–Bonferroni correction, KTBoost is highly significantly better than both
tree and kernel boosting with adjusted p values below 0.01. The difference between kernel
and tree boosting is not significant with both the adjusted and non-adjusted p values being
above 0.1 (result not tabulated).

Note that we do not report the optimal tuning parameters since this is infeasible for all
combinations of data sets and sample splits, and aggregate values are not meaningful since
different tuning parameters often compensate each other in a non-linear way (e.g., number of
iterations, learning rate, and tree depth or kernel regularization λ). Further, it is also difficult
to concisely summarize the composition of the ensembles in terms of different base learners
as a base learner that is added in an earlier boosting stage is more important than one that is
added in a later stage [9], and the properties of the base learners also depend on the chosen
tuning parameters. We also note that one can also consider additional tuning parameters. For
trees, this includes the minimal number of samples per leaf, row and column sub-sampling,
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Table 2 Comparison of KTBoost with tree and kernel boosting using test mean square error (regression) and
test error rate (classification)

Data KTBoost Tree Kernel

abalone 4.65 (0.248) 5.07 (0.261) 4.64 (0.255)

ailerons 2.64e−08 (6.19e−10) 8.11e−08 (2.39e−09) 2.64e−08 (6.19e−10)

bank8FM 0.000915 (4.02e−05) 0.000945 (2.47e−05) 0.000945 (5.83e−05)

elevators 4.83e−06 (2.9e−07) 5.66e−06 (1.44e−07) 5.18e−06 (3.89e−07)

energy 0.282 (0.0372) 0.335 (0.093) 1.3 (0.377)

housing 12.7 (3.19) 15.1 (3.23) 13.6 (2.51)

liberty 14.5 (0.323) 14.5 (0.314) 15.2 (0.345)

NavalT 6.51e−09 (1.15e−09) 1.15e−06 (1.58e−07) 6.51e−09 (1.15e−09)

parkinsons 73.3 (1.98) 81.1 (2.44) 73.3 (1.91)

puma32h 6.5e−05 (2.27e−06) 6.51e−05 (2.13e−06) 0.000695 (2.2e−05)

sarcos 7.99 (0.206) 9.6 (0.207) 17.8 (0.586)

wine 0.444 (0.012) 0.471 (0.0169) 0.506 (0.0106)

adult 0.128 (0.00295) 0.128 (0.00313) 0.163 (0.00512)

cancer 0.0362 (0.00744) 0.0415 (0.0153) 0.0358 (0.0107)

ijcnn 0.0122 (0.000685) 0.0123 (0.000702) 0.0387 (0.00516)

ionosphere 0.0872 (0.017) 0.103 (0.0226) 0.107 (0.0239)

sonar 0.194 (0.0394) 0.223 (0.05) 0.193 (0.0491)

car 0.0399 (0.00505) 0.0411 (0.00685) 0.041 (0.00624)

epileptic 0.354 (0.00612) 0.373 (0.00614) 0.442 (0.0265)

glass 0.308 (0.0711) 0.315 (0.0589) 0.344 (0.0581)

satimage 0.089 (0.00452) 0.112 (0.00504) 0.0903 (0.00417)

Average rank 1.24 2.48 2.29

p val Friedman test 7.84e−06

Adj. p val sign test 6.29e−05 0.00885

The smallest value are in boldface. In parentheses are approximate standard deviations. Below are average
ranks of the methods over the different datasets. A p value of a Friedman test with an Iman and Davenport
correction for comparing the different algorithms is also reported. The last row shows Holm–Bonferroni
corrected p values of sign tests for pairwise comparison of the KTBoost algorithm with tree and kernel
boosting

and penalization of leave values, and for the kernel regression, this includes the smoothness
of the kernel function, or, in general, the class of kernel functions. One could also use different
learning rates for the two types of base learners. Due to limits on computational costs, we
have not considered all possible choices and combinations of tuning parameters. However, it
is likely that a potential increase in predictive performance in either tree or kernel boosting
will also result in an increase in accuracy of the combined KTBoost algorithm. We also
note that in our experimental setup, the tuning parameter grid for the KTBoost algorithm
is larger compared to the tree and kernel boosting cases. This seems inevitable in order to
allow for the fairest possible comparison, though. Restricting one type of tuning parameters
for the combined version but not for the single base learner case seems to be no alternative.
Somewhat alleviating this concern is the fact that, in the above simulation study, we also
find outperformance when not choosing tuning parameters using cross-validation, and on the
downside, a larger tuning parameter grid might potentially also lead to overfitting. Finally,
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we remark that we have also considered to compare the risk of the un-damped base learners

R
(
Fm−1 + f Tm (x)

)
≤ R

(
Fm−1 + f Km (x)

)

in line 5 of Algorithm 1 when selecting the base learners that is added to the ensemble, and
we obtain very similar results (see supplementary material).

5 Conclusions

Wehave introduced a novel boosting algorithm,which combines trees andRKHS functions as
base learners. Intuitively, the idea is that discontinuous trees and continuous RKHS functions
complement each other since trees are better suited for learning rougher parts of functions and
RKHS regression functions can better learn smoother parts of functions. We have compared
the predictive accuracy of the KTBoost algorithm with tree and kernel boosting and have
found that KTBoost achieves significantly higher predictive accuracy compared to tree and
kernel boosting.

Future research can be done in several directions. First, it would be interesting to investi-
gate to which extent other base learners such as neural networks [23,31] are useful in addition
to trees and kernel regression functions. Generalizing the KTBoost algorithm using repro-
ducing kernel Kreı̆n space (RKKS) learners [32,33] instead of RKHS learners can also be
investigated. Further, theoretical results such as learning rates or bounds on the risk could
help to shed further insights on why the combination of trees and kernel machines leads
to increased predictive accuracy. Finally, it would be interesting to compare the KTBoost
algorithm on very large data sets using different strategies for reducing the computational
complexity of the RKHS part. Several potential strategies on how this can be done are briefly
outlined in Sect. 3.1.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s11063-021-10434-9.
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