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Abstract
Accurate segmentation of lungs in pathological thoracic computed tomography (CT) scans
plays an important role in pulmonary disease diagnosis. However, it is still a challenging
task due to the variability of pathological lung appearances and shapes. In this paper, we
proposed a novel segmentation algorithm based on random forest (RF), deep convolutional
network, and multi-scale superpixels for segmenting pathological lungs from thoracic CT
images accurately. A pathological thoracic CT image is first segmented based on multi-scale
superpixels, and deep features, texture, and intensity features extracted from superpixels are
taken as inputs of a group of RF classifiers.With the fusion of classification results of RFs by a
fractional-order gray correlation approach, we capture an initial segmentation of pathological
lungs. We finally utilize a divide-and-conquer strategy to deal with segmentation refinement
combining contour correction of left lungs and region repairing of right lungs. Our algorithm
is tested on a group of thoracicCT images affectedwith interstitial lung diseases. Experiments
show that our algorithm can achieve a high segmentation accuracy with an average DSC of
96.45% and PPV of 95.07%. Comparedwith several existing lung segmentationmethods, our
algorithm exhibits a robust performance on pathological lung segmentation. Our algorithm
can be employed reliably for lung field segmentation of pathologic thoracic CT images with
a high accuracy, which is helpful to assist radiologists to detect the presence of pulmonary
diseases and quantify its shape and size in regular clinical practices.

Keywords Pathological lung segmentation · Convolutional neural network · Random
forest · Divide-and-conquer strategy

1 Introduction

Pulmonary disease is one of the major causes of morbidity and mortality around the world
[1,2]. For example, the recent global outbreak of COVID-19 has killed tens of thousands of
people in just a few months. Early diagnosis of pulmonary disease with computed tomog-
raphy (CT) technique is crucial for making treatment decisions. In non-invasive detection
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Fig. 1 Pathological lung segmentation. A pathological thoracic CT image (a) with its segmented lung mask
(b)

and diagnosis of pulmonary disease, accurate lung segmentation is often a prerequisite for
assessing the disease severity, it ensures that disease detection is not confounded by regions
outside lungs [2]. However, inner structures of thoracic CT images are usually various with
different textures and pixel densities. Additionally, intensities of pathological images are
inhomogeneous and it is difficult to provide a reliable generic solution for a wide spectrum
of lung abnormalities, which cause difficulties in lung segmentation.

Lung segmentation refers to the computer-based process of identifying the boundaries
of lungs from surrounding thoracic tissue on CT images [3], see Fig. 1 for a reference. In
this paper, the key issue we want to tackle is to segment pathological lungs from thoracic
CT images accurately overcoming external distractions of lung diseases and abnormalities.
Thus, we proposed a novel pathological segmentation algorithm based on random forest,
deep convolutional network, and multi-scale superpixels. Our contributions in the paper are:

• We propose a novel pathological lung segmentation algorithm combining three principal
processes: feature extraction, classification fusion, and contour correction, which can
generate more complete segmentations.

• We put forward an effective classification fusion method based on a fractional-order gray
correlation, which can producemore accurate fusion results inmulti-scale classifications.

• We present a new lung segmentation refinement approach based on a divide-and-conquer
strategy of contour correction of left lungs and region repair of right lungs, which con-
tributes to generating more accurate lung segmentations.

The remainder of this paper is organized as follows: in Sect. 2, we introduce the related
research in lung segmentation, and in Sect. 3, we make a detailed description of our lung
segmentation algorithm. In Sect. 4, we provide a set of experimental results and in Sect. 5
and Sect. 6, we make a discussion and summarize our algorithm. The basic pipeline of our
algorithm is illustrated in Fig. 2.

2 RelatedWork

Many methods have been proposed to segment lungs from thoracic CT images in the past
decades. In [4], three thresholding based approaches, connected threshold, neighborhood
connected, and threshold level set were performed on lung segmentation. Prabin et al. [5]
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Fig. 2 The pipeline of our algorithm. A DCNN model is trained with samples captured from CT images and
their ground truths. An input image is segmented into three groups of superpixels: P1, P2, and P3, with three
different scales, respectively. The deep features, texture, and intensity features are extracted from each group
of superpixels, which are classified with random forests (RFs). We fused the classification results (R1, R2, and
R3) and refined the fused segmentation result with a divide-and-conquer strategy and information propagation
mechanism

segmented thoracic CT images using a region growing algorithm along with a combination
of supervised contextual clustering technique. Mansoor et al. [6] segmented pathological
lungs from CT scans by combining region-based segmentation with a local descriptor based
classification. Chen et al. [7] segmented pathological lungs from 3D low-dose CT images
using an eigenspace sparse shape composition by integrating a sparse shape composition
with an eigenvector space shape prior model. Revathi et al. [8] introduced a pathological lung
identification system, where, FC was used for segmenting lungs with a diverse range of lung
abnormalities, RF was then applied to refine the segmentation by identifying pathology and
non-pathology tissues according to the features extracted from the gray-level co-occurrence
matrix (GLCM), gray level run length matrices, histograms and so on. Soliman et al. [9]
segmented pathological lungs from CT images based on a 3D joint Markov-Gibbs random
fieldmodel which integrated the first-order visual appearancemodel, the second-order spatial
interaction model, and a shape prior model. Hua et al. [10] used a graph search driven by a
cost function combining the intensity, gradient, boundary smoothness, and rib information for
pathological thoracicCT image segmentation.Hosseini-Asl et al. [11] proposed anonnegative
matrix factorization (NMF)-based pathological lung segmentation approach, which included
three stages: removing image background from CT images by a conventional 3D region
growing method, modeling visual appearance of the remaining chest-lung image with an
NMF technique, extracting 3D lung voxels by a two-step data clustering and a region map
cleaning approach. An automated lung segmentation algorithm was developed combining
unsupervised and supervised techniques in [12]. Themethod combined an unsupervisedMRF
technique to provide an initial estimate of lung borders, a supervised texture analysis scheme
based on an SVM classifier was applied on searching border regions and distinguishing lung
tissues from their surrounding tissues. Liu et al. [13] segmented lungs from CT images with a
random forest (RF) classifier, where texture and intensity features extracted from superpixels
were taken as the input of RF Classifier. Meng et al. [14] presented a lung segmentation
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algorithm based on anatomical knowledge and a snake model. By setting the snake model’s
initial curve on human’s rib edge in the thoracic CT image, their model could capture the
concavities locating on lung boundaries well. Abdollahi et al. [15] segmented multi-scale
initial lungs from CT images using a linear combination of discrete Gaussian approach and a
Markov-Gibbs random field (GMRF) model. The initial segmentations were fused together
using a Bayesian approach to obtain the final segmentation of lung regions. The potential
benefits of deep learning techniques in image analysis have also generated remarkable results
[16,17]. Harrison et al. [1] presented a bottom-up deep-learning-based approach unaffected
by any variations in lung shape. In the method, a deep model, progressive holistically-nested
network, was used to produce finer detailed lung masks. Park et al. [18] employed a two-
dimensional U-Net for lung parenchyma segmentation. Anthimopoulos et al. [19] used a
deep purely convolutional neural network for the semantic segmentation of interstitial lung
disease (ILD) patterns. Lung CT images of arbitrary sizes were taken as inputs and produced
corresponding label maps.

In lung segmentation, manually crafted features such as shape, color, and/or texture play
an important part in some algorithms. Nevertheless, the features are complementary in med-
ical images and cannot make representations of high-level problem domain concepts [20].
Deep learning is often used to improve the descriptive ability in feature representation [21–
23]. For example, Hong et al. [21] used deep neural networks to compute features for face
pose estimation. Zhang et al. [22] extracted deep features with contractive autoencoders
for unsupervised dimension reduction. Convolutional neural network (CNN) has an ability
of representation learning, where input information is extracted and filtered layer by layer.
The convolutional layers of a CNN can be seen as feature extractors, which generate local
features of image patches in each layer, and the features are combined to produce a global
deep feature vector in the last. Recent work demonstrated that 2D CT slices are expressive
enough for segmenting complex organs [24]. Consequently, we fuse the deep features and
low-level traditional features to character different regions of thoracic CT images and extract
lung regions from CT images with RF according to the fused features. Furthermore, the lung
segmentation is refined by contour correcting and region repairing.

3 Methods

The superpixel algorithm [25] can group pixels into perceptually meaningful atomic regions
with similar features, such as intensity, texture, and so on. Approximately equally-sized
superpixels with boundaries aligning to local image edges are more suitable for being taken
as classification units than isolated image patches. Consequently, we take superpixels as
classification units of deep convolutional neural network (DCNN) and RF classifiers for
preserving lung contours well. Our lung segmentation algorithm mainly includes four steps:
superpixel segmenting, feature extracting, RF classification, and segmentation refining.

3.1 Superpixel Segmenting

After preprocessed with morphological filters [26], thoracic CT images are segmented into a
group of superpixels with the simple linear iterative clustering (SLIC) approach [25]. SLIC
employs k-means clustering approach to efficiently generate superpixels with approximately
equal sizes. The scales of superpixels in an image depend on a user-specified parameter, P .
Assume the size of a thoracic CT image is Z , the scale of a superpixel is roughly

√
Z/P .
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Fig. 3 Our DCNN consists of three convolutional layers, three pooling layers, one fully connected layer and
one output layer

Hence, smaller P produces larger-scaled superpixels, which is helpful for segmenting inho-
mogeneous intensities images involving pathologic tissueswith strong anti-noise interference
ability. Conversely, bigger P generates smaller-scaled superpixels,which can capture detailed
regions. Here, a thoracic CT image is segmented by SLIC with three Ps (P1, P2, P3), respec-
tively. As a consequence, we obtain three groups of superpixels with three different scales.

3.2 Feature Extraction

We map the superpixels into the thoracic CT image and extract deep, texture, and intensity
features from superpixels.

3.2.1 Deep Feature Extraction

CNN is one of deep neural networks with multilayer perceptrons and usually consists of an
input and an output layers, as well as multiple hidden layers typically including a series of
convolutional layers, pooling layers, fully connected layers, and normalization layers [27].
Here, we construct an 8-layer DCNN model for deep feature extraction:

The outputs of the convolutional layers are all activated by a Sigmoid function,
Three kinds of regions, lungs, pleural tissues, and backgrounds, are captured from thoracic

CT images according to their ground truths. They are resized and used for training and testing
of our DCNN model. Finally, the output of the last mean-pooling layer, a feature vector of
40 elements, is extracted and taken as our deep features.

3.2.2 Texture Feature Extraction

GLCM is a widely used texture statistical analysis and measurement tool. Its statisti-
cal characteristics are superior to those of fractal dimension, Markov model, Gabor filter
and so on [28,29]. We extract 46 features from GLCM, such as energy, contrast, homo-
geneity, correlation and so on. Some of them are defined as Energy = ∑N−1

I , j=0 P
2
i, j ,

Contrast = ∑N−1
I , j=0 Pi, j (i − j)2, Homogeneity = ∑N−1

I , j=0
Pi, j

1+(i− j)2
, Correlation =

∑N−1
I , j=0

Pi, j (i−μ)

σ 2 , where μ and σ are the mean and standard deviations of GLCM.
Besides GLCM, moment invariants, ηs, have been extensively used to characterize the

patterns of images in a variety of applications [30].

ηpq =
∫ ∞

−∞

∫ ∞

−∞
x p f (x, y)dxdy, p, q = 0, 1, 2, . . . (1)
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Table 1 Features characterizing
thoracic CT images

Types Features

Deep features Features extracted with DCNNmodel

Texture features Features from GLCM, such as
energy, contrast, homogeneity,
correlation and so on; Moment
invariants; Image entropy

Intensity features Color moments: mean, variance,
skewness

Hu [31] introduced seven moment invariants φ1 ∼ φ7.
Moment invariants are useful properties, which are robust to image scaling, translation,

and rotation. Collectively, we obtain a total of 54 texture features after adding image entropy
[32] into texture features.

3.2.3 Intensity Features

Since color information is mainly distributed in low-order moments, color moments have
been proved an effective tool in representing the color distribution in images [33]. Stricker
et al. [34] introduced three color moments to represent image color distribution including
first-order moments (μ), second-order moments (δ), and third-order moments (s) defined as

μi = 1
N

∑N
j=1 pi, j , δi =

√
1
N

∑N
j=1(pi, j − μi )2, si = 3

√
1
N

∑N
j=1(pi, j − μi )3, where pi, j

stands for the i th color value of pixel i , N and μ respectively represent the total number of
pixels in the image and the mean value of i th color channel.

Here, we convert a CT image into a grayscale image and extract intensity features from
it, and in total, we concatenate 97 features listed in Table 1.

3.3 Random Forest Classification

We capture the maximum inscribed square patch from each superpixel as a region of interest
(ROI), resize, and take them as inputs of our DCNN model to extract deep features. Com-
bining with the deep, texture, and intensity features extracted from superpixels, Random
forest (RF) [35] classifies the superpixels into three classes: lungs, pleural tissues, and image
backgrounds.

The lung segmentation results in the initial classificationwith anRF are usually incomplete
due to the existence of pathologic lung tissues. Because superpixels with different scales
can cluster regions with different scales and details, we adopt the RF to classify multi-
scale superpixels according to their features and fuse different segmentation results to get a
relatively complete lung segmentation result. However, some image patches located at the
same positions are assigned different classes in multiple classifications. In order to deal with
the issue, we adopt a fusion technology based on a gray correlation algorithm instead of a
simple and crude addition fusion.

The similarity of two data series can be determined by their slopes in corresponding
periods according to the theory of gray correlation. If the slopes of two series are equal or
similar in each period, the two series have a large correlation coefficient and vice versa. Thus,
image patch similarity in terms of grayscale and texture is calculated by the gray correlation
of two vectors.
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Assume two data series are
{
x (0)
0 (k), k = 1, 2, . . . n

}
and

{
x (0)
1 (k), k = 1, 2, . . . n

}
, the

similarity between them is calculated as follows:

1. Fractional accumulation [36]
We reduce the noise affect by fractional accumulation which is expressed as

x

(
p
q

)

(k) =
k∑

i=1

Ck−i
k−i+ p

q −1
x (0)(i) (2)

where p
q

(
0 <

p
q < 1

)
is fractional accumulation operator. Let C0

p
q −1

= 1,Ck+1
k =

0, k = 0, 1, . . . , n − 1, and

Ck−i

k−i+ p
q
k−1 =

(
k − i + p

q − 1
) (

k − i + p
q − 2

)
· · ·

(
p
q + 1

)
p
q

(k − i)! (3)

Then X

(
p
q

)

=
(

x
k
q (1), x

p
q (2), . . . , x

(
k
q

)

(n)

)

.

2. Initialization
The purpose of initialization is to make each sequence comparable.

Y0 : y
(

p
q

)

0 (k) =
{

x

(
p
q

)

0 (k) − x̄

(
p
q

)

0

}

. (4)

Y1 : y
(

p
q

)

1 (k) =
{

x

(
p
q

)

1 (k) − x̄

(
p
q

)

1

}

. (5)

where x̄ (
p
q ) is the mean value of x (

p
q )

(k).
3. Inverse accumulation

Inverse accumulation is to find slops of the curve at each time point. Here, we use
the absolute values of difference of adjacent data in data series to reflect the overall
distribution trend of data series.
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(6)

4. Correlation coefficient calculation
The correlation coefficient is calculated by Eq. 7.

ξ(k + 1) = 1

1 +
∣
∣
∣
∣
∣
α(1)

(

y

(
p
q

)

0 (k + 1)

)

− α(1)

(

y

(
p
q

)

1 (k + 1)

)∣
∣
∣
∣
∣

k = 1, 2, . . . n − 1

(7)

5. Fractional-order gray correlation degree calculation
Fractional-order gray correlation degree of two data series is defined as Eq. 8.

e = − 1

n − 1

n∑

k=2

ξ(k) (8)
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With the fractional-order gray correlation degree, we can distinguish any two image
patches and assign them an appropriate class in classification. The segmentation fusion is
described detailedly in Algorithm 1.

Algorithm 1 Segmentation fusion based on fractional-order gray correlation.
1: Input grayscale lung image G and corresponding multi-scale classification results Mk (k = 1, 2, . . . , K ).
2: Capture regions Ri assigned the same class, Ci , (i = 1, 2, 3), in Mk , M2, . . ., and MK , respectively:

Ri = M1i ∩ M2i ∩ · · · , ∩MKi .
3: Convert pixels of Ri (i = 1, 2, 3) in G into a 1D vector, Rvi .
4: Find regions, S j ( j = 1, 2, . . .m), belonging to different classes in Mk , m is the number of regions:

S j = M1 ⊕ M2 ⊕ · · · , ⊕MK .
5: for each sub-region S j do
6: Convert pixels in S j in G into a 1D vector, Sv j .
7: Intercept sub-vectors Rvsi with same length as Sv j from Rvi .
8: Calculate correlation degrees ei according to Eq. 8 between Sv j and Rvsi .
9: Find max ei and assign i to region S j .
10: Update Mo according to S j .
11: Output final fused mask Mo.
12: end for

In Fig. 4, we set the numbers of superpixels, Ps, in SLIC method to 200, 300, and 500,
respectively, which generates three scales of superpixels. Because lung tissues and image
backgrounds have low intensities, which are very different from pleural tissues with high
intensities, we group lung tissues and image backgrounds into one class and pleural tissues
into another class in the output of our algorithm. By fusing the different classification results
with Algorithm 1, we obtain a relatively complete segmentation.Additionally, because we
use three small-sized Ps, the time cost is much less than that with a big-sized P . For example,
in Fig. 4, the time cost of the fusion algorithm with P1 = 200, P2 = 300, and P3 = 500 is
0.68 times of that with P = 2000. At the same time, the fused segmentation is better than
one-time segmentation.

We obtain the initial lung segmentation results by extracting lung regions from the fusion
results of RFs with morphological operations.

3.4 Segmentation Refinement

Pathologic lungs usually have similar densities with surrounding tissues, which often leads
to incomplete segmentation of lung regions. Additionally, the left and right lungs closed to
each other usually connected in some segmentation results. In order to tackle these prob-
lems, we utilize a lung contour correction approach and lung region repair method to refine
segmentations after lung separation, see Fig. 5 for a reference.

As shown in Fig. 6, in some pathological lung CT images, the right lung regions usually
have larger defects and the left lung regions are relatively more complete. Accordingly,
we adopt a divide-and-conquer strategy to refine segmentation results by combing contour
correction of left lung contours and region repair of the right lungs. We first presented a
contour correction approach based on SUSAN operator for left lung contour correction.
Because the left lung and the right lung are approximately symmetrical and they usually
have similar contours in a thoracic CT image, the right lung region is repaired supervised by
left lung contours. It should be noted that the segmentation refinement methods for the left
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Fig. 4 Segmentation fusion.We segment lungs from a pathologic thoracic CT image (a), fuse the classification
results of an RF with P1 = 200 (b), P2 = 300 (c), and P3 = 500 (d). Our fusion result (e) is more completed
compared with one-time segmentation with P = 2000 (f)

Fig. 5 Segmentation refinement. It covers three main steps: lung separation, contour correction of left lung
and region repair of the right lung

and right lungs can be switched in the other general images. Anyway, the first step of our
segmentation refinement is to separate two connected lungs.

3.4.1 Lung Separation

In a thoracic CT slice sequence (I1 · · · , Ik, · · · IL), left and right lungs are closed to each
other and may connected from Ik in a segmentation sequence (Ik · · · , Ik+1, · · · Ik+n). Here,
we utilize a lung separation line propagation approach to separate the connected lungs by
using the separation line of its former one.

3.4.2 Contour Correction of Left Lung

The Smallest Univalue Segment Assimilating Nucleus (SUSAN) algorithm is a famous cor-
ner detection technique. In order to repair lung contour concaves caused by pathological
abnormalities, we used a contour correction approach based on SUSAN operator [37] for
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Fig. 6 A set of lung segmentation results. The right lung regions usually have larger defects and the left lung
regions are usually more complete in some initial lung segmentation results

Fig. 7 Segmentation refinements. For initial segmentations (a), we extract left lungs and correct their lung
contours with a corner detection-based method (b). We capture a segment of left part contours from the left
lungs, stretch them (c) to supervise right lung correction (e). With contour correction, we obtain the final
corrected results (f)

lung contour correcting, which covers three stages: candidate corner detecting, validate cor-
ner filtering and corner connecting. We create a copy, M1, of lung mask M , remove the right
lung region from M1 and retain left lung. The main steps of contour correction are described
in Algorithm 2.

3.4.3 Region Repair of Right Lung

The left lung and right lung in a thoracicCT imageusually have similar contours.Accordingly,
instead of using the whole mask of the left lung to repair the right lung, we take a part of
corrected left lung contour as the contour mask of the right lung.We divide the repair process
into three stages: extraction of reference contour, repair of the right part, and repair of the
left part of the lung.

a. Extraction of reference contour

(1) Create a copy, M2, of lung mask M . Remove the left lung region from M2 and retain
the right lung.

(2) Extract single-pixel wide contour, E , of the corrected left lung in M1.
(3) Calculate bounding box, Bl , of the left lung and capture the left part of E , El ,

according to the top and bottom points of Bl , see Fig. 7 for a reference.
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Algorithm 2 Contour correction
1: Input: lung mask M1.
2: Scan M1 with a r × r circular template, w. Compare the intensity of each pixel p in w with that of the

central pixel p0 to determine whether p belongs to USAN region, in which the pixels have similar intensity
with p. The discriminant function is defined as

C(p, p0) =
{
1, |M1(p) − M1(p0)| ≤ 0
0, otherwise

(9)

3: Count the number of pixels having similar values with the central point p0 inw: n(p0) = ∑
p∈w C(p, p0)

4: Extract corner point according to Eq. 9. Calculate corner response function, R(p0), of point p0. Point p0
is marked as a candidate corner if n(p0) less than a threshold g.

R(p0) =
{
g − n(p0), n(p0) < g
0, n(p0) ≥ g

(10)

where g=(r ∗ r)/2.
5: Perform non-maxima suppression for every candidate corner to remove false corners.
6: Merge corners locating within a distance d. Here, we set d=4.
7: Remove the corner located at lung junction region.
8: Connect corner pairs with circle dilating method [13].
9: Fill holes.
10: Output: lung mask M1 with lung contour corrected.

(4) Extract the middle segment (reference contour) of El .

b. Repair of right part

(1) Flip El horizontally, move it to the right until El reaches the right boundary of right
lung M2.

(2) Stretch El from its two endpoint according to its slope, respectively.
(3) Merge M2 with E : M2 = M2 ∩ E .
(4) Fill holes of M2 with morphological operations.

c. Repair of left part

(1) Calculate bounding box, Br , of the right lung M2.
(2) Extract left part of right lung according to the top and bottom points of Br .
(3) Correct the left part of right lung contours with Algorithm 2 in M2.

After the contour correction of left lung and region repair of the right lung, we merge their
results and obtain the final refined segmentation: M = M1 ∩ M2.

4 Experiments

Interstitial lung disease (ILD) is the leading cause of mortality and characterized by
widespread fibrotic and inflammatory abnormalities of lungs [38]. The images used for train-
ing and testing our algorithm come from ILDs database [39]. It contains high-resolution
computed tomography (HRCT) image series with pathologically proven diagnoses of ILDs.
The images which are difficult to segment by conventional methods are used to test the
performance of our segmentation approach.
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Fig. 8 Time costs (s) of our algorithm on four groups of Ps

In the following, we first introduce metrics in our algorithm evaluation and then evaluate
the influence of preset superpixel numbers. Finally, we perform our algorithm on a set of
pathological lung CT images and analyze the experiment results.

4.1 EvaluationMethod

TNR, TPR, PPV, ACC, Error (Er ) are used to evaluate our lung segmentation performance
[40]. Four classical metrics [41], over-segmentation rate (OR), under-segmentation rate (UR),
Dice similarity coefficient (DSC) and Jaccard’s similarity index (JSI) are also utilized for
evaluating the performance of our algorithm. Larger values of TNR, TPR, PPV, ACC, DSC
and JSI and smaller values of Er , UR and OR indicate more accurate segmentation of lung
images.

4.2 The Influence of Preset Superpixel Number

The preset superpixel number, P , affects the efficiency and accuracy of our segmentation
algorithm greatly. In order to detect a suitable group of Ps, we randomly select 80 CT images
affected with sarcoidosis to test our algorithm efficiency and accuracy with different Ps. We
test four groups of Ps: G1 (P1 = 100, P2 = 200, P3 = 300), G2 (P1 = 300, P2 = 400,
P3 = 500), G3 (P1 = 500, P2 = 600, P3 = 700), G4 (P1 = 700, P2 = 800, P3 = 900)
and the corresponding average time costs are depicted in Fig. 8. For example, the average
time coats on P1=100, P2=200 and P3=300 are 14.2s, 21.8s, and 27.8s, respectively. The
total time cost of G1 is 64.93s. The segmentation is implemented in MATLAB environment
on a computer with Intel i7-6500U CPU and 16GB of RAM. It can be seen, the time cost
increases with the increase of P .

In Fig. 9, we show the performance of our algorithm with four groups of Ps. We can see
that the segmentation accuracies in terms of DSC and JSI increase with an increase of Ps.
Nevertheless, the DSCs are all above 97%. In order to reduce the time cost while keeping a
high segmentation accuracy, Pi is ranged from 100 to 700.
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Fig. 9 Performance of our algorithm in terms of DSC and JSI on four groups of Ps (G1∼G4)

Table 2 Metric values of
segmentation performance of our
algorithm in terms of TNR, TPR,
PPV, ACC and Er

Type TNR TPR PPV ACC Er

GG 0.993188 0.968209 0.956047 0.990638 0.009362

F 0.993118 0.975091 0.960319 0.991109 0.008891

R 0.994181 0.985324 0.968018 0.993790 0.006210

N 0.991803 0.971644 0.958587 0.989572 0.010428

P 0.990620 0.861925 0.910564 0.974644 0.025356

Table 3 Metric values of
segmentation performance of our
algorithm in terms of DSC, JSI,
OR and UR

Type DSC JSI OR UR

GG 0.973484 0.929578 0.047004 0.031791

F 0.977763 0.936948 0.042058 0.024909

R 0.983378 0.953926 0.034278 0.014676

N 0.976029 0.933042 0.043707 0.028356

P 0.911976 0.803924 0.085096 0.138075

4.3 Result Analysis

Wechose a challenging data set of thoracic CT images containing density pathologies in vary-
ing degrees of severity from ILDs database to test the performance of our lung segmentation
algorithm: images affected with ground glass (GG), fibrosis (F), nodules (N), reticulation
(R) and PCP (P). The number of the tested images in each type thoracic CT images ranged
from 40 to 80, and we list the average performances of our algorithm in terms of TNR, TPR,
PPV, ACC and Er in Table 2, and DSC, JSI, OR and UR in Table 3. It can be seen that the
segmentation accuracy of R images has the highest accuracy such as TPR because of rela-
tively homogeneous intensities in the images. Conversely, P images have the lowest accuracy
among our segmentations due to the severe uneven distribution of gray scales.

The average metric values (AVE) in terms of TNR, TPR, PPV, ACC and Er is shown in
Fig. 10, and average DSC, JSI, OR and UR in Fig. 11. It can be seen that ACC and DSC are
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Fig. 10 Average metric values of segmentation performance of our algorithm in terms of TNR, TPR, PPV,
ACC

Fig. 11 Average metric values of segmentation performance of our algorithm in terms of DSC, JSI, OR and
UR

0.9880 and 0.9645, respectively. The average PR curve of the five types of pathologic lung
images is shown in Fig. 12.

We randomly select 270 images from the above mentioned five types of images and the
error distance defined as (FN + FP)/(FN + T P) is shown in Fig. 13. Error distances are
mainly concentrated in a range of (0, 0.2). The P images usually be destructed by pneumo-
cystis pneumonia (PCP) and the intensities are inhomogeneous. Fig. 14 depicts a comparison
of the segmentation accuracy of initial segmentation and refined segmentation of lungs in P
images. It can be seen that the accuracies of the refined segmentation results in terms of TPR,
ACC, DSC, and JSI are all higher than those of the initial segmentation results.

In Fig. 15,we showagroupof segmentation resultswith some state-of-artmethods [13,18].
It can be seen that the other methods cannot deal with some intensity inhomogeneous images
well. Conversely, our algorithm can segment more complete lungs from pathological lung CT
images. In Fig. 16, we compare our algorithm with the other methods on a set of CT images
affectedwith fibrosis and PCP. The results show that our algorithm achieves higher accuracies
in terms ofDSC, JSI, TPR, and ACC, which implies the segmentation ability of deep learning
networks [18] on pathological lung CT images is hindered by a limited size of a training set
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Fig. 12 Average Precision-Recall curve

Fig. 13 Error distance

(1000). The segmentation accuracy of a single-scale RFmethod [13] is also smaller than ours
on thewhole.Our algorithm is relativelymore robust on lung segmentation thanothermethods
because of the multi-scale classification fusion and effective post-processing operations.
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Fig. 14 Comparison of corrected and initial segmentation results of CT images of PCP

Fig. 15 Lung segmentations with different methods. a–e are original lung CT images, lung segmentation
results with U-Net,random forest and our algorithm, respectively

5 Discussion

The fusion algorithm can generate high segmentation accuracy. However, it may generate
a little bit higher OR shown in Fig. 11 due to two main factors. One factor arises from
superpixel segmentation. We take superpixels as the input of the RF classifier. In order to
accelerate our algorithm, we use three Ps with smaller values, which generates a group of
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Fig. 16 Comparison of segmentation accuracy of different methods. Our algorithm achieves higher accuracy
than other methods in terms of DSC, JSI, TPR, and ACC

Fig. 17 An example of over-segmentation by our algorithm. For a thoracic CT image (a) with narrow lung
regions, bigger-scale superpixels used in our multi-scale segmentation may result in over-segmentation (b)
compared with the corresponding ground truth (c)

multi-scaled superpixels with the SLIC approach. However, a bigger superpixel is difficult to
capture narrow regions and sometimes brings about high ORs, see Fig. 17b for a reference.
Accordingly, OR of fusion result is high by simply adding the multi-scale segmentation
results together. In our algorithm, the correlation approach can solve this tissue and reduce
OR. Another factor lies in region repair of right lung supervised by the left lung contour, and
the over-segmentation of the left lung may propagate to the right lung. In order to overcome
the issue, we capture a middle segment of the left lung contour and stretch it according to its
local slope to match the right lung contour, which reduces the probability of wrong contour
propagation, as well as OR.

6 Conclusion

Pathologic thoracic CT image segmentation is a challenging issue for the presence of inhomo-
geneous intensities and various abnormalities. In this paper, we introduce a novel pathologic
lung segmentation algorithm based on the DCNN model and random forest. In our algo-
rithm, two fusion operations enhance the performance of our segmentation algorithm. First,
the fusion of features of deep, texture and intensity enriches the classification information,
which contributes to the classification of random forest. Second, the fusion of classification
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results of random forest based on multi-scale superpixels can produce more accurate results
than one-time segmentation with relatively low time cost due to small-sized Ps. In order
to improve segmentation accuracy, we introduce a divide-and-conquer strategy for refining
segmentation results by correcting and repairing the left and right lungs. In our future work,
we will improve the fusion techniques, augment training samples, and further enhance the
performance of our lung algorithm on pathologic lung segmentation.
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