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Abstract
This paper introduces a new approach to maximum likelihood learning of the parameters
of a restricted Boltzmann machine (RBM). The proposed method is based on the Perturb-
and-MAP (PM) paradigm that enables sampling from the Gibbs distribution. PM is a two
step process: (i) perturb the model using Gumbel perturbations, then (ii) find the maximum a
posteriori (MAP) assignment of the perturbed model. We show that under certain conditions
the resulting MAP configuration of the perturbed model is an unbiased sample from the
original distribution.However, this approach requires an exponential number of perturbations,
which is computationally intractable. Here, we apply an approximate approach based on the
first order (low-dimensional) PM to calculate the gradient of the log-likelihood in binary
RBM. Our approach relies on optimizing the energy function with respect to observable and
hidden variables using a greedy procedure. First, for each variable we determine whether
flipping this value will decrease the energy, and then we utilize the new local maximum to
approximate the gradient. Moreover, we show that in some cases our approach works better
than the standard coordinate-descent procedure for finding theMAP assignment and compare
it with the Contrastive Divergence algorithm. We investigate the quality of our approach
empirically, first on toy problems, then on various image datasets and a text dataset.
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szymon.zareba@pwr.edu.pl

Siamak Ravanbakhsh
siamakx@cs.ubc.ca

Russell Greiner
rgreiner@ualberta.ca

1 Faculty of Computer Science and Management, Wroclaw University of Science and Technology,
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1 Introduction

The commonly used procedure for learning parameters of Markov random fields (MRFs) is
to maximize the log-likelihood function for observed data, by updating the model parameters
along the gradient of the objective. This gradient step requires inference on the current model,
which is often approximated using a deterministic or Markov Chain Monte Carlo (MCMC)
procedure [10]. In general, the gradient step attempts to update the parameters to increase the
unnormalized probability of the observations (clamped or positive phase), while decreasing
the sum of unnormalized probabilities over all states, i.e., the partition function (unclamped
or negative phase). The positive phase is rather straightforward, but the negative phase is
difficult to perform, mainly because of the complexity of computing the partition function.
Therefore, in order to overcome the issue, alternative approaches have been proposed, such
as Contrastive Divergence (CD) [7] or Pseudo-likelihood or ratio matching (see [19] for a
review). In the context of Restricted Boltzmann Machines (RBMs), the widely-used training
procedure is CD, which utilizes the MCMC in the negative phase to decrease the probability
of the configurations that are in the vicinity of training data.

Recently, perturbation methods combined with efficient maximum a posteriori (MAP)
solvers (Perturb-and-MAP, PM) were used to efficiently sample from the MRF [3,5,6,17,23,
24]. The main idea behind PM is based on extreme value theory, which states that the MAP
assignments for particular perturbations of any Gibbs distribution can produce unbiased sam-
ples from the unperturbed model [23]. In practice, however, models cannot be perturbed in
the ideal form and kth-order approximations are used. In [5] these order approximations are
used to bound from above the partition function, suggesting that PM-based sampling pro-
cedures can be used in the negative phase to maximize a lower bound on the log-likelihood
of the data. However, this is feasible only if efficient MAP solvers are accessible, e.g., MRF
with submodular potentials [11], and even so, repeatedMAP estimation at each step of learn-
ing could be prohibitively expensive. Nonetheless, this PM approach has been successfully
applied to different problems, e.g., computer vision [24], feature learning using Cardinality
RBM [15], structured prediction [1,30], boundary of object annotation in images [18], image
segmentation [8,20]. The idea of PMwas also used in a preliminary study on learning RBMs
[26].

In [26] an approach closely related to CD and Perturb-and-MAP for sampling from RBM
in the negative phase of learning was proposed. The basic idea was to perturb the parameters
of the model, then starting from the training data, find the local optima of the energy function
using block-coordinate descent method. This produces samples from the joint distribution
(over both the hidden and the visible variables) in the RBM. We call this approach perturb-
and-coordinate descent (P&CD).

In this work, we rely on a different strategy to find MAP assignments, namely, greedy
search for local optimal assignments for both visible and hidden variables. Since learning
RBM using the PM approach requires performing optimization in each mini-batch, it is
critical that we approximate MAP assignments quickly. That is why we exploit the greedy
optimization technique, hoping it will produce reasonable local optimal assignments. More-
over, we show a close relationship of our proposed greedy-based method to the coordinate
descent method in the context of the RBM.

Using three experiments, we show that using the PM approach for learning the RBM
is promising: (1) a toy problem in which the exact log-likelihood can be computed; (2)
several black-and-white image benchmark datasets: letters, MNIST, Omniglot, Frey Face,
Handwritten character recognition; and (3) a text analysis of blog posts. Our empirical studies
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show that our proposed PM-based learning procedure for RBM in general performs similarly
to CD, but in some cases can be better.

The contributions of the paper are:

– We propose to use a greedy optimization method for finding MAP solutions in the PM
approach for learning RBMs.

– We perform an empirical comparison of the PM approach against the Contrastive Diver-
gence. We compare the methods both on unsupervised and supervised data. Given that
[26] do not report any experimental results, this is the first empirical evaluation of the
PM approach utilized for learning RBMs.

2 Background

2.1 Restricted BoltzmannMachine

The model The binary restricted Boltzmann machine (RBM) is a bipartite MRF that defines
the joint distribution over binary visible and hidden units [29], where x ∈ {0, 1}D are the
visibles and h ∈ {0, 1}M are the hiddens. The relationships among units are specified through
the energy function:

E(x,h|Θ) = −x�Wh − b�x − c�h, (1)

where Θ = {W,b, c} is a set of parameters, W ∈ R
D×M , b ∈ R

D , and c ∈ R
M are,

respectively, weights, visible biases, and hidden biases. For the energy function in Eq. 1,
RBM is defined by the Gibbs distribution:

p(x,h|Θ) = 1

Z(Θ)
exp

( − E(x,h|Θ)
)
, (2)

where Z(Θ) = ∑
x
∑

h exp
(−E(x,h|Θ)

)
is the partition function. Themarginal probability

over visibles (the likelihood of an observation) is again the Gibbs distribution p(x|Θ) =
1

Z(Θ)
exp

( − F(x|Θ)
)
, where F(·) is the free energy:1

F(x|Θ) = −b�x −
∑

j

log
(
1 + exp

(
c j + (W· j )�x

))
. (3)

RBM possesses the very useful property that the conditional distribution over the hidden
units factorizes given the visible units and vice versa, which yields the following:2

p(hm = 1|x,Θ) = σ
(
cm + (W·m)�x

)
, (4)

p(xd = 1|h,Θ) = σ(bd + Wd·h). (5)

Learning Given data D = {xn}Nn=1, we can train RBM using the maximum likelihood
approach that seeks the maximum of the averaged log-likelihood (LL):

�(Θ) = 1

N

∑

xn∈D
log p(xn |Θ). (6)

1 We use the following notation: for given matrix A, Ai j is its element at location (i, j), A· j denotes its j th
column , Ai · denotes its i th row, and for given vector a, ai is its i th element.
2 σ(x) = [ 1

1+exp(−x1)
, . . . , 1

1+exp(−xD )

]T is the element-wise sigmoid function.
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The gradient of the learning objective �(Θ) wrt θ ∈ Θ takes the following form:

∇θ �(Θ) = −1

N

N∑

n=1

(
∇θ F(xn |Θ) −

∑

x̂

p(x̂|Θ)∇θ F(x̂|Θ)
)
. (7)

In general, the gradient in Eq. 7 cannot be computed analytically because the second term
requires summing over all configurations of visibles. One way to sidestep this issue is the
standard stochastic approximation of replacing the expectation under p(x|Θ) by a sum over
S samples {x̂1, . . . , x̂S} drawn according to p(x|Θ) [e.g.19]:

∇θ �(Θ) ≈ −
( 1

N

N∑

n=1

∇θ F(xn |Θ) − 1

S

S∑

s=1

∇θ F(x̂s |Θ)
)
. (8)

A different approach, Contrastive Divergence (CD), approximates the expectation under
p(x|Θ) in Eq. 7 by a sum over samples x̄n drawn from a distribution obtained by applying
K steps of the block-Gibbs sampling procedure:

∇θ �(Θ) ≈ −1

N

N∑

n=1

(
∇θ F(xn |Θ) − ∇θ F(x̄n |Θ)

)
. (9)

The original CD [7] used K steps of the Gibbs chain, starting from each data point xn to
obtain a sample x̄n and is restarted after every parameter update. An alternative approach,
Persistent Contrastive Divergence (PCD) does not restart the chain after each update; this
typically results in slower convergence rate but eventually better performance [32].

2.2 Perturb-and-MAP Approach

Sampling from a MRF, including a RBM, is problematic due to the difficulty of calculating
the partition function. However, assuming that a MAP assignment in the MRF can be found
efficiently, it is possible to take advantage of random perturbation methods to obtain unbi-
ased samples [23]. Further, the unbiased samples can be utilized in the standard stochastic
approximation of the log-likelihood gradient to calculate the second sum in Eq. 8.

Let us consider a system described by variables z, and an energy E(z).3 It turns out
that a probability distribution of MAP assignments of the perturbed energy using Gumbel-
distributed random variables is equivalent to the Gibbs distribution. The following theorem
clarifies the connection between the Gumbel distribution and the Gibbs distribution [23]:

Theorem 1 [4] Let E(z) ∈ R be the energy of a system where z ∈ Z is a discrete-valued
vector. If γ (z) are i.i.d. random variables with standard Gumbel distribution whose cdf is
given by G(z; 0, 1) = exp(− exp(−z)), then

Pr
(
z = argmax

ẑ
{E(ẑ) + γ (ẑ)}) = exp

(E(z)
)

∑
ẑ exp

(E(ẑ)
) .

In other words, the Perturb-and-MAP (PM) approach can be seen as a two-step generative
process [24]:

(Perturb step) Add a random perturbation γ (z) to the energy E(z).

3 Here we use a general notation for variables and energy as it refers to visibles and hiddens, and the energy
function Eq. 1 in RBM. Notice that in order to be consistent with the literature of the Perturb-and-MAP we
use an energy without the minus sign to solve the maximization problem instead of the minimization problem.
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(MAP step) Find the maximum of the perturbed energy:

z = argmax
ẑ

{E(ẑ) + γ (ẑ)}. (10)

Eventually, the theorem states that the solutions of the MAP step in the Perturb-and-MAP
procedure can be seen as unbiased samples of the Gibbs distribution.

Since the domain of z grows exponentially with the number of variables, it is trouble-
some to find the MAP assignment of the perturbed energy efficiently. Therefore, first order
(low-dimensional) Gumbel perturbations are often employed [5]. Here, for the first order per-
turbation, the joint perturbation is fully decomposable γ (z) = ∑

i γ (zi ) and it corresponds
to perturbing unary potentials (i.e., biases) only [5,6,23].

3 Learning RBMUsing PM

In order to apply the PM approach for learning RBMswe need to specify both steps of the PM
process, namely, Perturb andMAP.Here,we consider low-dimensionalGumbel perturbations
and two optimizationmethods for findingMAP assignments: coordinate-descentmethod [26]
and greedy optimization.

3.1 Perturb Step

In the case of RBM, an application of the low-dimensional Gumbel perturbations results
in adding the difference of two random variables from the standard Gumbel distribution to
biases b and c in Eq. 1:

b̃d = bd + γ (xd = 1) − γ (xd = 0), d = 1, . . . , D, (11)

c̃m = cm + γ (hm = 1) − γ (hm = 0), m = 1, . . . , M, (12)

where γ (·) ∼ G(·; 0, 1) is a standard Gumbel random variable. In order to speed up com-
putations, instead of sampling two times from standard Gumbel distribution we can take
advantage of the fact that a difference of two Gumbel random variables is a sample from a
logistic distribution.

Recently it has been shown theoretically that the low-dimensional perturbations can be
used to draw approximate sample from the Gibbs distribution:

Theorem 2 [33] Let γ (z) be a sum of N low-dimensional i.i.d. perturbations with stan-
dard Gumbel distribution, i.e., γ (z) = ∑

i γi (zi ). Then the distribution of configurations
maximizing the energy function E(z) is approximately the Gibbs distribution:

P[z = argmax
ẑ

{θ(ẑ) +
∑

i

γi (ẑi )}] ≈ exp(E(z))
Z

. (13)

The proof of this theorem takes advantage of approximating a sum of standard Gumbel
distributions with single Gumbel distribution using the moment-matching method [22]. The
approximation error between the distribution of the sum ofGumbel variables and the distribu-
tion for single Gumbel variable was bounded from above using the Berry-Esseen inequality
and it was shown to be small enough to be used as a valid approximation [33]. Therefore,
theoretically we can apply the low-dimensional perturbations for sampling from the RBM.
However, the crucial part of the PM approach lies in finding MAP solutions of the perturbed
energy, that is, in formulating fast and efficient optimization procedure in the MAP step.
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3.2 MAP Step

As we have presented, a set of S solutions of the MAP step in Eq. 10 can be used in the
stochastic approximation of the gradient inEq. 8. Since the low-dimensional distributions lead
to the almost exact Gibbs distribution according to the Theorem 2, the feasibility of the PM
approach strongly depends on the efficiency of the optimization procedure. In general, MAP
estimation in MRF is NP-hard [28] and only a limited class of MRFs allow efficient energy
minimization [11]. In the case of RBM, the problem of finding a solution that maximizes
the energy function can be cast as the unconstrained binary quadratic programming problem
(BQP) that is known to be NP-hard as well [21]. In the following subsections we present two
alternatives to MAP step that are suitable when inference is employed within the context of
learning RBMs.

3.2.1 Perturb and Coordinate Descent (P&CD) Learning

In [26] it was proposed to obtain samples from the model by first perturbing the unary
potentials (see Eqs. 11 and 12), and further apply block coordinate descent to optimize the
energy function E(x,h|Θ). The procedure is presented in Algorithm 1 (I(·) denotes the
element-wise indicator function).

Algorithm 1: Finding MAP assignment for a single observation using Coordinate
Descent
Input : xdata: training datum, K : number of optimization steps, S: number of approximating samples
Output: {(x̂s , ĥs )}Ss=1: approximate MAP solutions of the perturbed energy

1 for s = 1, . . . , S do
2 Perturb biases using Eq. 11 and Eq. 12;

3 x(0)
s ← xdata;

4 h(0)
s ← p(h|x(0)

s );
5 for k = 1, . . . , K do

6 x(k)
s ← I

(
Wh(k−1)

s + b̃ > 0
)
;

7 h(k)
s ← I

(
W�x(k)

s + c̃ > 0
)
;

8 end

9 x̂s ← x(K )
s ;

10 ĥs ← h(K )
s ;

11 end
12 return {(x̂1, ĥ1), . . . , (x̂S , ĥS)};

The procedure starts from any x ∈ D, where h and x are repeatedly updated for K steps
and the procedure is run S times. As a result, S final configurations of visibles are used to
calculate the second sum in Eq. 8 while the hiddens can be ”effectively” discarded.4

Interestingly, the procedure utilizing the coordinate descent method resembles the Con-
trastive Divergence algorithm in which the consecutive steps in the for-loop are performed
according to the Gibbs sampler. The main difference between these two approaches is that, in
the P&CD approach, the stochasticity is injected to biases and the solution of the optimization

4 This corresponds to using mean-field approximation for the hidden variables (rather than using samples) in
the parameter update.
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problem (a sample) is found in a deterministic manner. On the contrary, in the Contrastive
Divergence the ”solution” (a sample) is found in a stochastic fashion.

3.2.2 Perturb and Greedy Energy Optimization (P&GEO) Learning

There are different approaches for solving the BQP, however, application of exact methods
for large-scale problems is infeasible [9]. Here, motivated by the success of heuristics used for
BQP [21], we propose to apply a greedy approach to search for local solutions to eventually
obtain a good (local) optimum. In the context of RBM, we start from a data point and
corresponding hiddens calculated according to Eq. 4 and further, for each visible and hidden
variable we look for states that greedily increase the energy. In order to get some insight of
the procedure, let us consider d-th visible variable (analogical reasoning can be carried out
for hiddens). There are two possibilities: (i) x (k)

d = 0, or (ii) x (k)
d = 1, where k denotes the

optimization step number. If x (k)
d = 0, then in order to maximize the energy function we need

to verify whether changing its value to 1 results inWd,·h(k−1)+bd > 0 orWd,·h(k−1)+bd <

0. In the former case, we should change the value, while in the latter case we should keep
its value unchanged. For the second possibility, i.e., x (k)

d = 1, we need to determine whether
Wd,·h(k−1) +bd > 0. If it is so, we should keep its value, while ifWd,·h(k−1) +bd < 0, then
we should flip the value of x (k)

d . As a result we notice, that the crucial quantity here is the

value of Wd,·h(k−1) + bd and if it is positive, then we should set x (k)
d to 1 and 0 otherwise.

The final greedy procedure is presented in Algorithm 2.

Algorithm 2: Finding MAP assignment for a single observation using Greedy Energy
Optimization
Input : xdata: training datum, K : number of optimization steps, S: number of approximating samples
Output: {(x̂s , ĥs )}Ss=1: approximate MAP solutions of the perturbed energy

1 for s = 1, . . . , S do
2 Perturb biases using Eq. 11 and Eq. 12;

3 x(0)
s ← xdata;

4 h(0)
s ← p(h|x(0)

s );
5 for k = 1, . . . , K do

6 x(k)
s ← I

(
Wh(k−1)

s + b̃ > 0
)
;

7 h(k)
s ← I

(
W�x(k−1)

s + c̃ > 0
)
;

8 end

9 x̂s ← x(K )
s ;

10 ĥs ← h(K )
s ;

11 end
12 return {(x̂1, ĥ1), . . . , (x̂S , ĥS)};

Interestingly, the greedy approach for finding MAP solutions is almost identical to the
coordinate descent method (see steps 6 and 7 in Algorithms 1 and 2). The key difference lies
in updating visible and hidden variables at once. This property may be profitable in case of
training deep Boltzmann machines (DBM) because it is easy to apply the greedy method to
optimize the energy function, while application of the coordinate descent for DBM is rather
indirect. However, we leave investigating this issue for future research.
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4 Experiments

In the empirical study we compare learning binary RBM using stochastic gradient descent
(SGD) with P&CD and P&GEO, against the well-known Contrastive Divergence (CD). In
the experiments we consider a toy problem in which exact log-likelihood can be calculated,
as well as various image benchmark datasets and a text benchmark dataset.

We use the log-likelihood of the test data as the evaluation metric. For high-dimensional
problems exact calculation of log(Z) is intractable, therefore, we apply the Annealed Impor-
tance Sampling (AIS) procedure [27] for approximations. The AIS is performed 100 times
with 10, 000 temperature scales evenly spaced between 0 and 1 and 100 particles in each
run. The base distribution in AIS is set to independent binary draws at the mean of the
observations. Moreover, we evaluate all methods in a discriminative manner using k Nearest
Neighbor classifier.

In all experiments we used the following values of the hyper-parameters. The learning
rate of SGD was chosen from the set {0.001, 0.01, 0.1}. CD used K ∈ {1, 5, 10} steps
of the block Gibbs sampling, while the number of optimization iterations of P&CD and
P&GEO procedures were in the set {1, 5, 10}. Moreover, we performed the SGD procedure
with the momentum coefficient in {0, 0.9} and we penalized the log-likelihood objective
with the weight decay (the regularization coefficient in {0, 10−5, 10−4, 10−3}). The gradient
approximation for all considered learning methods was calculated using S = 1 samples.

The optimal hyper-parameters were selected using the evaluation metric. The number of
iterations over the training setwas determined using early stopping according to the validation
data-set log-likelihood, with a look ahead of 30 epochs.

All experiments were performed on Nvidia GeForce GTX970. The code for the paper is
available online: https://github.com/szymonzareba/perturb_and_map_rbm.

4.1 Toy Problem

Setting In order to getmore insight into the performance of P&CDand P&GEO,we consider a
toy example from [2], which deals with 4×4 binary pixel images, and each image correspond
to one of four possible basic modes (uncorrupted images). Further, we generate training,
validation and test sets by replicating each of four basic modes and flipping each pixel
independently with probability p ∈ {0.01, 0.1}. As a result, we get two datasets, in which
the probability p controls the effective distance between the modes. Here, we can study the
ability of the learning algorithm in dealing with various data-distributions, where smaller
values of p corresponds to isolated modes, with longer mixing times for the Gibbs chain.
The four basic modes and exemplary images are presented in Fig. 1.

Fig. 1 Four basic modes (uncorrupted images) (top) and exemplary images from the toy dataset with the
probability of flipping a pixel p = 0.01 (middle) and p = 0.1 (bottom). The probability p controls the
difficulty of learning to distinguish the four basic modes
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Fig. 2 Results on toy problem with p = 0.01 (left) and p = 0.1 (right) using RBM with 10 hidden units
using CD (red), P&GEO (green), and P&CD (blue). The average estimated test log-likelihood curves with
one standard deviation over 5 repeated runs with random parameter initialization are reported. (Color figure
online)

We generated 10,000 training images, 10,000 validation images and 10,000 test images.
For training, we performed at most 500,000 weight updates for an RBMwith 10 hidden units,
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Table 1 Average test log-likelihood with one standard deviation calculated using AIS

Toy p = 0.01 Toy p = 0.1

Avg. LL Avg. Std Avg. Iters Avg. LL Avg. Std Avg. Iters

CD-1 − 4.45 1.218 48 − 6.63 0.011 79

P&GEO-1 − 3.70 0.697 59 − 6.86 0.221 87

P&CD-1 − 2.99 0.418 48 − 6.81 0.233 71

CD-5 − 2.43 0.053 67 − 6.61 0.008 85

P&GEO-5 − 2.67 0.359 42 − 6.62 0.018 91

P&CD-5 − 2.47 0.355 54 − 6.62 0.003 86

CD-10 − 2.56 0.093 80 − 6.62 0.005 93

P&GEO-10 − 2.36 0.089 59 − 6.62 0.053 133

P&CD-10 − 2.78 0.173 105 − 6.62 0.004 98

and stochastic gradient descent with momentum term. We use the small number of hidden
units because for 10 hiddenunits it is possible to calculate the exact value of the log-likelihood.

Experiments for twodatasetswere repeated 5 times. The averaged resultswith one standard
deviation for p = 0.01 and p = 0.1 are presented in Fig. 2. A summary of final results,
i.e., the average log-likelihood, the average standard deviation and the average number of
iterations until convergence, are given in Table 1.
Discussion When the modes are close (p = 0.1), mixing is fast and all training techniques
perform similarly. However, for K = 1 the PM approach converges much faster than the CD
method but eventually obtains slightly worst result (see Fig. 2b). For K = 5 and K = 10,
the CD converges faster than the PM by about 10 and 30 iterations (epochs), however, all of
the considered methods converges to the same result. In the case of p = 0.01, where good
mixing is crucial, both the CD and the PM perform similarly. Nevertheless, the CD requires
about 20 more iterations than P&GEO to converge (see Fig. 2c, e). Interestingly, the P&GEO
seems to be more stable than the P&CD because it requires less iterations to converge and has
smaller variance (see especially Fig. 2e). Moreover, for K = 10, P&CD appears to struggle
with poor mixing.

A possible explanation for unstable behavior of the P&CD is the way the update is per-
formed: first visibles are calculated and then newhiddens are computed for given newvisibles.
We presume that the algorithms ”jumps” between poor (local) optima and that is why it is
unable to reach a better solution. On the other hand, the greedy optimization performs an
update at once, for both visibles and latents, and, therefore, its performance is stable and the
variance is much lower.

4.2 Image Datasets

4.2.1 Unsupervised Evaluation

Setting In the second experiment, we evaluate the proposed approach on five image datasets,
namely: Letters [31], MNIST [14], Omniglot [12], Frey Face5, and Handwritten Character
Recognition (HCR) [34]. The Letters dataset contains black-and-white images of 16 × 10
pixels, the MNIST dataset contains gray-scaled images of 28×28 pixels of ten hand-written

5 http://www.cs.nyu.edu/~roweis/data.html.

123

http://www.cs.nyu.edu/~roweis/data.html


Low-Dimensional Perturb-and-MAP Approach for Learning... 1411

Fig. 3 Exemplary images for the image benchmark datasets considered in the experiment. Notice that all data
are binary in order to fit the binary RBM considered in this paper

digits (from 0 to 9)6, the Omniglot dataset contains black-and-white images rescaled to size
28× 28 pixels representing 1,623 handwritten characters from 50 writing systems, the Frey
Face dataset contains gray-scaled images of size 20× 28 pixels representing faces7, and the
HCR dataset contains black-and-white images of 28 × 28 pixels of handwritten digits and
characters. Each dataset is divided into fixed training set, validation set, and test set, i.e.,
Letters: 40,000, 5,000, 7,152, MNIST: 50,000, 10,000, 10,000, Omniglot: 19,476, 4,869,
8,115 , Frey Face: 1,400, 200, 365, HCR: 24,000, 8,000, 8,134. Examples for each dataset
are depicted in Fig. 3.

In the learning procedure we trained the RBMwith 50 hidden units for Letters, 100 hidden
units for Frey Face, and 500 hidden units for rest of datasets, andwe usedmini-batches of size
100. The number of hidden units were determined in such a way to match commonly used
architectures in the literature [19]. Detailed results of the considered learning techniques are
presented in Table 2 and wall-clock times for MNIST and Frey Face are reported in Table 3.
Additionally, the results for sampling/optimization steps equal K = {1, 5, 10} are depicted
in Fig. 4. All experiments were run 3 times with a random parameter initialization.
Discussion In Table 2 we see that the PM approach performs slightly better than CD. The
wall-clock times of the consideredmethods are almost the same (see Table 3), i.e., the number
of Gibbs sampler steps and the number of optimization steps take almost exactly the same
amount of time, therefore we focused on the results of the same time complexity for K equal
1, 5 and 10. We found that, in three out of five datasets, the PM approach performs better
than the CD method (see Fig. 4b, c, d), the CD slightly dominates in one case (see Fig. 4a)
and there is one draw (see Fig. 4e). Hence, the PM approach seems to be favorable to the CD
since it obtains better results within similar wall-clock time.

An interesting result was obtained in the case of theOmniglot dataset where CDperformed
worst than P&GEO and P&CD by about 5 nats. We hypothesize that the reason for this
significant difference lies in the data itself. Notice that Omniglot contains images of 1623
different characters and in the training data we have only about 12 images per character.
Moreover, there are 1623 modes in this data, which is drastically different from MNIST (10
modes), Letters (26 modes) or HCR (36 modes). Possibly, the PM approach better handles
cases where there is less data for a mode than the CD. In other words, the PM approach may,
to some extent, generate samples from amode for which only a few examples are given, while
the Gibbs sampler may ”jump” between modes and so generate false samples. Similarly, in
the case of Frey Face the difference in favor of the PM approach is about 4.5 nats. However,
it is difficult to estimate a number of modes for Frey Face because this dataset contains faces
representing various emotions that are shown from different angles. Nonetheless, we can

6 The dataset was binarized according to [27].
7 The dataset was binarized using a fixed threshold 0.55.
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Fig. 4 Results on image datasets using the approximated average test log-likelihood. The considered learn-
ing methods (CD, P&CD, P&GEO) are grouped according to number of sampling/optimization steps
K = {1, 5, 10} that corresponds to the wall-clock time complexity. In each image bottom bars depict the
best results

say that once again this dataset is characterized by a multi-modality property and this gives
another evidence for our presumption. We leave thorough investigation of this hypothesis for
future research.

Overall, we found that the proposedP&GEOand the P&CDperformvery similarly. In fact,
the P&GEO obtains better results than the P&CD only onMNIST by about 2 nats. Therefore,
we cannot clearly conclude that the proposed optimization technique is indeed favorable.
Nonetheless, we see two potential qualitative advantages over the coordinate descent method.
First, an application of the greedy strategy to DBM is straightforward since we are interested
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Table 3 Average time in milliseconds per mini-batch for different datasets (in all cases size of images are
provided)

Method CD P&GEO P&CD

K 1 5 10 1 5 10 1 5 10

MNIST (28 × 28) 2.2 3.6 5.6 2.5 3.9 5.8 2.6 3.8 5.4

FREY FACE (20 × 28) 1.1 1.7 2.6 1.6 2.0 2.7 1.5 2.0 2.6

LETTERS (16 × 10) 0.9 1.2 1.6 0.9 1.2 1.5 1.0 1.2 1.5

TOY (4 × 4) 0.4 0.5 0.7 0.5 0.6 0.7 0.5 0.6 0.7

The results are reported over 5 repeated runs with random parameter initialization. All reported values were
within one standard deviation (i.e., there is no statistically significant difference among methods)

in calculating all variables at once, while the coordinate descent technique requires us to
determine the order of updates, which could be cumbersome for DBMs. Second, there are
other variants and similar heuristics for finding a solution for unconstrained BQP problem
[21]. Here we have shown that the greedy method gives competitive results, which suggests
following this line of thinking to develop new methods for the MAP step in the Perturb-and-
MAP framework for learning RBMs.

4.2.2 Supervised Evaluation

Setting In the third experiment we aim at evaluating latent representation given by p(h|x)
using labeled data. For this purpose we used two out of the considered image datasets that
contain also labels, namely, MNIST and Omniglot. Notice that MNIST consists 10 labels
while Omniglot possesses 1622 classes. We used exactly the same training procedure as
described in Sect. 4.2.

We utilized k-nearest neighbor classifier (k-NN) with k ∈ {1, 3, 5, 7, 9} and the Euclidean
metric. The application of the k-NN classifier, which is a non-parametric method, does not
introduce any bias of a parametric classifer. This approach is a common practice in assessing
unsupervised methods [25].

In order to compare the three considered learning algorithms we used three metrics,
namely, average precision score, classification accuracy and normalized mutual information
score. The average precision score (AvgPrec) corresponds to the area under the precision-
recall curve in one-versus-all classification setting. The classification accuracy (ClassAcc)
represents the total number of correctly classified instances divided by the number of all
examples. Finally, the normalized mutual information score (NMI) that is a normalized
version of the a measure of the similarity between two labels of the same data, which is
extensively used in clustering. Obtaining a value of NMI closer to 0 results in a random
assignment of an example to a class and 1 corresponds to an opposite case. In the experiment
we used the implementation of the considered statistics in scikit-learn package8. The
experiment was repeated 3 times and the best results are reported.

Additionally, for the MNIST dataset we present a two-dimensional embedding of the
latent representation using t-SNE [16]. We expect to notice clusters that correspond to class
labels.
Discussion We present the results of the AvgPrec, ClassAcc and NMI in Table 4. The
differences among the considered learning algorithms are small, however, differences are

8 http://scikit-learn.org/.
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Table 4 The average precision score (AvgPrec), the classification accuracu (ClassAcc) and the normalized
mutual information score (NMI) for the three considered learning algorithms and two datasets

Method MNIST OMNIGLOT

AvgPrec ClassAcc NMI AvgPrec ClassAcc NMI

CD 0.476 0.969 0.921 0.052 0.203 0.794

P&GEO 0.481 0.969 0.923 0.052 0.205 0.796

P&CD 0.483 0.969 0.922 0.051 0.201 0.794

Presented results are averaged over 5 runs. All standard deviations were much smaller than 0.001 and that is
why they were omitted

Fig. 5 Two-dimensional visualization of the latent representations given by t-SNE method

significant. The P&CD methods performs slightly better than the CD on MNIST but worst
on Omniglot. However, the P&GEO performs slightly better than the CD on both datasets.
This result is especially apparent in terms of the NMI. Since we applied the k-NN classifier
that does not introduce any additional burden of adaptive parameters, the achieved values
indicate that the P&GEO helps to better represent data than other methods.Images

In Fig. 5 the t-SNE 2D visualizations are presented. As expected, all representations are
similar and each cluster is almost ideally associated with a single class label. Moreover,
we notice that some classes tend to be close to each other, e.g., 3s with 8s and 6s that are
depicted by red, yellow and pink color, respectively, in Fig. 5. We notice, however, that for
the CD and the P&CD zeros denoted by the blue color in Fig. 5 are grouped in two separate
clusters while for the P&GEO they form one cluster. This result may indicate that the P&GEO
indeed produces good latent representation.Nevertheless, this resultmay follow from limiting
capabilities of the t-SNEmethod and in high dimensions the latent representation are grouped
properly.
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Table 5 Average test log-likelihood with one standard deviation calculated using AIS on 20Newsgroups

K = 1 K = 5 K = 10

CD − 13.72 ± 0.02 − 13.73 ± 0.03 − 13.70 ± 0.02

P&GEO − 18.19 ± 0.19 − 13.70 ± 0.01 − 13.72 ± 0.02

P&CD − 18.38 ± 0.18 − 13.71 ± 0.02 − 13.72 ± 0.02

Table 6 The average precision
score (AvgPrec), the
classification accuracu
(ClassAcc) and the normalized
mutual information score (NMI)
for the three considered learning
algorithms on 20Newsgroups

Method AvgPrec ClassAcc NMI

CD 0.497 0.799 0.485

P&GEO 0.503 0.801 0.490

P&CD 0.502 0.801 0.491

Presented results are averaged over 5 runs. All standard deviations were
much smaller than 0.001 and that is why are omitted

4.3 Text Dataset

4.3.1 Unsupervised Evaluation

Setting In this experiment, we evaluate the proposed approach on the 20-newsgroups dataset
[13], 20Newsgroups9 for short, that contains 8,500 training, 1245 validation, and 6,497 test
text documents of blog posts. Each text document is represented as a binary vector of 100
most frequent words among all documents. The problem is the text analysis and the document
classification to one of four newsgroup meta-topics (classes).

In the learning procedure we trained the RBM with 50 hidden units, and we used mini-
batches of size 100. We used sampling/optimization steps equal K = {1, 5, 10}. Detailed
results of the considered learning techniques are presented in Table 5. All experiments were
run 3 times with a random parameter initialization and kept fixed across all methods.
Discussion In Table 5 we notice that there is no significant difference between the CD and
the Perturb-and-MAP approach. However, interestingly for the CD method there was almost
no difference in the generative performance with respect to a varying number sampling steps
while for the PM method it mattered a lot. Nevertheless, in this experiments the CD and the
PM performed on a par.

4.3.2 Supervised Evaluation

Setting Similarly to the image datasets, we aim at evaluating latent representation given
by p(h|x) using labeled data. Again, we used k-nearest neighbor classifier (k-NN) with
k ∈ {1, 3, 5, 7, 9} and the Euclidean metric. In order to evaluate learned latent representation
we used the average precision (AvgPrec), the classification accuracy (ClassAcc) and the
normalized mutual information score (NMI). Eventually, we performed t-SNE to obtain
two-dimensional embedding for visualizing latent representations.
DiscussionContrary to the unsupervised evaluation, we notice that the PMapproach allows to
obtain better values of all performancemetrics than theCDmethod, seeTable 6.Moreover, the
P&GEO method slightly outperforms P&CD in terms of the average precision but achieves

9 http://www.cs.nyu.edu/~roweis/data.html.
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Fig. 6 Two-dimensional visualization of the latent representations given by t-SNE method

a slightly worse result in terms of the normalized mutual information. These results suggest
that the PM method allows to train better discriminative representation while maintaining
similar generative capabilities as the CD method.

In Fig. 6 we present a two-dimensional visualization of the latent representations using
t-SNE. The CD method tend to learn a representation that in some regions seems to be hard
to assign a single class label. There are consistent clusters of a single class, however, in many
regions classes are completely mixed. The PM approach, on the other hand, tends to group
objects of the same class into more coherent clusters.

We also notice that there is an interesting effect of aggregatingmany latent representations
in very small regions, see Fig. 6. A possible explanation for this phenomenon is that multiple
documents are expressed by the same or almost the same sparse binary vectors. Therefore,
they start formulating extremely dense clusters of points.

5 Conclusion

The current work focuses on the low-dimensional perturbations in thePerturb Step. Although
our results indicate that this approach is efficient, it is worth considering higher-order per-
turbations. Naturally, while computational complexity grows exponentially with the order of
the perturbations, this future direction might lead to much better results. We are currently
investigating other optimization methods to find the ground state of the perturbed energy that
may fit to the considered framework for learning RBMs. In the near future we would like
to utilize our approach to deep models, where the much more complex form of the energy
function poses a greater challenge.
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In this paper, we introduced a novel application of the Perturb-and-MAP approach in
the context of learning parameters of RBM. Since theoretical considerations indicate that
samples obtained within the low-dimensional PM framework are approximate samples from
the RBM (see Theorem2), our method works by perturbing unary potentials (i.e., bias terms)
and further finding configurations of visible variables that minimize the perturbed energy.
For this purpose we proposed a greedy optimization technique to find MAP solutions of
the perturbed energy. Using both toy datasets, real image benchmark datasets and a text
analysis dataset, we showed empirically that our method is competitive to the well-known
Contrastive Divergence algorithm. Moreover, we indicated some advantages of the proposed
greedy method over the coordinate descent.
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