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Abstract This paper proposesmodel-free deep inverse reinforcement learning tofindnonlin-
ear reward function structures. We formulate inverse reinforcement learning as a problem of
density ratio estimation, and show that the log of the ratio between an optimal state transition
and a baseline one is given by a part of reward and the difference of the value functions under
the framework of linearly solvableMarkov decision processes. The logarithm of density ratio
is efficiently calculated by binomial logistic regression, of which the classifier is constructed
by the reward and state value function. The classifier tries to discriminate between samples
drawn from the optimal state transition probability and those from the baseline one. Then,
the estimated state value function is used to initialize the part of the deep neural networks
for forward reinforcement learning. The proposed deep forward and inverse reinforcement
learning is applied into two benchmark games: Atari 2600 and Reversi. Simulation results
show that our method reaches the best performance substantially faster than the standard
combination of forward and inverse reinforcement learning as well as behavior cloning.
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1 Introduction

Reinforcement learning (RL) provides a computational framework to find an optimal pol-
icy that achieves given goals using a trial-and-error process. Recently, RL algorithms are
combined with deep learning framework and obtains human-level control policies in some
Atari 2600 games [13] and Go [18]. However, it is still difficult to find an optimal policy if
a reward signal from an environment is too sparse and delayed. In practice, the initial policy
was trained by the form of supervised learning from expert human moves in the case of Go.
Inverse reinforcement learning (IRL), which is a method of estimating a reward function that
can explain a given agent’s behavior [15,33], provides a computational scheme to implement
imitation learning. It is also a promising approach for understanding the learning processes
of biological systems such as driving a vehicle [10,17] and playing table tennis [14] because
the reward specifies the goal of the behavior. If IRL finds a dense reward function from a set
of optimal behaviors provided by an expert, it improves the learning process significantly to
find an optimal policy.

Previously, we developed IRL under the Linearly solvable Markov Decision Process
(LMDP) [21] that directly estimates the state-dependent reward and the state value function
[23] simultaneously. This method exploits the fact that the logarithm of the ratio between
an optimal and a baseline state transition is represented by a state-dependent reward and
the difference of the value functions under the LMDP framework and they are efficiently
estimated by logistic regression to classify whether the data are sampled from the optimal
transition probability. Unlike most previous IRL methods such as Maximum Entropy-based
IRL (MaxEnt-IRL) [33], our IRL does not need to find an optimal policy for every iteration.
However, most previous studies (including our method) use linear function approximators in
which a set of basis functions are prepared manually.

This paper extends our previous method [23] by introducing deep learning frameworks
to identify the nonlinear representation of reward and value functions. The application of
deep learning frameworks is straightforward, and the network structure of binary classifiers
is derived from the simplified Bellman equation under LMDP. We also show that our IRL
method is well integrated with the dueling network architecture proposed by Wang et al.
[27], which explicitly separates the representation of state value and action advantage to
compute a state-action value function. Our proposed IRL method initializes the part of the
dueling network from the datasets from experts and it significantly improves the learning
performance.

We evaluate the combination of our IRL method and the dueling network on the Atari
2600 games provided by the Arcade Learning Environment [2] and compare our method
with Path Integral with LOCal optimality (PI_LOC) that is a sampling-based MaxEnt-IRL
[9]. Simulation results show that the proposed method achieves better scores than simple
behavior cloning. We also show that the learning speed is significantly accelerated when
the estimated state value function is used with the original reward of the games. Next, the
proposed method is compared with the model-based Wulfmeier’s method on the game of
Reversi [24,25]. We show that the performance achieved by the proposed method resembles
that of model-based method with less computing time. In addition, the policy trained with the
estimated reward and state value function outperforms policies that are used to collect data.

1.1 Related Work

Recently, Wulfmeier et al. [29–31] proposed deep IRL, which combined MaxEnt-IRL with a
deep neural network architecture to find nonlinear reward functions. However, their method
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suffers from the same three problems as MaxEnt-IRL. First, deep MaxEnt-IRL is basi-
cally a model-based approach, and therefore, an environmental state transition probability
is assumed to be known in advance. Second, MaxEnt-IRL requires a routine to solve for-
ward RL problems with estimated reward functions for every iteration step. This process
is usually very time-consuming and computationally expensive, even when a model of the
environment is available. Finally, MaxEnt-IRL is data inefficient because it requires a set of
trajectories to estimate reward. In general, a dataset consists of different length trajectories
before termination, and the estimation process is sensitive to the variation.

To overcome the first and second problems ofMaxEnt-IRL, relative entropy-based inverse
reinforcement learning (RelEnt-IRL) [4] and Path Integral with LOCal optimality (PI_LOC)
[9] introduce a sampling distribution to handle unknown environmental state transition prob-
ability. More specifically, RelEnt-IRL uses a uniform sampling distribution while PI_LOC
uses the distribution that lies in the vicinity of the demonstration in order to evaluate the
partition function of the probability distribution of the demonstration. Finn et al. proposed
Guided Cost Learning (GCL) that improves sampling efficiency of deep MaxEnt-IRL [5].
As opposed to RelEnt-IRL and PI_LOC, GCL adapts the sampling distribution using policy
optimization. They are model-free MaxEnt-IRL, but they would still suffer from the third
problem.

Generative Adversarial Imitation Learning (GAIL) [8] and its model-based version [1]
extract a policy directly from data as if it were obtained by reinforcement learning follow-
ing inverse reinforcement learning. Their formulation is similar to Generative Adversarial
Network [6] and the discriminator of GAIL distinguishes between unnormalized distribution
of state-action pairs of an optimal and a learned policy. Therefore, GAIL is similar to our
method because our method discriminates between data from the optimal and baseline state
transition. A potential difficulty is that GAIL should estimate the normalized distribution
defined over the state and action space. On the other hand, our method maintains functions
defined over the state space, which are usually easier to approximate.

2 Linearly Solvable Markov Decision Process

Let X and A respectively be continuous state and discrete action spaces. At time step t , a
learning agent observes environmental current state xt ∈ X and executes action at ∈ A that
is sampled according to a stochastic policy π(at | xt ). Consequently, an immediate reward
r(xt , at ) is given by the environment and the environment makes a state transition based on
state transition probability PT (yt | xt , at ) from xt to yt = xt+1 ∈ X by executing the action
at . The goal of (forward) reinforcement learning is to construct an optimal policy π(a | x)
that maximizes the given objective function. Several objective functions exist, and the most
widely used one is a discounted sum of rewards given by

V (x) = E

[ ∞∑
t=0

γ t r(xt , at )

∣∣∣∣ x0 = x

]
,

where γ ∈ [0, 1) is called the discount factor. In the sameway, the state-action value function
is also defined by

Q(x, a) = r(x, a) + γEy∼PT (·|x,a)

[
V (y)

]
,

and the advantage function is given by

A(x, a) = Q(x, a) − V (x). (1)
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The optimal state value function for the discounted reward setting satisfies the following
Bellman equation:

V (x) = max
a

[
r(x, a) + γEy∼PT (·|x,a)

[
V (y)

]]
. (2)

Equation (2) is a nonlinear equation due to the max operator.
The Linearly solvable Markov Decision Process (LMDP), also known as KL-control,

simplifies Eq. (2) under some assumptions [21]. LMDP’s key trick is to directly optimize the
state transition probability instead of the policy.More specifically, two conditional probability
density functions are introduced. One is the controlled probability denoted byπ(y | x), which
can be interpreted as an optimal state transition. The other is the uncontrolled probability
denoted by b(y | x), which can be regarded as an innate state transition of the target system.
Theoretically, b(y | x) is arbitrary and can be constructed by

b(y | x) =
∑
a

PT (y | x, a)b(a | x),

where b(a | x) is a uniformly random policy.
Then the reward function is restricted to the following form:

r(x, a) = q(x) − 1

β
KL(π(· | x) ‖ b(· | x)), (3)

where q(x), β, and KL(π(· | x) ‖ b(· | x)) respectively denote a state-dependent reward
function, a positive inverse temperature, and the Kullback Leibler (KL) divergence between
the controlled and uncontrolled state transition densities.In this case, theBellman equation (2)
is written as

V (x) = q(x) + max
π

∫
π(y | x)

[
− 1

β
ln

π(y | x)
b(y | x) + γ V (y)

]
dy.

We can maximize the right hand side of the above equation by applying the Lagrangian
method [21] to obtain the following solution:

exp(βV (x)) = exp(βq(x))
∫

b(y | x) exp(βγ V (y))dy. (4)

The optimal controlled probability for the discounted reward setting is given by

π(y | x) = b(y | x) exp(βγ V (y))∫
b(y′ | x) exp(βγ V (y′))dy′ . (5)

Note that Eq. (4) remains nonlinear even though desirability function Z(x) = exp(βV (x))
is introduced because of the existence of discount factor γ . In the forward reinforcement
learning under the framework of LMDP, V (x) is computed by solving Eq. (4), then π(y | x)
is derived from the computed state value function.

3 Deep Inverse Reinforcement Learning

3.1 Bellman Equation for IRL

We here show a derivation of the simplified Bellman equation for inverse reinforcement
learning. From Eqs. (4) and (5), we obtain the following relation for the discounted reward
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setting:

π(y | x) = b(y | x) exp(βγ V (y))
exp(β(V (x) − q(x))

.

The above equation shows that the optimal state transition is represented by the baseline
state transition, state-dependent reward, and state value function. Taking the logarithm of
both sides yields the following critical relation for the discounted reward setting [22]:

1

β
ln

π(y | x)
b(y | x) = q(x) + γ V (y) − V (x). (6)

Equation (6) plays an important role in our IRL algorithms. Similar equations can be derived
for average-reward, first-exit, and finite-horizon problems. Note that the right hand side of
Eq. (6) is not a temporal difference error because q(x) is the state-dependent part of the
reward function in Eq. (3).

Applying the Bayes rule into Eq. (6) yields the following:

ln
π(x, y)
b(x, y)

= ln
π(x)
b(x)

+ βq(x) + γβV (y) − βV (x). (7)

Our goal is to estimate βq(x) and βV (x) from the observed data, and we assume two datasets
of state transitions. One is Dπ from the controlled probability:

Dπ = {(
xπ
i , yπ

i

)}Nπ

i=1 , yπ
i ∼ π(· | xπ

i ),

where Nπ denotes the number of data points. This is called the expert dataset. In the standard
IRL setting, Dπ is interpreted as data from experts to be investigated. The other is a dataset
from the uncontrolled probability:

Db =
{(

xbj , y
b
j

)}Nb

j=1
, ybj ∼ b(· | xbj ),

where Nb denotes the number of data points. This is called the baseline dataset. We are
interested in estimating ratios π(x)/b(x) and π(x, y)/b(x, y) fromDb andDπ . Note that our
method solves two density ratio estimation problems while the standard IRL method such as
MaxEnt-IRL solve one density estimation problem. In many cases, density ratio estimation
is easier than density estimation [19].

3.2 LogReg-IRL: Logistic Regression-Based IRL

This subsection shows how Eq. (7) is used to estimate βq(x) and βV (x). LogReg, which
is a density estimation method using logistic regression [3,19], is appropriate to estimate
the log ratio of the following two densities: ln π(x)/b(x) and ln π(x, y)/b(x, y). First, to
estimate ln π(x)/b(x), assign a selector variable η = −1 to the samples from the uncontrolled
probability and η = 1 to the samples from the controlled probability:

b(x) = Pr(x | η = −1), π(x) = Pr(x | η = 1).

The density ratio can be represented by applying the Bayes rule:

π(x)
b(x)

=
(
Pr(η = 1 | x)Pr(x)

Pr(η = 1)

)(
Pr(η = −1 | x)Pr(x)

Pr(η = −1)

)−1

= Pr(η = −1)

Pr(η = 1)

Pr(η = 1 | x)
Pr(η = −1 | x) .
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The first ratio, Pr(η = −1)/Pr(η = 1), is estimated by Nb/Nπ , and the second ratio
is computed after estimating the conditional probability Pr(η | x) by a logistic regression
classifier:

Pr(η | x) = σ (η fx (x;wx )) ,

where σ(x) = 1/(1 + exp(−x)) is a sigmoid function and fx (x;wx ) denotes a deep neural
network function parameterized by the weight vector wx . Note that the logarithm of the
density ratio is given by

ln
π(x)
b(x)

= fx (x;wx ) + ln
Nb

Nπ
. (8)

Network weights wx can be estimated by the backpropagation whose objective function is
given by the following negative regularized log-likelihood.

Jx (wx ) = − 1

Nb

Nb∑
j=1

ln σ
(
− fx (xbj ;wx )

)
− 1

Nπ

Nπ∑
i=1

ln σ
(
fx

(
xπ
i ;wx

)) + λx

2
‖wx‖22,

whereλx is a regularization constant. The closed-form solution is not derived, but it is possible
to minimize it efficiently by standard nonlinear optimization methods such as backpropaga-
tion. Note that the first density ratio estimation is not necessary if we can assure π(x) = b(x).
In this case, we do not need to evaluate the density ratio network because ln π(x)/b(x) = 0.

Next, ln π(x, y)/b(x, y) is estimated by Eq. (7) in the same way. Nonlinear function
approximators for βq(x) and βV (x) are respectively introduced by

βq(x) ≈ rest(x;wr ), βV (x) ≈ Vest(x;wV ), (9)

where rest(x,wr ) and Vest(x,wV ) denote the deep neural network of the state dependent
reward parameterized by the weights wr and that of the state value function parameterized
by wV , respectively. By substituting Eqs. (8) and (9) into Eq. (7), we obtain the following
relationship:

ln
π(x, y)
b(x, y)

= fx (x;wx ) + rest(x;wr ) + γ Vest(y;wV ) − Vest(x;wV ) + ln
Nb

Nπ
.

The above equation is also interpreted as a density ratio estimation problem, and network
parameters wr and wV are estimated by logistic regression in which the classifier is given by

Pr(η | x, y) = σ (η ( fx (x;wx ) + rest(x;wr ) + γ Vest(y;wV ) − Vest(x;wV ))) . (10)

Note that the inverse temperature β is not estimated as an independent parameter. The param-
eter vectors,wr andwV , are optimized by standard logistic regression algorithms in the same
way as wx .

Figure 1 shows our proposed deep neural network for inverse reinforcement learning. The
input consists of current statex andnext statey, and theoutput consists of labelη that addresses
whether (x, y) are given from Dπ or Db. The network has three sub-networks: density-ratio
network fx (x;wx ), reward network rest(x;wr ), and state value function network Vest(x;wV ).
Note that state y is given only to the value network. After the sub-networks compute the log of
the density ratio, the reward, and the value functions, the log of the density ratio is computed
by the Bellman equation (7) and used to compute the classifier’s probability (10).
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Fig. 1 Proposed network architecture for inverse reinforcement learning that consists of three sub-networks:
density ratio, reward, and state value function. Then the Bellman equation (7) is computed from the outputs
of the three networks

3.3 Forward Reinforcement Learning

This section explains how the result of inverse reinforcement learning is used to find an
optimal policy by forward reinforcement learning. Because our IRL method estimates the
state value function, it should be used to initialize a part of the deep neural networks for
forward reinforcement learning. We adopt the dueling network that represents state values
and state-dependent action advantages separately [27]. Using the definition of the advantage
function (1), the state-action value function is decomposed into two functions:

Q(x, a) = V (x) + A(x, a). (11)

However, we cannot utilize the decomposition because V and A are not recovered from
Q uniquely. Therefore, Wang et al. [27] propose to impose a constraint on the advantage
function. Since the advantage function measures whether or not the action is better or worse
than the policy’s average action, it is represented by

A(x, a) = P(x, a) − 1

|A|
∑
a′

P(x, a′), (12)

where P(x, a) is the preference function and |A| denotes the number of actions. Note that the
second term in the right hand side of Eq. (12) is the average preference value under a uniformly
random policy. As noted byWang et al. [27], the advantage function computed by Eq. (12) is
slightly different from Eq. (1), but it is reported that using Eq. (12) increases the stability of
the optimization. Figure 2 shows the deep neural network for forward reinforcement learning.
The input is the current state x and the output consists of the state action value function. The
network has three sub-networks: reward network rest(x;wr ), state value function network
Vest(x;wV ) and the preference network. To optimize the state value and preference function
networks, many algorithms such as SARSA, Deep Q Network (DQN) [13], Double DQN
[26] can be used and we adopt DQN for simplicity.
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Fig. 2 Proposed network architecture for forward reinforcement learning that consists of two sub-networks:
state value function and preference. The advantage function is derived from the preference function by Eq. (12).
The output of the network is the state-action value function given by Eq. (11)

4 Experiments

4.1 Atari Games

To validate our method, we selected Atari 2600 games provided by the Arcade Learning
Environment [2], which has been a popular benchmark for evaluating reinforcement learning
progress in recent years [7,13,27]. In particular, we chose six games: Boxing, Breakout,
Enduro, Pong, Seaquest, and Space Invaders.

To collect the expert dataset, we generated 1.5 million frames of human gameplay expe-
riences in the format of

T = {τi }Ñπ

i=1, τi = {(
xπ
i,t , a

human
i,t , xπ

i,t+1

)}Ti−1

t=0
,

where ahuman
i,t is an action executed by a subject. We collected the data from three subjects.

Then, we selected the state transition data {(xπ
i,t , x

π
i,t+1)} to construct Dπ . On the other

hand, we found that a policy that selects actions uniformly at random did not explore the
environment efficiently because the gamewas over at the early stage of gameplays. Therefore,
for every state xt in Dπ a uniformly random action arandomt is executed, and sample the next
state. In other words, the baseline dataset is constructed by

Db = {(
xi,, x̃i,t+1

)}
, x̃i,t+1 ∼ PT

(· | xi,t , arandomi,t

)
.

In this sampling method, we assured π(x) = b(x) and we removed the density ratio network
from the entire networks shown in Fig. 1. Although this sampling method is not always
possible for real-world applications, a similarmethod is used in PI_LOC [9] that is interpreted
as a sampling-based MaxEnt-IRL.

We follow the basic setup of previous studies [7,13,26,27] to implement the deep neural
networks of inverse reinforcement learning. In each sub-network, there are three convolu-
tional layers followed by two fully-connected layers. The first convolutional layer has 32
8 × 8 filters with stride 4, the second 64 4 × 4 filters with stride 2, and the third and final
convolutional layer has 64 3 × 3 filters with stride 1. The deep neural networks of forward
reinforcement learning has the same low-level convolutional structure of that of inverse rein-
forcement learning. The preference function network has a fully connected layer with 512
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Fig. 3 Four forward reinforcement learning settings. Expert data is converted to rest and Vest by the proposed
IRL and they are utilized by the settings (roriginal, Vest), (rest, Vest), and (rest, 0)while the setting (roriginal, 0)
is the standard forward reinforcement learning scenario.

units. The final hidden layers of the preference function are both fully-connected with |A|
neurons.

Since IRL is an ill-posed problem and the reward function is not uniquely determined, we
cannot compare the estimated reward function with the original reward function of the game.
However, we could not compare our method with deep MaxEnt-IRL [29–31] because deep
MaxEnt-IRL has to find an optimal policy for every iteration and it took enormous time on
the games of Atari 2600. Therefore, we selected PI_LOC [9] for comparison becauseDb can
be used to evaluate the partition function. Instead of solving forward reinforcement learning,
PI_LOC evaluates the partition function from a set of trajectories generated by the baseline

state transition given by T b = {τ j }Ñ b

j=1, where τ j = xbj,0, x
b
j,1, . . . , x

b
j,Tj

. The log likelihood
is formulated by

L(τ ;wr ) =
Ñπ∑
i=1

ln
exp

(∑
t γ

t rest
(
xπ
i,t ;wr

))
∑Ñ b

j=1 exp
(∑

t γ
t rest

(
xbj,t ;wr

)) .

We used Db to construct T b. This is reasonable because trajectories in T b should be noisy
trajectories around the optimal state transitions. Note that |T π | is much smaller than |Dπ |
because an element in T π is a trajectory. To evaluate the quality of the estimated reward and
state value function, we computed an optimal policy by forward reinforcement learning with
them and compared the learning speed. We considered four learning settings illustrated in
Fig. 3:

1. (roriginal, Vest): the value function network is initialized by the result of IRL and the
original reward is used to find a policy by forward reinforcement learning. That is, wV

is initialized by the weight vector estimated by IRL and the reward network is not used
at all.

2. (rest, Vest): the value function network is initialized by the result of IRL and the estimated
reward is used.

3. (roriginal, 0): the value function is initialized by zero (wV = 0) and the original reward is
used. This corresponds to a standard forward reinforcement learning scenario.

4. (rest, 0): the value function is initialized by zero and the estimated reward is used. Only
this setting is feasible in the standard IRL methods, because the state value function is
not estimated explicitly.

5. (rPI_LOC, 0): the reward is estimated by PI_LOC and the value function is initialized by
zero.

6. CLONING: a stochastic policy π(a | x) is directly estimated by maximizing the likeli-
hood from the optimal dataset.

To train the deep neural networks of forward reinforcement learning, we use the identical
learning algorithm, experience replay, clipping the gradient used by Wang et al. [27]. The

123



900 E. Uchibe

0 20 40 60 80 100

−40

−20

0

20

40

60

80

100

av
er

ag
e 

sc
or

e
(a): Boxing

0 20 40 60 80 100
0

100

200

300

400

500

(b): Breakout

0 20 40 60 80 100
0

500

1000

1500

2000

2500

(c): Enduro

0 20 40 60 80 100
epoch

−20

−10

0

10

20

av
er

ag
e 

sc
or

e

(d): Pong

0 20 40 60 80 100
epoch

0

10000

20000

30000

40000

50000

60000

70000
(e): Seaquest

human
(roriginal,Vest)

(rest,Vest)

(roriginal, 0)

(rest, 0)
(rPI LOC, 0)

CLONING

0 20 40 60 80 100
epoch

0

1000

2000

3000

4000

5000

6000

7000

(f): Space Invaders

Fig. 4 Average performance of forward reinforcement learningwith the different settings over ten experiments
when tested on a set of six Atari games. Vertical bars represent one standard deviation from the mean

major difference is an action selection strategy and we adopted softmax action selection
in which a stochastic policy is calculated by π(a | x) ∝ exp(Q(x, a)/T ), where T is a
temperature that controls the randomness. According to the previous studies [26,27], we
start the game with up to 30 no-op actions to provide random starting positions for the agent.
The discount factor is set to 0.99.

Figure 4 compares the learning speed, in which the performance is evaluated by the score
of the game. A training epoch is 250,000 frames and for every 10 epochs we evaluate the
network of forward reinforcement learningwith a testing epoch that lasts 125,000 frames. The
horizontal solid and dotted lines represent the performance of human experts and CLONING,
respectively. The error bars in each panel shows one standard deviation from the mean scores
of CLONING and those of forward reinforcement learning methods, respectively.

In all of the six game environments, the best learning performance was achieved by the
setting (roriginal, Vest). That is, we found the best performancewhen the state value function of
forward reinforcement learning was initialized by the result of inverse reinforcement learning
and the original game rewardwas used.As comparedwith the standard forward reinforcement
learning setting (roriginal, 0), the learning speedwas significantly improved.On the other hand,
the policies trained with the estimated reward rest was poorer than those trained with the
original reward roriginal at the final performance at the end of training. This is not surprising,
because the expert datasets provided by the subjects were not optimal. However, we also
found that the setting (rest, Vest) achieved slightly better scores than the human plays on the
games of Enduro and Seaquest. This suggests that our proposedmethod retrievedmore useful
information from the dataset. In addition, the learning speed was improved by initializing
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the state value function when we compared the speed of (rest, Vest) with that of (rest, 0). The
performance of PI_LOC was extremely poor in this experiment. One possible reason is that
PI_LOC is sensitive to the trajectory length and its variation.

∑
t γ

t rest(xi,t ;wr ) is a Monte
Carlo estimate of the value of the trajectory τi and it has large variance for small Ñπ and
large Ti .

4.2 Reversi

Reversi (a.k.a. Othello), which is a deterministic, perfect information, zero-sum game for two
players, has been studied by the AI community [11,12,20,24,25,32]. The game’s goal is to
control a majority of the pieces at the end of the game by forcing as many of your opponent’s
pieces to be turned over on an 8× 8 board as possible. A single move might change up to 20
pieces, and an average of 60moves are needed to complete the game. Although reinforcement
learning has been successfully applied to the game of GO, which is much more complicated
than Reversi, it took a huge amount of computing time to find an optimal policy [18]. This
provides motivation for finding a dense reward structure by IRL.

To prepare Dπ , we used three stationary policies: the first policy is RANDOM, which
always selects a random action from available actions. The other players are HEUR and
COEV that take an action based on the following evaluation function

F(x) =
64∑
i=1

xiwi + n, n ∼ U (−2, 2)

where xi is 1 when the square i is occupied by the player’s own disc, −1 when it is occupied
by an opponent’s disc and 0 when it is not occupied, and wi is the weight. Notice that n is a
random variable that is sampled from a uniform distribution U (a, b) on the interval (a, b).
Adding a noise to the evaluation is for the reason that we would like to collect a variety of
game trajectories. The weight wi of HEUR is determined manually while that of COEV is
optimized by a co-evolutionary computation method [11]. Every policy repeatedly played
against every other, and then the state transitions were retrieved from the game trajectories
of the winners. On the other hand, the baseline dataset Db was constructed by retrieving the
state transitions from the trajectories in which two RANDOM policies played the game. The
numbers of samples are |Dπ |= |Db| = 105.

In this experiment, each sub-network of IRL is implemented by a feedforward neural
network with two hidden layers [24,25] with rectified linear units and one linear output
layer. As opposed to the previous experiment, the density ratio network is important because
we cannot assume π(x) = b(x). The input is given by a 64-node vector x ∈ {−1, 0,+1}64,
where 0 represents an empty square, and +1 and −1 respectively represent the black and
white pieces. Every hidden layer has 100 nodes. Since the computational cost of finding an
optimal policy on the game of Reversi is much cheaper than that on the Atari 2600 games, we
can evaluate the model-based Wulfmeier’s method that computes the partition function with
dynamic programming. Table 1 compares the approximate computing time for estimating
reward between the proposed method, Wulfmeier’s model-based deep MaxEnt-IRL, and
PI_LOC, where the code is written in python and executed on a Ubuntu Linux 14.04 LTS
AMD64 systems, using Intel Xeon E5-1620V30 CPU with 32 GB RAM and Tesla K40C.
PI_LOC needed less computing time than the proposed method because PI_LOC does not
need to estimate the state value function aswell as the density ratio.Apparently, the computing
time was much shorter than that of Wulfmeier’s method because our method and PI_LOC
did not solve forward reinforcement learning.
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Table 1 Comparison of approximate computation time (hours) between the proposed method, Wulfmeier’s
model-based MaxEnt-IRL, and PI_LOC

Proposed method 4.5

Wulfmeier’s method (model-based MaxEnt-IRL) 38.5

PI_LOC (sampling-based MaxEnt-IRL) 1.7
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Fig. 5 Average performance of forward reinforcement learningwith the different settings over ten experiments
when tested versus fixed stationary policies RANDOM, HEUR, COEV and CLONING

Aswe did in the previous Sect. 4.1, we evaluated seven policies optimized by the following
settings (1) (roriginal, Vest), (2) (rest, Vest), (3) (roriginal, 0), (4) (rest, 0), (5) (rWulfmeier, 0),(6)
(rPI_LOC, 0), and (7) CLONING, where the fifth setting means that the value function is
initialized by zero while the reward function estimated by Wulfmeier’s method was used
to train the deep networks of forward reinforcement learning. Notice that a policy obtained
by CLONING is interpreted as a mixed policy of RAND, HEUR, and COEV. The original
reward associated with a terminal state is 1, 0, and −1, respectively, for win, tie, and lose.
The discount factor is set to 0.99.

Figure 5 illustrates how the win rate develops during training when tested versus fixed
stationary policiesRANDOM,HEUR,COEV, andCLONING. Interestingly, the best learning
speed and the best win rate were achieved by the setting (rest, Vest). The policy trained with
the setting (roriginal, Vest) outperformed all of the four policies, but it took about 3×104 plays
to defeat HEUR and COEV and 5.5×104 plays to defeat CLONING. A comparison between
(a) and (c) and that between (b) and (d) revealed that initializing a state value function by the
proposed method was quite effective for faster learning. In fact, CLONING outperformed
the policy trained with the setting (roriginal, rest) because a poor policy at the early stage of
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Fig. 6 Average performance of forward reinforcement learningwith the different settings over ten experiments
when tested versus learning agent

learning failed to collect good experiences. There were no significant difference between (d)
and (e), and it suggests that the reward estimated by the proposed method was similar to
that by Wulfmeier’s method from a viewpoint of learned policies at the end. On the contrary,
Fig. 5f shows that the performance of model-free PI_LOC was slightly worse than that of
the model-based Wulfmeir’s method. This is not surprising because it was relatively easy
to construct the state transition dynamics of the Reversi even though the opponent was not
modeled explicitly.

Figure 6 depicts how the win rate develops during training when tested versus learning
agents. We did not show the result of learning from self-play because the win rate was always
100%. Note that these experiments do not satisfy the Markovian assumption because two
learning agents interacted at the same time. Even if the opponent was a learning agent, the
best learning speed and the best win rate were achieved by the setting (rest, Vest). Figure 6c
shows that the agent trained with the original reward could not win the agents trained with
the reward estimated by the IRL methods. Since the same learning algorithm was used, the
results should be explained by the difference of reward functions. One possible reason is that
rest, rWulfmeier, and rPI_LOC had a dense structure that provides more information about the
game. Consequently, the agents trained with those reward functions learned faster than the
agent with roriginal. There were no significant difference between (d) and (e) as we observed
in Fig. 5.
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5 Conclusion

Weproposedmodel-free deep inverse reinforcement learning that can estimate the state value
function as well as the reward function. Our IRL is efficiently solved by binomial logistic
regression and we do not need to solve forward reinforcement learning. Estimating the state
value function contributes to the fast convergence because the forward reinforcement learning
process with the dueling network architecture can exploit the estimated state value function
to initialize the weights of the network. The proposed method can be applied into continuous
action problems without any changes because the dataset does not contain any action. In this
case, we have to replace DQN with other algorithms that can handle continuous actions such
as Trust Region Policy Optimization [16].

In order to improve the learning process of forward reinforcement learning, we used the
shaping reward technique [15] to exploit the result of inverse reinforcement learning [22]. It
computes shaping rewards by rest(x)+ γ Vest(y)−Vest(x), and the standard DQN is adopted
to find a policy, and we reported that this approach also improved the learning process.
However, using the shaping reward is essentially equivalent to initializing the value function
by Vest [28], and the dueling network shown in Fig. 2 directly utilized the result of inverse
reinforcement learning. Furthermore, we did not optimize the network architecture in this
study. More systematic investigations on such deep networks as activation functions and
learning algorithms are needed for future study.

A major limitation of our method is that the estimated reward and value function severely
depend on the choice of the baseline dataset. To overcome this limitation, we plan to introduce
the framework of GCL and GAIL that are based on Generative Adversarial Networks. If
forward reinforcement learning with an estimated reward generates a set of baseline state
transitions, we can devise a new method that can learn reward and baseline state transition
simultaneously based on our current framework. This extension is left for future work.
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