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Abstract. In this article, we propose some methods for deriving symbolic interpretation of
data in the form of rule based learning systems by using Support Vector Machines (SVM).
First, Radial Basis Function Neural Networks (RBFNN) learning techniques are explored,
as is usual in the literature, since the local nature of this paradigm makes it a suitable plat-
form for performing rule extraction. By using support vectors from a learned SVM it is
possible in our approach to use any standard Radial Basis Function (RBF) learning tech-
nique for the rule extraction, whilst avoiding the overlapping between classes problem. We
will show that merging node centers and support vectors explanation rules can be obtained
in the form of ellipsoids and hyper-rectangles. Next, in a dual form, following the frame-
work developed for RBFNN, we construct an algorithm for SVM. Taking SVM as the main
paradigm, geometry in the input space is defined from a combination of support vectors
and prototype vectors obtained from any clustering algorithm. Finally, randomness associ-
ated with clustering algorithms or RBF learning is avoided by using only a learned SVM
to define the geometry of the studied region. The results obtained from a certain number of
experiments on benchmarks in different domains are also given, leading to a conclusion on
the viability of our proposal.

Abbreviations. RBF – Radial Basis Function; RBFNN – Radial Basis Function Neural
Network; SVM – Support Vector Machine

Key words. rule based learning system, rule extraction, RBF neural networks, support
vector machine

1. Introduction

When Artificial Neural Networks and general connectionist paradigms are used
for constructing supervised classifiers, black-box models are produced, a significant
drawback for a learning system even if the obtained performance is satisfactory
for the user. With the aim of making the resulting classifier system interpretable,
in the last 15 years rule extraction methods for trained neural networks have been
developed [1, 5, 15, 22, 25]. In the case of Radial Basis Function Neural Networks
(RBFNN) [12, 16], proposed rule extraction algorithms [8, 10, 14] usually impose
restrictions during the training phase, to largely avoid overlapping between classes
or categories and thus to facilitate the knowledge extraction process.

�Corresponding author.
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Also, it has been demonstrated in the last decade that Support Vector Machines,
(SVM) [4, 6, 12], which are derived from the statistical learning theory by
V. N. Vapnik [23], have an excellent classification and approximation qualities on
all kind of problems. However, as it is the case of artificial neural networks, mod-
els generated by these machines are difficult to understand from the point of view
of the user.

In the research on rule extraction from neural networks, it has been recently argued
that a fidelity-accuracy dilemma exists, hence it must be distinguished between rule
extraction using neural networks and rule extraction for neural networks [24]. Main
problem addressed in this work is how to translate the knowledge acquired for a
learned RBFNN or SVM during a supervised training to a description in a new
representing language. The new model should be functionally equivalent to the
learned machine that it was derived for, so that the same outputs be obtained.

Interpretability using the geometry of learned SVM classifiers in the form of a
rule-based learning system is our goal. Two novel rule extraction methods for super-
vised classification problems are presented based on both, prototype vectors and
vectors lying on the boundaries of the classes. Prototype vectors will be obtained
either, from centers of a RBFNN trained under any training regime (supervised or
unsupervised) or from any clustering algorithm. They will be used as centers for
the generated regions defining rules. Vectors on the frontiers of the classes will be
selected from the set of support vectors obtained from a trained standard SVM for
the supervised classification problem. These vectors will be used as delimiters of the
regions defining rules and they will help to avoid overlapping between classes.

On the next section, the first novel algorithm based on a RBFNN generating
prototype vectors is presented. RBFNN is first trained to obtain centers for the
rules, next support vectors obtained from a trained standard SVM are used as
classes delimiters, thus obtaining a new rule extraction method from RBFNN. This
approach starting from a trained RBFNN is the most common in the literature,
producing descriptions in the form of ellipsoid rules. Furthermore, the interpreta-
tion of the rules is facilitated through a second derivation in the form of hyper-
rectangle rules, which are even more amenable for the user. The efficient use of the
knowledge associated with the support vectors due to the geometry of the input
space allows this method to solve the usual problematic of overlapping between
classes when extracting rules, and it imposes no restrictions on the RBF network
architecture, or its training regime.

On Section 3, in a dual form, starting with support vectors selected from a
trained SVM and prototype vectors generated by any clustering algorithm or even
by a RBFNN, a rule extraction procedure for SVM is proposed. This method is
performed independently from the hyper-parameters and kernel selection in the
SVM, and from the clustering algorithm that is implemented in order to obtain
the prototype centers. The rule extraction method relies only on the geometry in
the input space adopted from the learning functions. Like the previous one, it
produces descriptions in the form of ellipsoid and hyper-rectangle rules.
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Both proposed methods use a clustering algorithm or an unsupervised learned
RBFNN to determine prototype vectors for the generation of rules during the rule
extraction procedure for a supervised classification problem: for the whole input
space in the first presented method, and for each separated class in the second
one. High variability in the results is expected, and so is observed on several data
sets, since it is well known that the performance of clustering algorithms varies
when initial conditions of the training are modified. As a final extension, the sec-
ond algorithm was modified for the exclusive use of the information supplied by a
SVM, so variability is eliminated and it is showed that it is possible to cluster data
from a learned SVM. Finally, some concluding remarks are presented and future
work is discussed.

2. Interpretation of RBFNN with Support Vectors

The hypothesis space implanted by these learning machines is constituted by
functions in the form,

f (x,w, v)=
m∑

i=1

wkφk (x, vk)+w0. (1)

Nonlinear activation function φk expresses similarity between any input pattern x
and the center vk by means of a distance measure. Each function φk defines a
region in the input space, the receptive field, on which the node produces an appre-
ciable activation value. In the common case, when the Gaussian function is used,
the center vk of the function φk defines the prototype of an input cluster k and the
variance σk defines the size of the covered region in the input space.

A limited number of rule extraction methods directed to RBFNN have been
developed [8, 10, 14] since the local nature of RBF neural networks makes them an
interesting platform for performing rule extraction. However, basis functions over-
lap to some degree in order to give a relatively smooth representation of the distri-
bution of training data [12, 16], representing a major drawback for rule extraction.
To avoid the overlapping, most of the methods in the literature use special training
regimes or special architectures in order to guarantee that RBF nodes are assigned
and used by a single class.

The solution provided by a SVM for classification tasks is a summation of kernel
functions, k (·, ·), constructed on the basis of a set of sv support vectors, xi,

fa(x)= sign

(
sv∑

i=1

αiyik (x,xi)+b

)
. (2)

Support vectors are the training patterns nearest the separation limit between
classes or they are misclassified data; in any case, they are the most informative
samples for the classification task. Moreover, it was already recognized in [21] that
the SVM relies only on distances in the Reproducing Kernel Hilbert Space.
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Therefore, when Gaussian kernels or polynomial degree one or two kernels are
used, the input space is endowed with a certain geometrical structure according
to the kernel selected. This structure, based on standard distances, can be merged
with those attached to the node centers and the RBF chosen, usually a Gaussian
function.

2.1. rule extraction methodology

Node centers generated by RBFNN, independently of the used training regime,
are located in zones representing a ‘center of mass’ for the patterns associated
with this center, whereas support vectors lie on the geometrical border of the class.
Hence, by limiting influence zones associated with RBF node centers with support
vectors near the frontier, we will show that it is possible to construct regions in
the input space, which will be later translated to if-then rules. These regions will
be originally defined as ellipsoids, that is, we will generate rules whose antecedent
is the mathematical equation of an ellipsoid. In order to increase the explanatory
power of the generated rules for the user, hyper-rectangles will be defined from
parallel ellipsoids to the axes in a later phase. They will generate rules whose pre-
mise is a set of restrictions on the values of each variable (Figure 1).

Two main features will be considered to evaluate the performance of the rule
extraction task in the form of ellipsoids: (i) ellipsoids must adjust to the form of
the decision limit defined by the SVM, exhibiting an overlapping between classes
that is as low as possible; (ii) ellipsoids must be as large as possible to cover many
data producing a small number of rules.

USER   
INTERFACE

RBFNN

SVM
RULE 

EXTRACTION 
MODULE

Training 
Data

Rules: 

IF AX1
2 + BX2

2 + CX1X2 + DX1 +
EX2 + F ≤ G
THEN CLASS

IF X1 ∈  [a,b]  ∧   X2 ∈  [c,d] 
THEN CLASS 

Support

vectors

Figure 1. The rule extraction method from RBFNN and support vectors.
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In our proposal, the rule extraction method does not involve any special
RBFNN training algorithm or specially devoted architecture; it extracts rules from
any ordinarily learned RBFNN. In order to solve the overlapping problem between
rules, a SVM is used as a frontier pattern selector. In the following, we describe
the proposed algorithm (Algorithm 1) for deriving a set of rules from a trained
RBFNN.

Initially, a partition of the input space is made by assigning each input pattern
to its closest center, a RBF node, according to the Euclidean distance. It must be
noted that when a pattern is assigned to its closest center, it will be assigned to the
RBF node that will give the maximum activation value for that pattern, without
taking into consideration the class applicable for this node.

Rules = Rule Extraction{Learned RBFNN, Training set}
Support Vectors = train SVM{Training set}
assign patterns to the nearest RBF node
assign class to RBF nodes using RBFNN
for each RBF node

for each RBF node with patterns having the same class
Region = Build Region{RBF node, Patterns, Support Vectors}

end for
for other classes in the partition

determine midpoint of data in the class
Region = Build Region{Midpoint, Patterns, Support Vectors}

end for
end for
translate each Region to a Rule

end Rule Extraction

Algorithm 1. General algorithm for rule extraction from RBFNN and support
vectors.

Next, a class label is assigned for each center of RBF units. The output value
of the RBF network for each center is used in order to determine this class label.
Then, with data having the same class as the node in the partition, an ellipsoid is
constructed for each node. Nevertheless, according to the proposed construction,
data belonging to other classes could be present in the partition of RBF units. In
order to divide these data, we determine the mid-point of each class in the region.
Each mean is used as a center of its class to construct a new ellipsoid with the
associated data. Once the ellipsoids have been determined, they are transferred to
rules.

Ellipsoids exhibiting low overlapping between classes and covering data to
produce a small number of rules are still the main features to be accom-
plished for the rule extraction procedure. In order to obtain ellipsoids with
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these characteristics, the support vectors are used to determine the axes and
vertices (Build Region{Midpoint or RBF node, Patterns, Support Vectors} in
Algorithm 1): first, the RBF node or the midpoint (prototype) of the class will
be used as the center of the ellipsoid. Next, the support vector of the same class
with both a value of the Lagrange multiplier α smaller than the C parameter and
a maximum distance to the prototype or node is chosen. The straight line defined
by these two points determines the first axis of the ellipsoid. The rest of the axes
and the associated vertices are determined by geometry. To construct hyper-rectan-
gles a similar procedure is followed. The only difference is that parallel lines to the
axes are used to define the axes of the associated ellipsoid.

This procedure will generate several rules by each node, as many rules as the
number of classes included in the partition. In Figure 2, we show two examples
with both ellipsoids and hyper-rectangle type rules, generated by the extraction
rules algorithm from a trained RBFNN on artificial data on the plane.

Figure 2. Two examples of (a) ellipsoids and (b) hyper-rectangles generated by the rule extraction
method from a trained RBFNN on artificial data on the plane.
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2.2. refining the rules base

In order to eliminate or to reduce the overlapping that could exist between
ellipsoids of different classes, an overlapping test is applied. The overlapping
test (Condition(i) = Overlapping Test{Region(i), Support Vectors} in Algorithm 2)
checks when a support vector from another class exists within the ellipsoid. Since
support vectors are the points nearest to the decision limit, their presence within
an ellipsoid of different class is a reliable indicator of overlapping. When the
overlapping test is positive, the ellipsoid is divided.

Region Rules = Region Partition{Region, Support Vectors}
Condition(1) = Overlapping Test{Region, Support Vectors}
Data = Region Data; Number of Regions = 2
while any Condition(i) == True & Num Iterations <= Max Iterations
{Prototypes, Partition} = Determine Prototypes{Data, Number of Regions}
for i=1:Number of Regions

Region(i) = Build Region{Prototypes(i), Partition(i), Support Vectors}
Condition(i) = Overlapping Test{Region(i), Support Vectors}

end for
Number of New Regions = 1
New Data = empty set
for i=1:Number of Regions

if Condition(i) == False | Num Iterations == Max Iterations
Region Rules = Region(i)

else
Number of New Regions = Number of New Regions + 1
New Data = New Data + Partition(i)

end if
end for
Data = New Data; Number of Regions = Number of New Regions

end while

end Region Partition

Algorithm 2. Procedure for refining the rule base in order to reduce the overlap-
ping between classes.

This procedure will allow the rule base be refined in order to reduce the overlap-
ping between classes. When the ellipsoids are divided, more specific rules are gener-
ated to exclude data from other classes. Algorithm 2 can be executed in an iterative
form; depending on the number of iterations, two or more partitions by ellipsoid
can be obtained. The user can establish the maximum number of iterations, thus
controlling the number of generated rules for each RBF node.

According to the extracted rules, the generated system classifies an example by
assigning it to the class of the nearest rule in the knowledge base, following the
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nearest neighbor philosophy, by using the Euclidian distance. If an example is
covered by several rules, we choose the class of the most specific ellipsoid or hyper-
rectangle containing the example; that is, the one with the smallest volume.

3. Interpretation of SVM with Prototype Vectors

From a geometrical perspective, support vectors are the most informative samples
for the classification task, lying in the frontier between classes. On the other hand,
prototype vectors representing classes can be generated by any clustering algo-
rithm, and so a RBFNN will be not longer necessary to extract rules. Thus, a rule
extraction procedure can be derived – as a dual one from the formerly presented
one [18] – : first a standard SVM is learned on the training set for the super-
vised classification problem, generating a set of of support vectors, next a cluster-
ing algorithm determines prototype vectors for the classes, and finally regions of
ellipsoids (hyper-rectangles) are built to be translated into if-then rules (Figure 3).
The main differences of this methodology from the RBFNN-based rule extraction
one are (Figure 4) as follows:

– When the classification task is performed: formerly, RBF node centers to be
considered prototype vectors were determined having no consideration about
classification of the patterns; now clustering implemented to find prototype
vectors works for each separated class.

– Extracted rules from the SVM bi-classifier only cover one class, the remaining
being space assigned to the another class.

Support vector 
machine

Support
vectors

α parameters

EXTRACTION
RULES  

METHOD

Clustering
algorithm  

Prototype 
vectors

Data

Ellipsoids 

Equation rules 

Hyper-rectangles

Interval rules 

New
model

SVM
function

Figure 3. The rule extraction method from SVM and prototype vectors.
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Figure 4. Hyper-rectangles generated by applying the iterative procedure of Algorithm 3.

The number of regions necessary to describe the SVM model will depend on the
form of the decision limit. It usually happens that only one ellipsoid is not suffi-
cient to describe the data. Then, the rule base is determined by an iterative proce-
dure beginning with the construction of a general ellipsoid, which is divided into
ellipsoids that adjust progressively to the form of the surface decision determined
by SVM (Algorithm 3). To determine the right moment to divide an ellipsoid,
a partition test is applied. When the test result is positive for one ellipsoid, it
will be divided. A partition test is considered as positive (Condition(i) = Parti-
tion Test{Region(i), Support Vectors} in Algorithm 3) if the generated prototype
belongs to another class, if one of the vertices belongs to another class or if a
support vector from another class exits within the region. To determine the class
label of the prototypes and the class label of the vertices the SVM function is used.

Rules = Rules Generation{Learned SVM, Training set}
Number of Regions = 1
for each Class

Data = Class Data
{Prototypes(0), Partition(0)} = ...
Determine Prototypes{Data, Number of Regions}
Region(0) = Build Region{Prototypes(0), Partition(0), Support Vectors}
Condition(1) = Partition Test{Region(0), Support Vectors}
Number of Regions = 2
while any Condition(i) == True & Num Iterations <= Max Iterations

{Prototypes(i), Partition(i)} = ...
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Determine Prototypes{Data, Number of Regions}
Region(i) = Build Region{Prototypes(i), Partition(i), Support Vectors}
Condition(i) = Partition Test{Region(i), Support Vectors}
Number of New Regions = 1
New Data = empty set
for i=1:Number of Regions

if Condition(i) == False | Num Iterations == Max Iterations
Region Rules = Region(i)

else
Number of New Regions = Number of New Regions + 1
New Data = New Data + Partition(i)

end if
end for
Data = New Data; Number of Regions = Number of New Regions

end while
end for
translate each Region to a Rule

end Rules Generation

Algorithm 3. Iterative procedure for extracting a rule base from a learned SVM
with prototype vectors.

Then, to define the number of rules per class the algorithm proceeds as fol-
low: beginning with a single prototype, the associated ellipsoid is generated. Next,
the partition test is applied on this region. If it is negative, the region is trans-
lated to a rule. Otherwise, new regions are generated. In this form, each iteration
produces m regions with a positive partition test and p regions with a negative
partition test. The latter are translated to rules. In the next iteration, the data of
the m regions are used to determine m+ 1 new prototypes and to generate m+ 1
new ellipsoids. This procedure collapses once all partition tests are negative or the
maximum number of iterations is reached. The process thus allows the number of
generated rules to be controlled. Figure 5 shows an example of regions generated
for each iteration.

4. Overcoming the Randomness of the Clustering Algorithm

Although the dependency of the final clustering result on the random way in which
the prototypes are selected is well known [7], this behavior is in no way desirable.
How to solve this randomness in the solution is an open research area. We propose
a new framework for dealing with this problem by using only the SVM paradigm
that represents an alternative.

In order to eliminate the sensitivity of the rule extraction method to the initial
conditions of clustering when prototype vectors are being found, we propose
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Figure 5. Regions generated in the plane by the rule extraction method, in the form of (a) ellipsoids, or
(b) hyper-rectangles.

determining the initial centers for the clustering algorithm from the support
vectors [19]. Since the SVM solution is univocally determined for fixed hyper-
parameters, only one final base of rules is possible. Thus, if m is the number
of necessary prototypes for iteration, then the m initial conditions for the k-means
procedure are determined in the following form: for each class,

1. Select m support vectors with the same class label, according to some
determined criteria.

2. Assign examples to their closest support vector according to the Euclidean
distance.

3. Once the initial partitions have been established, the mean of all instances in
each partition is calculated.

4. These points are the initial conditions for the clustering algorithm.

In order to accomplish the first step in the proposed algorithm, three criteria,
named the partition schemes, were used to select the support vectors:

– Partition scheme 1: select those vectors with the smallest average dissimilarity
with respect to data [11].

– Partition scheme 2: select the support vectors nearest to each other.
– Partition scheme 3: organize the support vectors in descending order accord-

ing to the α parameters (Lagrange multipliers) and select the first m vectors. A
higher value would indicate a more informative pattern [9].

In all the cases, if more prototypes than available support vectors are required,
the assembly of initial partitions is completed using those points with the smallest
average dissimilarity with respect to the data.
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5. Experiments

In order to evaluate the performance of the rule extraction algorithms in this
article, we carried out several experiments on data bases obtained from the UCI
repository [2]. Table 1 shows the characteristics of the data bases that were used
in the experiments. SVM was implemented by using the ‘OSU Support Vector
Machines Toolbox v3.00’ software [13]. In order to validate the hypothesis about
the independence of the rule extraction method with respect to the RBFNN train-
ing techniques used, two different training procedures were used: the Netlab soft-
ware [17], which uses the EM algorithm to determine the RBF centers, and the
Orr software [20], which uses forward selection.

In the rule extraction community, the fidelity, accuracy, consistency, and comprehen-
sibility (FACC) framework [1] is usually used to evaluate the extracted rules. Consis-
tency has not been evaluated in this work because the presented approach in its final
step eliminates any type of randomness in the algorithm and a total consistency exists,
so rules extracted under differing training sessions will produce the same classifications
of test examples. Instead, it has been measured the overlapping between rules, showing
specificity of the rules, and the coverage, measuring the generalization obtained with
the extracted rules. The accuracy–fidelity dilemma [24] has not been considered and
both measures are presented evaluating the rules base. Therefore, performance of the
generated rules is quantified with the following measures:

– Accuracy (Ac): percentatge of classification error provided by the rules on the
test set.

– Fidelity (Fd): percentage of the test set for which SVM and rule base output
agree.

– Coverage (Cv): percentage of the test set covered by the rule base.
– Overlapping (Ov): percentage of the test set covered by several rules.
– Comprehensibility measured as the number of extracted rules (NR).

Table 1. Data bases and their characteristics.

ID Database Data Attributes Type Classes

1 Iris 150 4 Real 3
2 Wisconsin 699 9 Symbolic 2
3 Wine 178 13 Real 3
4 Soybean 47 35 Integer 4
5 New-Thyroid 215 5 Real 3
6 Australian 690 14 Real and symbolic 2
7 Spect 267 23 Binary 2
8 Monk1 432 6 Symbolic 2
9 Monk2 432 6 Symbolic 2

10 Monk3 432 6 Symbolic 2
11 Zoo 101 16 Symbolic 7
12 Heart 270 13 Real, symbolic, and binary 2



RULE-BASED LEARNING SYSTEMS 13

Tables 2–5 show the accuracy of the RBF network and the performance val-
ues of the extracted rule base obtained when interpreting RBFNN with support
vectors. Results were obtained by averaging 10 runs over stratified 10-fold cross-
validation when the test set was not provided. We can observe a high agreement
between the results obtained from the rule base and those obtained from the RBF
network. Further, because the Orr method uses more hidden units to that based
on the Netlab software to obtain better performance, it produces a higher number
of rules than the latter.

When interpreting SVM with prototype vectors, Tables 6 and 7 show the pre-
diction error of the SVM and the performance values of the extracted rule base
for each problem when ellipsoid and hyper-rectangle equations are used, respec-
tively. Results were obtained by averaging over stratified 10-fold cross-validation
when a test set was not available. Prototypes to be employed in the rule extraction
procedure were determined using the k-means clustering algorithm [3]. Main point
to be emphasized is the very high fidelity between the rule base and the initial
learned SVM with a low overlapping degree. These values indicate that the gen-
erated rule base model captures most of the information embedded in the SVM,
and it is functionally equivalent to the learned SVM.

As it was expected, during the experimentation process it was observed that the
quality of the solution depends on the initial values for the centers; the selection

Table 2. Performance values for several data base when ellipsoids regions are
used (with EM algorithm).

ID RBF RBF Ellipsoid rules

database nodes (%) error (%) Ac Fd Cv Ov NR

1 4.5 4.0 3.3 96.67 64.67 0.00 6.8
2 2.2 2.9 3.2 98.24 91.21 1.76 5.7
3 3.0 1.1 3.8 97.78 66.43 2.75 9.7
4 5.4 2.0 2.0 96.00 17.00 0.00 6.9
5 9.3 6.5 6.0 94.91 80.99 2.29 16.3

10 6.0 4.8 6.0 95.14 63.19 0.93 14.0

Table 3. Performance values for several data base when user-friendly
hyper-rectangle regions are used (with EM algorithm).

ID RBF RBF Interval rules

database nodes (%) error (%) error Fd Cv Ov NR

1 4.5 4.0 4.0 97.33 70.67 0.00 6.5
2 2.2 2.9 4.1 96.78 95.01 2.93 14.5
3 3.0 1.1 4.6 95.38 81.30 7.32 10.7
4 5.4 2.0 6.0 91.50 62.50 4.00 10.2
5 9.3 6.5 5.6 94.44 79.07 6.06 16.5

10 6.0 4.8 2.7 97.91 100.0 0.00 11.0
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Table 4. Performance values for several data base when ellipsoids regions
are used (with Orr algorithm).

ID RBF RBF Ellipsoid rules

database nodes (%) error (%) error Fd Cv Ov NR

1 5.1 3.3 2.7 96.67 72.00 0.00 9.2
2 21.5 3.4 3.5 97.22 83.41 0.43 26.4
3 15.2 3.9 3.9 93.26 63.20 0.62 38.1
4 12.4 0.0 4.0 96.00 30.00 0.00 14.7
5 29.32 6.2 6.4 88.87 61.41 0.45 33.0

10 12.0 5.0 6.9 90.97 63.19 3.93 23.0

Table 5. Performance values for several data base when user-friendly
hyper-rectangle regions are used (with Orr algorithm).

ID RBF RBF Interval rules

database nodes (%) error (%) error Fd Cv Ov NR

1 5.1 3.3 3.3 94.67 74.67 0.00 8.9
2 21.5 3.4 4.9 96.19 95.31 3.95 28.2
3 15.2 3.9 6.2 93.30 85.38 7.26 86.2
4 12.4 0.0 8.5 91.50 91.00 30.50 19.6
5 29.32 6.2 5.4 88.87 72.23 0.90 33.0

10 12.0 5.0 6.4 92.36 100.0 57.40 33.0

Table 6. Performance values obtained for each data base when ellipsoid
regions are used.

ID SVM Ellipsoid rules

database (%) error (%) error Fd Cv Ov NR

1 3.3 4.0 98.00 72.00 0.67 7.0
2 3.1 3.4 98.52 89.15 0.30 4.0
3 2.2 1.7 98.30 67.49 0.55 5.9
4 0.0 0.0 100.0 33.00 0.00 6.3
5 3.2 3.2 97.21 80.07 0.00 7.1
6 12.7 13.3 93.60 65.70 2.86 18.4
7 10.2 11.7 96.26 21.39 0.53 14.0
8 5.1 9.1 85.18 33.56 0.00 24.0
9 17.8 21.1 76.38 32.87 0.46 60.0

10 2.3 3.4 97.45 27.55 0.00 7.0
11 4.5 4.5 99.09 31.45 0.74 9.8
12 15.9 13.7 97.04 56.67 0.74 4.5
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Table 7. Obtained performance values for each data base when more user-
friendly hyper-rectangle regions are used.

ID SVM Interval rules

database (%) error (%) error Fd Cv Ov NR

1 3.3 4.0 99.33 68.00 0.00 4.7
2 3.1 3.7 98.24 93.26 0.73 5.1
3 2.2 2.3 96.07 69.89 2.28 8.2
4 0.0 2.0 98.00 75.00 0.00 6.4
5 3.2 3.2 96.30 70.58 2.72 9.2
6 12.7 13.7 93.20 87.66 3.18 21.6
7 10.2 11.2 96.26 40.11 0.00 22.0
8 5.1 5.6 92.59 59.49 0.00 33.0
9 17.8 21.9 75.95 63.19 5.78 84.0

10 2.3 2.7 99.07 100.0 0.00 4.0
11 4.5 5.2 97.07 74.97 0.00 9.4
12 15.9 16.3 96.67 60.01 0.00 20.4

of the prototype vectors by the clustering algorithm directly affects the number
and quality of the extracted rules. Therefore, it was necessary to apply the k-means
algorithm several times, starting with different initial conditions, in order to chose
the best cross-validation solution among all.

Partition schemes introduced in Section 4 for overcoming the randomness of the
clustering algorithm were evaluated on trained SVMs on the data bases of the
UCI repository. Tables 8 and 9 show the results obtained using partition scheme 3,
the one with better performance on the benchmarks for ellipsoid and interval type
equation rules, respectively. It can be observed that the results are comparable with
those obtained using k-means for selecting prototypes, with the improvement that
the mixed SVM – k-means clustering algorithm was applied only once. Thus, it has
been demonstrated that it is possible to obtain an adequate rule base with a single
application of the rule extraction algorithm.

6. Conclusions and Future Work

In this work, a rule extraction method for RBFNN, which uses as a core an
algorithm for building ellipsoids based on support vectors was proposed. Based
on the results obtained, it can be concluded that the extraction technique achieves
consistent models with the RBFNN, without any previous requirement on either
the training regime used or its architecture.

Furthermore, in order to provide SVMs with explanatory power, a method that
converts the knowledge embedded in a trained SVM into a representation based
on rules was developed. The experiments of the rule extraction method on data
bases of different domains, show high levels of equivalence between the SVM and
the extracted rule base.
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Table 8. Performance values for each data base using partition scheme 3
when ellipsoid regions are used.

ID SVM Ellipsoid rules

database (%) error (%) Ac Fd Cv Ov NR

1 3.3 1.3 96.67 62.00 0.00 4.0
2 3.1 3.6 97.35 87.83 0.00 4.5
3 2.2 2.3 97.74 64.62 0.56 7.0
4 0.0 0.0 100.0 15.50 0.00 5.8
5 3.2 3.2 97.21 78.27 0.95 8.6
6 12.7 14.2 92.74 63.42 2.89 21.3
7 10.2 12.3 95.72 17.11 0.53 16.0
8 5.1 12.9 86.11 37.13 0.23 12.0
9 17.8 21.3 78.34 31.48 0.00 61.0

10 2.3 5.6 94.67 44.90 0.00 5.0
11 4.5 5.3 98.32 38.88 0.00 10.2
12 15.9 16.7 97.78 51.11 0.00 5.2

Table 9. Performance values for each data base using partition scheme 3
when more user-friendly hyper-rectangle regions are used.

ID SVM Interval rules

database (%) error (%) Ac Fd Cv Ov NR

1 3.3 3.3 96.67 72.00 0.00 5.0
2 3.1 3.5 98.39 91.80 0.59 9.0
3 2.2 2.5 97.75 69.18 0.56 14.6
4 0.0 0.0 100.0 70.50 6.50 6.8
5 3.2 3.3 96.30 71.69 0.93 11.2
6 12.7 14.2 90.43 81.31 3.91 34.5
7 10.2 11.7 92.51 33.12 2.14 28.0
8 5.1 4.4 92.82 88.99 6.48 15.0
9 17.8 19.6 78.70 62.26 2.31 65.0

10 2.3 2.3 99.07 90.74 0.00 10.0
11 4.5 5.9 96.10 73.09 0.00 9.3
12 15.9 16.7 95.56 60.00 0.00 21.4

Additionally, a new proposal has been derived that avoids randomness in the
extraction rules algorithm. From the results obtained it is possible to conclude
that the proposed modification indeed avoids randomness, and a consistent base
of rules is obtained without process iteration.

Given the achievements of this work, future lines of research arise. For example,
it would be interesting to study the ways to extend the rule extraction methods
to regression problems. If this were achieved, a more versatile technique would be
available for a greater number of cases. Another question that arises is the study of
the possibility of using another representation language to express the new model,
such as fuzzy rules generated from ellipsoids.
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