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In electro/psychophysiological experiments, linear mixed-effect modeling is an effective statistical technique 
for data repeatedly observed from the same experimental participants or stimulus items. This review describes 
the application of mixed-effect modeling to functional responses, in particular those observed in event-
related EEG or MEG experiments, using a discrete wavelet transform. The technique is illustrated with a 
design with several covariates, and procedures for generating posterior samples and computing a Bayesian 
false discovery rate are described.
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INTRODUCTION

Event-related potentials (ERPs) recorded 
using electroencephalography (EEG) or 
magnetoencephalography (MEG) are routinely used 
in the studies of cortical activity related to cognitive 
tasks [1-3] and are also applied to the analysis 
of local field potentials and electrocorticograms. 
The time resolution of the ERP technique allows 
certain aspects of cortical activity to be studied with 
relatively high temporal resolution. This can be used, 
e.g., for examination of electrophysiological reactions 
induced by presentation of a single word embedded 
within a sentence, as well as many other types of 
time-limited cerebral activity. However, a persistent 
problem with this approach is that the magnitude of 
the ERP is usually very small compared to the noise or 
the unmodeled activity; the latter is inevitably present 
in individual trials. This activity often substantially 
varies from one experimental participant to another, 
complicating estimation and inference for “useful” 
responses. Outside of electrophysiology, statistical 
techniques, such as mixed-effect linear modeling, have 
been used for improved statistical treatment of the 

participant heterogeneity [4, 5], but the mixed-effect 
approach is not yet commonly applied to time series 
analysis in EEG experiments. This paper describes the 
application of a wavelet-based functional mixed-effect 
model (WFMM) developed by Morris and Carroll [6] 
to EEG data for the purpose of regression analysis of 
ERPs. This technique provides a flexible model of 
fixed and random effects, as well as a method to limit 
the false discovery rate (FDR) for statistical contrasts 
of time series. 

A wavelet is a limited-duration function with an 
oscillatory pattern, which can be used to provide local 
analysis of the signal energy in nonstationary signals 
([7-9], for introduction see [8, 9]). For a signal Xk = 
= (x1x2 ... xk), let k = 2J, where J is a positive integer 
denoting the scale of the analysis. The discrete wavelet 
transform (DWT) can be described as the recursive 
application of high-pass (hl) and low-pass (gl) filters 
to Xk (1 and 2) followed by downsampling. The filter 
coefficients depend on the family of wavelets that are 
employed.

aJ –1,k = Σmhm–2kaJ, m                     (1)

dJ–1,k = Σmgm–2kaJ, m .         (2)

The coefficients aJ–1,k are termed scaling coefficients 
at the scale J–1 and time index k, and the dJ–1,k are termed 
detail coefficients at the scale J–1 and time index k. 
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The low-pass filter coefficients gl can be defined as gl = 
= (–1)1hl–1. The DWT can be represented in the form 
of a matrix computation, D = WY, where W is an 
orthogonal matrix with the wavelet filter coefficients. 
Applying W to a time series in the data matrix Y, a 
matrix D of detail and approximation coefficients is 
obtained. This matrix D can be used to parameterize 
a model of the stochastic process investigated in an 
EEG experiment. It captures nonstationary response 
properties via the location of the wavelet coefficients, 
which capture the translation of the analysis wavelet 
function in time. It also captures the scale, which 
refers to the extent of the analysis function over time. 
The arrangement of these two parameters allows a 
wavelet analysis to jointly capture both global and 
local signal patterns with some degree of temporal 
localization. This approach is well-suited to modeling 
the chirp-like character often seen in the observed ERP 
responses, which often contain early shorter timescale 
components followed by longer timescale components 
at later time intervals (see Fig. 1A for an example).

Wavelets are now widely applied to EEG analyses 
to characterize time-varying properties of the 
unaveraged EEG signal [10, 11], as well as to address 
the issue of noise in ERP estimations [12]. With regard 
to the analysis of the ERP itself, Bertrand et al. [13] 
were one of the first who proposed to analyze ERP 
responses with the DWT and described the relation 
between the estimates and the continuous wavelet 
transform (see also [14, 15]). Demiralp et al. [16] used 
a wavelet based on quadratic B-splines to analyze late 
cognitive components in ERPs. Their approach treated 
each coefficient (at each scale and time) as a separate 
random variable, which they analyzed using repeated 
ANOVA measures. This analysis takes into account 
the subject variability in the wavelet coefficients 
when characterizing the population estimates of 
the wavelet coefficients. This subject variability in 
either the ERP response or the background activity 
may have a substantial impact on the sensitivity of 
wavelet analysis for later components, which would 
be expected to be more variable than the earlier 
sensory-related components. More recently, Kiebel 
and Friston [17] proposed a hierarchical observation 
model of ERP responses based on analyses of either 
fixed or random effects. Also, Raz et al. [18] proposed 
a random-effect inferential scheme for ERP analysis 
based on wavelets, which is conceptually similar to 
the model adopted here (see also recent work by Wang 
and colleagues [19]).

From a statistical perspective, the wavelet 
transform is popular for denoising because of a 

decorrelating property of the wavelet coefficients 
[20]. The assumption is that the energy of the signal 
will be concentrated in a small number of wavelet 
coefficients, while Gaussian noise is evenly dispersed 
over the remaining coefficients. If these assumptions 
hold, then an EEG signal might be denoised by 
reducing the magnitude of small coefficients. Using a 
DWT, the procedure consists of transforming the EEG 
signal into the wavelet domain, shrinking relatively 
small coefficients towards zero and then using an 
inverse discrete wavelet transform (IDWT) to project 
the signal back to the data domain; this allows one 
to obtain a denoised signal. The scope of the present 
paper will be limited to the use of wavelets to denoise 
the ERPs and leaves for future work the application 
of mixed-effect analysis to the time/frequency power 
distribution of the unaverged EEG signals.

There have been several recent approaches to 
EEG or MEG signal analysis, which have exploited 
wavelets for this type of noise reduction. Quian 
Quiroga and Garcia [21] showed that thresholding the 
wavelet coefficients to zero and subsequently using an 
inverse DWT allow one to obtain improved averaged 
ERP estimates. They also suggested that once wavelet 
coefficients for this denoising analysis are chosen, the 
method does not require heuristic assessment. Wang et 
al. [22] also demonstrated that wavelet denoising can 
improve ERP estimates when a priori knowledge of 
the components is available. Related work by Effern et 
al. [23] compared wavelet, combined Woody-filtering 
and wavelets, and a posteriori Wiener filtering for the 
analysis of single-trial data (see also [24, 25]). As in 
the previous work, they showed that signal estimation 
was improved when wavelet denoising has been 
applied, and that the wavelet approaches  have certain 
advantages over other approaches. However, they 
did not place the estimation procedure in a statistical 
framework to account for subject variability. When 
embedded in an inferential framework, the choice 
of wavelet coefficients for shrinkage could also be 
seen as elicitation of priors in an empirical Bayesian 
analysis. In general, the use of these techniques 
has considerable theoretical relevance, as there is 
persistent debate regarding how the functional EEG 
response should be modeled [26, 27].

The linear regression of multiple covariates has 
been applied to ERP responses by Hauk et al. [28, 29], 
but not using denoising wavelet analysis or mixed-
effect modeling. Other related works included several 
applications of wavelets to functional neuroimaging 
data [30] (Fadili and Bullmore [31] provided an 
overview). For example, Sendur et al. [32] introduced 
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a resampling method based on a DWT to improve 
statistical testing of statistical parametric maps. 

Finally, there is an issue of false discovery rates. 
ERP difference waveforms are sometimes calculated 
in order to find the onset and/or offset of a response 
when comparing an active period to a baseline, or 
a difference between the responses obtained under  
two different conditions. This difference can be 
evaluated using a point-by-point confidence interval 
for the difference, based on the standard error of 
the difference between the waveforms (e.g., [33]). 
However, there is a multiple-comparison problem 
if there is a large number of time points to compare 
[34-36]. Corrections for multiple comparisons reduce 
the sensitivity of the test in order to control the false 
alarm rate, and this problem is multiplied if samples 
recorded either by many electrodes or under many 
conditions should be compared. One approach to 
this problem is to adopt non-parametric permutation 
tests [37]. Another approach (described in the present 
paper) is to calculate a Bayesian FDR for providing 
the difference contrast computed with the functional 
mixed-effect model.

The aim of this review is to illustrate the 
application of the WFMM developed by Morris and 
Carroll [6] to the electrophysiological data. While 
conceptually similar approaches have been advanced 
from a variety of theoretical perspectives, the novel 
aspects of the approach outlined here are that (i) 
it embeds the wavelet denoising procedure in an 
explicit inferential framework, and (ii) it allows the 
computation of a Bayesian FDR for a response time 
series associated with a regressor in the design matrix 
for an experiment. This can be used to model single 
fixed effects or interactions in functional terms. 
The application is illustrated with an experimental 
design that includes random effects for subjects and 
covariates for properties of the stimulus items. In 
the following, a brief description of the mixed-effect 
approach is provided, along with the extension of 
this to functional data analysis. Finally, the example 
analysis is used to illustrate the technique, and this is 
followed by several discussion points.

METHODS

Fixed and Random Effects. The linear mixed-effect 
model approach simulates a response as a function of 
fixed and random effects, as well as a noise term, as 
in Eq. (3) below (the notation similar to Laird and 
Ware  [38]). This approach treats each observation as 

a single point; it can be applied to ERP analysis to 
model the mean amplitude of the response within a 
pre-defined time interval, e.g.,

y = Xβ + Zb + ε, ε ~N(0,σ2I), b ~ N(0,Ψ), ε ⊥ b,    (3)

where y are N samples of the response variable, X 
is the N × p design matrix for the fixed effects, β is 
the p × 1 column vector of fixed-effect coefficients, 
Z is the N × m design matrix for the random effects, 
b is the m × 1 matrix of the random-effect coefficie-
nts, and ε is the N × 1 column vector of the residual 
error. The random-effect coefficients b and residual 
error ε are distributed according to Ψ, the variance-
covariance matrix of the random effects.

In the case where the design matrix Z models a single 
grouping factor, such as experimental participants, the 
model is qualified as having a single random effect. 
When there is more than one grouping factor, Z is 
subdivided into blocks, which capture the correlations 
between and within the grouping factors.

If a participant is presented with a set of stimuli, 
then the responses to those stimuli are likely to be 
more similar to each other than to the responses of 
a different participant. This correlation is captured 
with the grouping factor. Likewise, if a stimulus word 
is presented to a set of participants, the responses to 
that word may be more similar to each other than to 
a different word. Thus, either participants or items 
can be grouping factors. When each participant is 
presented with each stimulus item, then these two 
random effects are said to be fully crossed. Depending 
on the distribution of items to participants within the 
design, other relationships are possible, such as nesting 
of items within separate groups of participants.

Functional Mixed-Effect Models. The functional 
mixed-effect model generalizes the linear mixed-
effect approach to functional analysis. This treats the 
response vector as a time series ([6, 39, 40]; for an 
application to physiological data see [41, 42]). To 
model electrophysiological data, the mixed-effect 
model in Eq. (3) is replaced by a form that includes 
the time parameter in Eq. (4).

y(t) = Xβ(t) + Zb(t) + ε (t), ε ~ MN(P,Q),  
b ~ MN(R,S),                      (4)

where y(t) = y1(t),y2(t)...yn(t) are samples of N obser-
ved time series, arranged so that each observed time 
series is a row. Each time series is observed for t = t1, 
..., tn time points of the length T, and, therefore, the 
matrix Y is N × T, X is the N × p design matrix for the 
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fixed effects, β(t) is the p × T matrix of fixed-effect 
coefficients in the functional form, Z is the N × m de-
sign matrix for the random-effects, b(t) is the m × T 
matrix of random-effect coefficients in the functional 
form, and ε(t) is the N × T matrix of a residual error 
process. The random-effect functions b(t) and residu-
al error process ε(t) are assumed to be distributed ac-
cording to the Matrix Normal (MN) distribution [43], 
P and R are the m × m covariance matrices, and Q and 
S are the (diagonal) T × T covariance matrices. 

Within the framework of the WFMM approach, β(t) 
and b(t) are modeled with the wavelet coefficients 
obtained by applying a DWT to the time series of each 
trial with a discrete matrix version of Eq. (4), as in 
Eq. (5)

Y = XB + ZU + E,         (5)

where Y, X, B, Z, and E are the matrices of the same 
order as in Eq. (4). The matrix U is of order m × T, 
where each row contains a random-effect function on 
the same time interval as the fixed-effect functions, 
corresponding to b(t) in Eq. (4). The rows of U and 
E are assumed to be independently and identically 
distributed matrix variate normal distributions, 
MVN(0,Q) and MVN(0,S), respectively. Both Q and S 
are the T × T discrete-form covariance matrices. The 
wavelet coefficients are obtained by applying a DWT 
projection matrix W′ to each row of Y to provide a 
row vector of the wavelet coefficients d,

d = yW′.           (6)

The estimation is done using Markov Chain 
Monte Carlo (MCMC) re-sampling, which is used 
to get posterior samples of the functions β and b, as 
well as the covariance matrices. In broad terms, the 
MCMC procedure proceeds via three steps: (1) Gibbs 
sampling of the fixed-effect function coefficients 
conditioned by the variance components and the data, 
(2) Metropolis-Hasting sampling of the variance 
components conditioned on the fixed-effect functions 
and the data, and when there are random effects in 
the model, and (3) Gibbs sampling from the random-
effect distribution given the fixed effect functions, 
their variances, and the data. Finally, the wavelet 
coefficients are projected back to the data domain with 
an IDWT via W, which is the transpose of the original 
projection matrix. The result of the model is a posterior 
sample of the fixed-effect functions, fixed-effect 
variances, and pointwise posterior credible intervals. 
Applied to the EEG data, the design matrices X and Z 

capture the variables in the experimental task and any 
covariates introduced to the functional response. The 
fixed effects estimated from the model include a set of 
the curves for each of the fixed-effect regressors in the 
model, their variances, and intervals. MCMC samples 
of the covariance matrices Q and S are obtained from 
a 2D IDWT applied to the covariance matrices in the 
wavelet space.

The WFMM analysis allows one to shrink small 
wavelet coefficients in a Bayesian framework. 
Shrinkage (independent mixture) priors are placed on 
β(t), and vague priors are placed on the covariance 
matrices P, Q, R, and S. Morris and Carroll [6] used a 
scheme in which the prior for the wavelet coefficients at 
the scale j and time k for the fixed effect function i, Bijk = 
= γijkNormal(0,τij) + (1 – γijk)δ0, where γijk Bernoulli(πij) 
and where δ0 is a delta function located at zero. This 
use of a (mixture) prior results in shrinkage of the 
posterior estimates of the wavelet coefficients Bijk. 
There are two regularization parameters associated 
with this prior, τij and πij, which, in the Morris and 
Caroll approach [6], were specified mechanistically 
with an empirical Bayes procedure.

A Bayesian FDR is calculated by summing the 
posterior samples from the MCMC simulation ([44], 
section 4), assuming an effect size of at least the 
magnitude δ. For the posterior samples of the fixed-
effect functions B, the point-for-point posterior 
probabilities of an effect exceeding δ are computed. 
This is done by replacing each point of the posterior 
samples exceeding δ by a constant that depends on 
the number of samples of the fixed-effect functions 
calculated, and by replacing the rest of the set by zero. 
Then, for some choice of the FDR, the time points 
are sorted in a descending order, and a threshold is 
identified to find the maximum value of the response 
within the FDR.

APPLICATION EXAMPLES

Data. The data for the application example consist of 
EEG trials collected in a previously reported sentence-
processing experiment carried out in Dutch (see [45] 
for further details). In that experiment, subjects read 
sentences presented at the center of a CRT monitor 
in the mode of one word at a time. The data analyzed 
here are from two of the conditions of the experiment, 
comparing trials with a semantic violation vs a control. 
The contrast between the semantic violation (a critical 
word, CW) relative to the control was expected to 
yield an effect on the N400 wave form [46] within a 
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time interval of approximately 0.3 to 0.5 sec, and this 
was confirmed earlier [45]. The task for the subjects 
(n = 20) was to indicate whether the sentence was 
sensible or not after the sentence had been completed. 
The EEG response was measured from presentation 
of a CW within the sentence, which in the violation 
sentences was the first word that rendered the sentence 
nonsensical (e.g., trees in The students could speak 
many trees), and in the control sentences was the 
corresponding word in a sensible context (e.g., trees in 
The wind swept through the trees). The stimulus items 
consisted of a list of 90 well-formed Dutch sentences, 
each containing one noun designated as a CW, as in the 
example. The set of 90 violation sentences was created 
by exchanging the CWs of the well-formed sentence 
to create a nonsensical version. Each participant saw 
45 of the sentences in the control version and other 
45 sentences from the violation version, so that no 
participant saw the same sentence in both versions.

The response time series was taken from the EEG 
data within an interval of –0.2 to 0.8 sec from the 
onset of the CW; these data were averaged over five 
channels that were expected to include the N400 
response (these included a Cz lead and four other 
adjacent electrodes approximately 1 cm from Cz). A 
low-pass 4th-order Butterworth filter at 30 Hz was 
applied prior to the data analysis, and for each trial 
the mean of a baseline interval from –0.1 to 0.0 sec 
was subtracted from the entire time series for the 
trial. Artifact trials were identified and rejected using 
a threshold set at ±150 µV. The data were sampled 
during recording at 1 kHz and downsampled to 256 Hz  
for the analysis, so the resulting time series was  
T = 256 time points. Some trials were lost because of 
artifact rejection, leaving 1652 trials in total, and 41.2 ± 
± 2.2 (M ± s.d.) violation trials and 41.4 ± 2.4 control 
trials per participant, on average. To reiterate, the 
purpose of the present analysis is to illustrate how the 
functional mixed-effect regression might be applied 
to an already well-known response contrast, as well as 
to illustrate how additional regressors can be added.

RESULTS

The data matrix Y was modeled with the functional 
model in Eq. (5). The fixed-effect design matrix X 
included an intercept term for the grand mean ERP 
response, and the contrast between violation and 
control conditions, as well as three additional main 
effect covariates: (i) trial block (13) corresponding 
to three blocks of 30 trials, (ii) critical word length 

ranged from 4 to 15 characters, and (iii) word 
frequency estimated using the log-word form of the 
frequency from the Celex database [47]. Each of the 
additional variables was standardized by subtracting 
the mean and dividing by one standard deviation. 
Thus, X had dimensions 1652 × 5. The random-effect 
design matrix Z consisted of a dummy-coding matrix 
identifying the subject (corresponding to the trials in 
Y) and had the dimension 1652×20.

The WFMM analysis used a Daubechies discrete 
wavelet basis (known as db4 in Matlab notion) with 
J = 8 levels of decomposition, a periodic boundary 
correction in an extended mode, and no compression. 
Using MCMC, 5000 samples of the fixed-effect 
functions were obtained, with a burn-in of 1000 
samples. The level a for the FDR was set at 10%, and 
the minimum effect size d was set at 0.1 µV.

Figure 1A shows the grand averaged ERP response 
based on the WFMM analysis. Figure 1B shows that 
the variance function follows the main amplitude 
fluctuation of the grand averaged ERP, with most of 
the variance concentrated from 0.1 to 0.4 sec with a 
low variance from 0.4 to approximately 0.6 sec. The 
within-subject correlation matrix in Fig. 1C shows that 
the time points around the time of the stimulus-related 
N100-P200 complex were in weak positive correlation 
with other time points. This suggests that the stimulus-
related amplitude fluctuation is not strongly related 
to the changes at later times. Also, the time points 
from approximately 0.2 until 0.4 sec more strongly 
positively correlated with each other as a block but 
somewhat negatively correlated with the block from 
0.5 sec until the end of the response interval. This is 
consistent with the main pattern of the grand averaged 
ERP, which appears as a slow oscillatory pattern 
from 0.2 until 0.8 sec. The oscillatory pattern of the 
ERP appears to be reflected in the alternating blocks 
of positive/negative correlations in the correlation 
matrix. The residual error surface in Fig. 1D shows 
broadly positive correlations decreasing as a function 
of time.

The main contribution of the WFMM approach 
is its ability to flexibly model several fixed-effect 
regressors for a response observed in an experiment, 
including credibility intervals for the functional form 
of each effect. Figure 2 shows the response contrasts 
for the covariates included in the WFMM analysis. A 
95% significance interval is plotted above and below 
the fixed-effect functions, and time points exceeding 
the FDR are indicated with solid dots. Figure 2A 
shows the negative potential difference between 
responses with respect to the control and violation 
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CWs from approximately 0.3 to 0.5 sec after CW 
onset, consistent with the N400 effect expected for this 
contrast. The time points, which exceed the FDR, are 
all within the expected time range. The effect of trial 
block appears as a short-duration negative difference 
near the end of the response interval (Fig. 2B),  
and the effect associated with the word length appears 
as a greater positive potential early in the time  
series (Fig. 2C). Finally, in Fig. 2D, there appears  
to be no strong evidence of an effect of the word 
frequency on the response, although there is a weak 
trend for a negative-potential response at approxi-
mately 0.2 sec.

Additional analyses were conducted, including 
regressors that encoded the interaction of the control/
violation contrast with the trial block, word length, 
and frequency, but no differences exceeding the FDR 
were obtained for the additional interactions. Also, a 
model employing crossed random effects for subjects 
and stimulus items was constructed, similar to the 

approach outlined by Baayen et al. [5], but no further 
model improvements were obtained. 

DISCUSSION

Functional mixed-effect modeling based on the 
discrete wavelet transform was used to model the 
data from a sentence-reading experiment. Posterior 
samples were used to provide a Bayesian FDR for 
functional fixed-effect estimates of the ERP contrasts. 
This analysis illustrates how functional mixed-effect 
analysis can be used to perform a Bayesian ERP 
regression. This result is practically relevant for 
electrophysiology researchers because nearly any 
combination of linear fixed-effect functions, including 
factorial contrasts, analysis of covariance, as well as 
hierarchical or crossed random-effect functions, can 
be employed to analyze time-series data. In addition, 
the MCMC approach can be used to obtain estimates 

Fig. 1. ERP response to presentation of the critical word of the sentence-processing experiment. A) Grand average as a function of time 
from the functional mixed-effect regression, B) variance of the grand average, C) correlation matrix showing the within-subject covariance 
surface (scale indicates the correlation values), and D) correlation matrix of the residual error surface (scale indicates the correlation 
values).
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of the variance and covariance parameters to further 
elaborate the regression analysis.

Concerning the application results, the contrast 
between violation and control CWs was obtained 
within the expected time range, supporting the use of 
the WFMM approach to detect ordinary experimental 
effects. The effects of other regressors are consistent 
with the expectations as well, as the effect of the word 
length would be expected to affect early stimulus-
related activity, while the effect of the trial block 
would be expected to affect later components of the 
functional response. The effect of the word frequency 
was not observed in this data set, but the experiment 
was not designed to examine the effect of the word 
frequency per se, so the results are not necessarily 
inconsistent with earlier reports on the word frequency 
revealed by linear regression by Hauk et al. [28, 29]. 
For instance, the range of the word frequencies used 
here is not representative of the range used in the 
earlier studies, and also the words were presented in 
the sentence context here.

With respect to EEG analysis in general, there are 
several potentially limiting assumptions of the WFMM 
approach, which might be investigated in future 
research. First, the wavelet transform is assumed to 
denoise the data because it distributes Gaussian noise 
over wavelet coefficients. However, unmodeled EEG 
activity does not consist primarily of Gaussian noise. 
The dominant feature of the EEG power spectrum is the 
approximate 1/f distribution of the power, often with 
peaks at certain frequency bands, such as the alpha (8-
12 Hz) range. This activity, if it is modeled as noise, 
would be difficult to separate from the evoked activity 
with the wavelet approach outlined here because it is 
not Gaussian; instead, it would be concentrated on a 
relatively small number of the coefficients. In fact, it 
has been argued that the DWT is especially effective at 
modeling these types of the spectra [48, 49]. Note that 
this limitation is shared by other previous approaches to 
EEG denoising, which have applied wavelet denoising. 
However, it is natural to use the wavelet coefficients 
themselves to investigate the 1/f activity, in order to 

Fig. 2. Functional fixed effects calculated from the regression. Coefficient values as the function of time are plotted as a solid line, zero is
indicated with a thin dotted line, upper and lower 95% quantiles are shown as dashed lines, and time points exceeding the false discovery 
rate are plotted on the mean functions as filled circles. A) Contrast between violation and control, B) trial block, C) word length, and D)
word-form frequency.
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identify and correct modeling errors. In future work, 
the distribution of the DWT coefficients themselves 
could be modeled directly using the same Bayesian 
approach outlined here, similarly to the non-Bayesian 
wavelet analysis presented by Davidson and Indefrey 
[45]. Second, the covariance matrices associated with 
the wavelet coefficients were assumed to be diagonal, 
in order to limit the computational complexity of the 
estimation. Future work might investigate whether 
a structured covariance matrix would improve the 
estimation and inference. Finally, it would be useful 
to explore the effect of the choice of the wavelet 
basis on the results. Several different basis types have 
been used in the EEG-related literature, and, as more 
experience is gained with their statistical properties, 
it would be useful to assess the effect of a particular 
selection of the wavelet basis. Also, it is undoubtedly 
important to establish a rationale for the choice of the 
wavelet basis based on a forward model for the EEG.
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