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Abstract
Purpose To develop and validate a pathomics signature for predicting the outcomes of Primary Central Nervous System 
Lymphoma (PCNSL).
Methods In this study, 132 whole-slide images (WSIs) of 114 patients with PCNSL were enrolled. Quantitative features 
of hematoxylin and eosin (H&E) stained slides were extracted using CellProfiler. A pathomics signature was established 
and validated. Cox regression analysis, receiver operating characteristic (ROC) curves, Calibration, decision curve analysis 
(DCA), and net reclassification improvement (NRI) were performed to assess the significance and performance.
Results In total, 802 features were extracted using a fully automated pipeline. Six machine-learning classifiers demonstrated 
high accuracy in distinguishing malignant neoplasms. The pathomics signature remained a significant factor of overall sur-
vival (OS) and progression-free survival (PFS) in the training cohort (OS: HR 7.423, p < 0.001; PFS: HR 2.143, p = 0.022) 
and independent validation cohort (OS: HR 4.204, p = 0.017; PFS: HR 3.243, p = 0.005). A significantly lower response rate 
to initial treatment was found in high Path-score group (19/35, 54.29%) as compared to patients in the low Path-score group 
(16/70, 22.86%; p < 0.001). The DCA and NRI analyses confirmed that the nomogram showed incremental performance 
compared with existing models. The ROC curve demonstrated a relatively sensitive and specific profile for the nomogram 
(1-, 2-, and 3-year AUC = 0.862, 0.932, and 0.927, respectively).
Conclusion As a novel, non-invasive, and convenient approach, the newly developed pathomics signature is a powerful 
predictor of OS and PFS in PCNSL and might be a potential predictive indicator for therapeutic response.
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Introduction

Primary central nervous system lymphoma (PCNSL) is a 
rare and highly aggressive type of extranodal non-Hodgkin 
lymphoma that exclusively affects the brain, spinal cord, 
leptomeninges, and/or eyes. PCNSL comprises only ~ 4% 
of newly diagnosed central nervous system (CNS) tumors 
and 4–6% of all extranodal lymphomas in immunocompetent 
patients [1]. The incidence of PCNSL is between 0.3 and 
0.6 cases per 1000000 people annually in the United States 
and has increased over the past four decades, particularly 
in patients older than 60 years [2–4]. Approximately 95% 
of PCNSLs are classified as diffuse large B-cell lymphoma 
(DLBCL), with a predominantly nongerminal center B-cell-
like (non-GCB) immunophenotype [5]. Typical histopatho-
logical characteristics include a perivascular arrangement of 
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highly proliferating tumor cells forming a unique angiocen-
tric growth pattern [6]. Despite remarkable therapeutic pro-
gress, 15–25% of patients do not respond to chemotherapy, 
and 25–50% relapse after the initial response [7–9], resulting 
in a poor overall outcome. The 5-year overall survival (OS) 
rate ranges from 22.3% to 35% [10–12].

Currently, two prognostic models are commonly used to 
predict clinical outcomes in patients. One was developed 
by the International Extranodal Lymphoma Study Group 
(IELSG) and includes age, Performance Status (PS), serum 
lactate dehydrogenase (LDH), cerebrospinal fluid (CSF) 
protein, and deep brain involvement [13]. The other was 
developed by researchers at the Memorial Sloan-Kettering 
Cancer Center (MSKCC), which includes age and PS [14]. 
However, the levels of LDH or CSF protein (contraindica-
tions for lumbar puncture) at diagnosis are not always clear, 
which adds many limitations to the application of IELSG in 
clinical practice. The MSKCC model did not identify sig-
nificant survival differences in several recent studies [15, 
16]. New insights into the pathobiology of the disease and 
improved treatment approaches continue to challenge the 
application of these models. Thus, there is an urgent need to 
discover new biomarkers associated with prognosis.

Although convolutional pathological diagnosis is time-
consuming, labor-intensive, and relies heavily on the pathol-
ogist’s subjective judgment, the evaluation of histological 
slides remains the gold standard for tumor diagnosis and 
staging. Computational pathology leverages advanced tech-
niques to analyze large-scale pathological data, including 
histopathological images, genomic data, and clinical infor-
mation, and has been shown to improve the efficiency, accu-
racy, and consistency of histopathological evaluations. An 
increasing number of histopathological analysis algorithms 
have been developed for tumor grading [17], automatic clas-
sification [18], and identification of lymph node metastases 
[19]. The Least Absolute Shrinkage and Selection Opera-
tor (LASSO) regression is an efficient machine learning 
method, which analyzes relationships between high-dimen-
sional features and outcomes. It can minimize the potential 
collinearity of variables and has been reported to be valuable 
in the survival prediction of PCNSL [20, 21]. In addition, 

several recent studies have used digital pathology images to 
address survival prediction in various malignancies, includ-
ing lung cancer [22], gastric cancer [23], gliomas [24], and 
lung metastasis in colorectal cancer [25]. Therefore, we 
aimed to explore the possibility of analyzing the automatic 
digital pathological features extracted from Hematoxylin and 
Eosin (H&E)-stained slides to predict prognosis in patients 
with PCNSL.

Here, in this study, we performed a fully automated pipe-
line to extract quantitative features, showed their ability to 
distinguish malignant neoplasms, developed and validated a 
novel pathomics score (Path-score) based on these features 
using the LASSO-Cox regression model in PCNSL patients. 
Furthermore, the Path-score has been proven to have an 
essential correlation with initial treatment response. Finally, 
we constructed a nomogram that combined the Path-score 
and clinical characteristics to conveniently predict patient 
outcomes and demonstrated better performance than existing 
prognostic models.

Materials and methods

Data cohort and study design

The workflow of this study is illustrated in Fig. 1. For rare 
cancer types, especially PCNSL, data acquisition is chal-
lenging, and we cannot get data from public databases, such 
as the TCGA (The Cancer Genome Atlas) database. Patients 
with PCNSL from two cohorts at Beijing Tiantan Hospital 
between January 2019 and March 2023 and corresponding 
whole-slide images (WSIs) were retrospectively enrolled. 
The inclusion criteria were as follows: (1) histologically 
diagnosed CNS-DLBCL; (2) no other concomitant tumors; 
and (3) availability of complete clinicopathological and fol-
low-up information. The exclusion criteria were as follows: 
(1) evidence of systemic DLBCL from computed tomogra-
phy (CT) or positron emission tomography CT (PET CT) 
of the chest, abdomen, pelvis, and bone marrow aspiration; 
(2) no complete and clear WSIs; and (3) missing clinical or 
follow-up data. The cohort 1 contained 68 patients and cor-
responding 71 WSIs was used to build a prognostic model. 
The cohort 2 which included 46 patients and corresponding 
61 WSIs was considered as an independent validation cohort 
(Fig. 1a).

Patient demographic information including age, sex, East-
ern Cooperative Oncology Group (ECOG) PS, Karnofsky 
Performance Status (KPS), Hans, Biopsy type, deep lesion 
involvement, tumor size, number of lesions, IELSG score, 
MSKCC score, treatment, and response were collected. Ini-
tial treatment responses including complete response (CR), 
partial response (PR), stable disease (SD), and progressive 
disease (PD) were determined according to the International 

Fig. 1  Workflow and general methodology of pathomics signature 
construction. a. Whole-slide images (WSIs) acquired from PCNSL 
patients are scanned. The cohort 1 contains 68 patients and corre-
sponding 71 WSIs is used to build a prognostic model. The cohort 2 
which includs 46 patients and corresponding 61 WSIs is considered 
as an independent validation cohort. b. After annotation, patch seg-
mentation, and color normalization, multiple pathomics features are 
extracted from an automatic pipeline using the Cellprofiler software. 
The pathomics score (Path-score) is developed via the Lasso-cox 
regression model for each patient. Survival stratification and time-
dependent receiver operating characteristic (ROC) curves are further 
explored. Finally, the nomogram incorporates the Path-score and clin-
ical characteristics is constructed
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Primary CNS Lymphoma Collaborative Group criteria [26]. 
Patients who were in CR or PR were regarded as Respond-
ers, whereas those who were in SD or PD were categorized 
as Non-Responders. Patients who had progressed during the 
initial treatment were considered to have Primary Resist-
ance. OS was defined as the time from diagnosis to death 
from any cause or last follow-up. Progression-free survival 
(PFS) was defined as the time from diagnosis to progression 
or all-cause death. This study was approved by the Institu-
tional Review Board of Beijing Tiantan Hospital (approval 
number: 2020–059 YW), and written informed consent was 
obtained from all the patients. All the procedures complied 
with the standards of the Declaration of Helsinki.

Image annotation and preprocessing of digital WSIs

All slides were formalin-fixed, paraffin-embedded, and 
stained with H&E. Then, the slides were scanned by a Lecia 
Aperio CS2 scanner into WSIs in a standard file format (the 
‘svs’ format). Scanning magnification was 20X. Two highly 
experienced pathologists annotated the regions of interest 
(ROI) using ASAP (version 2.1). When the annotated results 
are inconsistent, a third senior pathologist will make the final 
judgment. The ROI patches (512 × 512 pixels) were tiled 
using OpenSlide and color-normalized using the Vahadane 
method [27] (Fig. 1b). To reduce the computational time, 50 
non-overlapping representative patches that contained more 
tumor cells from each patient were selected by experienced 
pathologists for further analysis.

Extraction of quantitative features from images

An automated feature extraction pipeline was developed 
using CellProfiler (version 4.2.6), an open-source image 
analysis software [28]. CellProfiler can quantify a variety of 
biological features, including basic features (e.g., cell counts 
and cell size) and complex morphological features (e.g., cell 
shape, distribution of pixel intensity in cells and nuclei, and 
textures of cells and nuclei). First, the images were split into 
hematoxylin-stained and eosin-stained greyscale images by 
the “UnmixColors” module. The nuclei of tumor cells were 
identified with the “IdentifyPrimaryObjects” module. Then the 
“IdentifySecondaryObjects” module identified the cell body 
by using the nuclei as a "seed" region, growing outwards until 
stopped by the image threshold or by a neighbor. Thus it iden-
tified the cytoplasm by "subtracting" the nuclei objects from 
the cell objects using the “IdentifyTertiaryObjects” module. 
The quantitative features were extracted with modules includ-
ing “Measure Image Quality,” “Measure Image Intensity,” 
“Measure Granularity,” “Measure Colocalization,” “Meas-
ure Object Intensity,” “Measure Object Neighbors,” “Meas-
ure Object Size Shape,” and “Measure Texture” (Fig. 1b). A 
variety of features were measured for each identified cell or 

subcellular compartment, which have been proven to be valu-
able in characterizing microscopic cell morphology [29]. Cell-
Profiler measures various metric features and calculates their 
distributions. Further description of the pipeline for feature 
extraction is described in the Supplementary Methods. A sum-
mary of pathological features is presented in Supplementary 
Table S1. The final value of each feature was averaged over 50 
patches for further analyses.

Machine‑learning methods for diagnosis 
classification

Six common machine-learning classifiers were applied in 
our study: Logistic, K-Nearest Neighbor (KNN), Random 
Forest (RF), Support Vector Machines (SVM), eXtreme Gra-
dient Boosting (XGBoost), and Decision Tree (DT). Models 
were trained and tested using R software (version 4.3.1), 
with “caret” package for normalization, package “mlr3’ for 
Logistic and KNN, package “randomForest” for RF, pack-
age “e1071” for SVM, package “xgboost” for XGBoost and 
package “rpart” for DT. The datasets were randomly divided 
into a 60% training set and a 40% test set. The Receiver 
Operator Characteristics (ROC) curves were plotted using 
“pROC” package. Area Under Curve (AUC), Accuracy, and 
F1 score were used to evaluate model performance.

Feature selection and pathomics score building

A three-step feature selection procedure was applied to the 
training cohort to establish a pathomic signature. First, a uni-
variate Cox regression analysis was performed to examine 
the prognostic value of the 802 features. Only features with 
p < 0.05 were identified as candidate prognostic features. The 
LASSO-Cox regression method was used to further select 
important features. L1 penalty tuning parameter lambda (λ) 
was applied to shrink the coefficients of each feature to zero. 
Features with non-zero coefficients were screened. In this 
study, tenfold cross-validation was conducted to determine 
the optimal λ value by measuring the concordance index 
(C-index) in the training cohort. Finally, we developed a 
multivariate Cox proportional hazards model using a back-
ward stepwise approach. The Path-score was generated via 
a linear combination of selected features weighted by their 
respective coefficients, and the Path-score for the valida-
tion cohort was calculated using the formula obtained in 
the training cohort. Several packages containing “glmnet,” 
“survival,” and “survminer” were used in this process.

Association of the Path‑score with prognosis 
and clinical characteristics

The optimal cutoff value for the Path-score was determined 
using the maximally selected rank statistics. Patients were 
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classified into high- and low-risk groups in the training 
and validation cohorts, according to the same threshold. 
Potential associations of the Path-score with OS and PFS 
were first assessed in the training cohort and then validated 
in the validation cohort using Kaplan–Meier survival 
analysis. The predictive ability of the score was assessed 
by the “timeROC” package. To confirm its independent 
prognostic value, univariate and multivariate Cox survival 
analyses were performed for the clinicopathological fac-
tors. The association between the Path-score and initial 
treatment response was assessed in the entire cohort com-
bined with cohort 1 and cohort 2.

Construction and assessment of the incremental 
value of pathomics nomogram

The nomogram incorporated the Path-score and independ-
ent clinical factors based on multivariate Cox analysis 
using a backward stepwise approach. To evaluate discrimi-
nation performance, the C-index and 1-, 2-, and 3-year 
AUROC were calculated. Calibration curves were gener-
ated to compare the predicted survival with the actual sur-
vival. Decision curve analysis (DCA) was used to assess 
the clinical usefulness of the nomogram by quantifying its 
net benefits. To compare the usefulness of the nomogram 
with others, the net reclassification improvement (NRI) 
and Integrated Discrimination Improvement (IDI) were 
calculated. The discrimination, calibration, and clinical 
usefulness assessments were validated in the validation 
cohort. Several packages including “rms,” “riskRegres-
sion,” “timeROC,” “dcurves,” and “survIDINRI” were 
used in the analysis.

Statistic analysis

The Student’s t-test, Wilcoxon’s test, and Kruskal–Wal-
lis test were used to compare continuous variables. The 
Shapiro–Wilk test was used to test the normality of data 
distributions. Pearson’s chi-squared test and Fisher’s exact 
test were used to compare categorical variables. Survival 
curves were generated using the Kaplan–Meier method 
and compared using the log-rank test. Univariate and mul-
tivariate analyses were performed using the Cox propor-
tional hazards model. The proportional hazard assump-
tion was tested using the Schoenfeld Individual Test. The 
comparisons of AUROCs and C-indexes between models 
were performed by using the DeLong test and z-score test, 
respectively. All tests were two-sided, and statistical sig-
nificance was set at p < 0.05. All statistical analyses were 
performed using the R software (version 4.3.1) and Python 
(version 3.11.3).

Results

Clinicopathological characteristics in the study 
cohort

The clinicopathological characteristics of the combined 
cohort (n = 114), the training cohort (n = 68), and the 
validation cohort (n = 46) are listed in Supplementary 
Table S2. The two cohorts were balanced. Among the 114 
patients included in this study, 57 (50.00%) were men, and 
the median (interquartile range (IQR)) age of all patients 
was 64 (54–69) years. Twelve (10.53%) patients under-
went surgical resection or open biopsy, and 102 patients 
(89.47%) underwent stereotactic biopsy. Based on the Hans 
algorithm, 32 cases (28.07%) were regarded as the non-
GCB subtype and 82 cases (71.93%) as the GCB subtype. 
Eighty-five patients (74.56%) had deep brain involvement 
(corpus callosum, basal ganglia, periventricular region, 
brainstem, and/or cerebellum). Multifocal lesions were 
observed in 67 (58.77%) patients. Most of these lesions 
were small, with 24.56% (n = 28) larger than 5 cm. Of 
all the patients, 14 (12.28%) received chemotherapy (CT) 
combined with radiotherapy (RT), 42 (36.84%) received 
BTK inhibitors therapy, and 32 (28.07%) received con-
solidation therapy. After the initial treatment, 61 patients 
(58.10%) achieved CR, 9 patients (8.57%) achieved PR, 
3 patients (2.85%) experienced SD, 32 patients (30.48%) 
had PD, and the data for the remaining 9 patients were 
not available. The median OS of the combined cohort was 
34.07 months (95%CI: 24.50-Not Reached (NR)) and the 
median PFS was 12.70 months (95%CI: 9.20–23.30) (Sup-
plementary Fig. 1a-b).

Image features accurately distinguish tumor tissues

After eliminating futile features, 802 quantitative features 
were extracted from each slide using the automated pipe-
line with CellProfiler (see Methods for details). To dem-
onstrate the biological significance of these features, we 
utilized six machine-learning methods to explore whether 
these features can distinguish tumors from normal adjacent 
tissues. The AUC of all classifiers in the training set was 
higher than 0.9 (Supplementary Fig. 1c and Table S3). 
Our classifiers achieved an average AUC of 0.968 in the 
testing cohort (Classifiers: Logistic, AUC = 0.965, 95%CI: 
0.917–0.996; KNN, AUC = 0.978, 95%CI: 0.964–0.999; 
XGBoost, AUC = 0.987, 95%CI: 0.982–1.000; SVM, 
AUC = 0.990, 95%CI: 0.982–1.000; Decision Tree, 
AUC = 0.891, 95%CI: 0.771–0.913; RF, AUC = 0.994, 
95% CI: 0.982–1.000) (Supplementary Fig.  1d and 
Table S3). The top quantitative features selected by RF 
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were Image Granularity, Image colocalization, Haralick 
features, Image Quality, and Object Intensity features 
(Supplementary Table S4).

Establishment of pathomics score and its prognostic 
value

In the training cohort, 91 features (p < 0.05) in the uni-
variate Cox regression analysis were identified as candi-
date features (Supplementary Table S5). The LASSO-Cox 
regression model with tenfold cross-validation was then 
applied to further screen informative features. A λ value 
of 0.186618, with a log (λ) value of -1.679, is chosen by 
tenfold cross-validation and the minimum criteria. Thus, 
twenty-two features with nonzero coefficients were selected 
(Fig. 2a-b). Multivariate analyses using a backward step-
wise approach were performed to develop the final eight-
feature Path-score. The analysis met the proportional 
hazard assumption based on Schoenfeld Individual Test 
results, which showed that each covariate was not statisti-
cally significant (Global Schoenfeld Test, p = 0.230; Supple-
mentary Fig. 2a). The Path-score calculation formula was: 
Path-score = Granularity_3_Hematoxylin*2.34096 + Mean_
Cells_AreaShape_Zernike_7_1*0.01491 + Mean_Cyto-
plasm_AreaShape_Zernike_4_2*5.14011 + Mean_
C y t o p l a s m _ Tex t u r e _ S u m Va r i a n c e _ H e m a t ox y-
lin_3_00_256*0.29709 + Mean_Nuclei_AreaShape_
Zernike_1_1*4.69242 + Mean_Nuclei_Intensity_MaxInten-
sity_Hematoxylin*3.34853 + Mean_Nuclei_Intensity_Min-
IntensityEdge_Hematoxylin*0.04227 + Texture_SumVari-
ance_Hematoxylin_3_01_256*3.38650. The Path-score of 
the validation cohort was acquired directly from the formula.

Patients were stratified into high and low groups, with 
an optimal cut-off value of 1.824 selected by maximally 
selected rank statistics. In the training cohort, patients 
with high Path-score had significantly shorter OS than low 
Path-score (median OS: 11.10 months, 95% CI: 6.17–NR 

vs. NR months, 95% CI: NR–NR, p < 0.001, Fig. 2c). As 
shown in Fig. 2d, compared with patients with low Path-
score, worse PFS could be observed in patients with high 
Path-score (median PFS: 16.80 months, 95% CI: 9.80-NR 
vs. 5.72 months, 95% CI: 2.00-NR, p = 0.001). The same 
analyses were performed in the validation cohort. Among 
high-score patients, the median OS and PFS were 23.80 
(95%CI: 11.3-NR) and 5.93 (95%CI: 4.47-NR) months, 
respectively. Significantly better median OS and PFS of NR 
(95%CI: 25.60-NR) and 29.43 (95%CI: 12.00-NR) months 
were found in patients with low Path-scores (Fig. 2e, log-
rank p = 0.016; Fig. 2f, log-rank p = 0.001). Forest plots 
revealed the prognostic risk in different subgroups. Nota-
bly, the Path-score remained an effective predictor of patient 
survival (Supplementary Fig. 2b, HR > 1, p < 0.05). The dis-
tribution of the Path-score, survival status, and selected fea-
tures are shown in Supplementary Fig. 3a-b, which demon-
strated that a higher Path-score was associated with a higher 
risk of progression or death. Time-dependent ROC curves 
demonstrated that during the 1-, 2-, and 3-year follow-ups, 
the AUC values were 0.785 (95%CI: 0.668–0.902), 0.869 
(95%CI: 0.730–1.000), and 0.973 (95%CI: 0.927–1.000) in 
the training cohort, respectively (Supplementary Fig. 3c). 
In the validation cohort, the AUC for 1-, 2-, and 3-year 
OS were 0.649 (95% CI: 0.443–0.855), 0.679 (95%CI: 
0.445–0.913), and 0.733 (95%CI: 0.506–0.960), respectively 
(Supplementary Fig. 3d). In addition, five features revealed 
independent prognostic value among the final eight features 
(Supplementary Fig. 3e, p < 0.05).

Remarkable correlation between the Path‑score 
and treatment response

Next, we systematically evaluated the correlation between 
the Path-score and other clinical characteristics of the 
combined cohort. As shown in Supplementary Table S6, 
we observed that patients with KPS < 70 (1.678 vs. 0.867, 
p = 0.028) or ECOG >  = 3 (1.646 vs. 0.883, p = 0.037) had 
a higher Path-score count than their counterparts. Therapeu-
tic response data for 105 patients were available. Figure 3a 
shows the distribution of the best response according to 
Path-score in patients. Patients with the best response of PD 
after initial treatment showed higher Path-scores compared 
with patients with CR/PR/SD (PD: 2.313, IQR 1.052–5.467; 
SD: 0.859, IQR 0.719–1.014; PR: 0.775, 0.462–0.875; CR: 
0.858, IQR 0.396–1.824; Kruskal–Wallis p = 0.007). In par-
ticular, when considered as a continuous variable, patients 
who responded to initial treatment had lower Path-score than 
Non-Responders (median Path-score in Responders: 0.849, 
IQR: 0.403–1.743 vs. median Path-score in Non-Respond-
ers: 2.150, IQR: 0.942–4.833; p = 0.002) (Fig. 3b). Path-
score was higher in patients with primary tumor resistance 
(median Path-score: 2.313, IQR: 1.052–5.467 vs. median 

Fig. 2  Construction and survival stratification of the pathomics score 
(Path-score). a. Pathomics features selection using the LASSO-Cox 
regression model via tenfold cross-validation. The x-axis is the value 
of log (λ) and the y-axis is the C-index. Solid vertical lines repre-
sent the partial likelihood of deviance ± SE. The dotted vertical line 
is shown at the optimal partial likelihood of deviance. A λ value of 
0.186618, with a log (λ) value of -1.679, is chosen by tenfold cross-
validation and the minimum criteria. Twenty-two features with 
nonzero coefficients are selected. b. Profiles of coefficients from the 
LASSO-Cox regression model of the extracted features. The figure 
showed the feature coefficient change with the tuning of λ value. c. 
Kaplan–Meier survival analysis for overall survival (OS) between the 
high and low Path-Score patients in the training cohort. p < 0.001 by 
log-rank test. d. Kaplan–Meier survival analysis for progression-free 
survival (PFS) between the high and low Path-Score patients in the 
training cohort. p = 0.001 by log-rank test. e. The OS difference in the 
validation cohort. p = 0.016 by log-rank test. f. The PFS difference in 
the validation cohort. p = 0.001 by log-rank test

◂
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Path-score: 0.852, IQR: 0.414–1.704 in patients not experi-
encing primary resistance; p < 0.001) (Fig. 3c).

Moreover, we also analyzed the differences in clinical 
characteristics between Responders and Non-Responders. 
Non-responders to treatment include more people in high 

Path-score groups (19/35, 54.29% vs. 16/70, 22.86%; 
p = 0.003, Supplementary Table S7). Other clinical fac-
tors were not found to be associated with patient response 
to treatment. Up to 54% of patients in the high Path-score 
group experienced PD, which was significantly higher than 
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that in the low Path-score group (Fig. 3d, p < 0.001). Accord-
ingly, a significantly lower response rate to initial treatment 
was found in patients in the high Path-score group (19/35, 
54.29%) as compared to patients in the low Path-score group 
(16/70, 22.86%; p < 0.001, Fig. 3e). High Path-score was 
associated with primary resistance to therapy (high Path-
score group: 19/35 patients, 54.29%; low Path-score group: 
13/70 patients, 18.57%; p < 0.001, Fig. 3f). Heatmap sum-
marized the relationship between Path-score group and each 
clinical characteristic (Fig. 3g). Based on the above results, 
we further explored the predictive performance of Path-
score on disease treatment response, primary resistance, and 
disease recurrence. As shown in Supplementary Fig. 4a, the 
AUC values of the Path-score predicting treatment response 
were 0.684 (95%CI: 0.574–0.794). Our pathomics signa-
ture could accurately distinguish primary resistance from 
patients, with AUC value of 0.706 (95%CI: 0.593–0.819, 
Supplementary Fig. 4b). Also, it was possible to predict 
recurrence with AUC value of 0.618 (95%CI: 0.505–0.732, 
Supplementary Fig. 4c). Patients with disease recurrence 
showed higher Path-score (1.337, IQR 0.699–4.063 vs. 
0.884, IQR 0.393–1.823, p = 0.042). These results con-
firmed that the Path-score was significantly correlated with 
the patient’s response to treatment.

Development and validation of a nomogram

In the univariate Cox regression analysis, the Path-score, 
Biopsy type, KPS, ECOG PS, and IELSG were significantly 
associated with OS in the training cohort. (Supplementary 
Table S8, p < 0.05). Multivariate Cox regression analysis 
was performed adjusting for clinicopathological variables. 
High Path-score were independently associated with OS (HR 
7.423, 95%CI: 2.738–20.119, p < 0.001) and PFS (HR 2.143, 
95%CI: 1.116–4.113, p = 0.022) in the training cohort. It 

remained a powerful and independent prognostic factor for 
predicting OS and PFS in the validation cohort according 
to the multivariate Cox regression analysis (OS: HR 4.204, 
95%CI: 1.299–13.601, p = 0.017; PFS: HR 3.243, 95%CI: 
1.440–7.301, p = 0.005; Supplementary Table S9).

Backward stepwise multivariate Cox regression analy-
sis demonstrated that the Path-score, KPS, and Biopsy type 
were independently associated with OS (Supplementary 
Fig. 5a, p < 0.05). To improve the accuracy of OS prediction 
for PCNSL patients, we developed an integrated nomogram 
by combining Path-score and predictable clinical factors, 
including Biopsy type and KPS. The integrated nomograms 
for 1-year, 2-year, and 3-year OS prediction are shown in 
Supplementary Fig. 5b. The C-index of the nomogram in 
the training and validation cohorts were 0.849 (95%CI: 
0.790–0.908) and 0.747 (95%CI: 0.608–0.886), respec-
tively. In addition, the time-dependent ROC curve of the 
nomogram at 1-, 2-, and 3-year depicted AUC of 0.862 
(95%CI: 0.772–0.953), 0.932 (95% CI: 0.835–1.000), and 
0.927 (95%CI: 0.787–1.000) for OS, respectively (Fig. 4a). 
In the validation cohort, it showed an improved AUC for 1-, 
2-, and 3-year OS were 0.802 (95%CI: 0.624–0.980), 0.768 
(95%CI: 0.576–0.960), and 0.938 (95%CI: 0.837–1.000), 
respectively (Fig. 4b). Furthermore, the calibration curves 
showed a favorable agreement between the nomogram-pre-
dicted survival and actual survival in both the training and 
validation cohorts (Fig. 4c-d).

Incremental value of the nomogram in survival 
prediction

The C-index of the Path-score for the prediction of OS 
in the training cohort and validation cohort was 0.745 
(95%CI 0.639–0.851) and 0.623 (95%CI: 0.472–0.774), 
respectively. Compared with the Path-score alone, the 
pathomics nomogram displayed a significantly improved 
C-index of 0.849 (95%CI: 0.790–0.908, p = 0.001) in 
the training cohort and 0.747 (95%CI: 0.608–0.886, 
p = 0.009) in the validation cohort, respectively (Sup-
plementary Table  S10). Similarly, the AUCs of the 
Path-score for 1-, and 2-year OS were 0.785 (95%CI: 
0.668–0.902) and 0.869 (95%CI: 0.730–1.000), respec-
tively. Compared with it, the nomogram exhibited a sig-
nificantly higher AUC of 0.862 (95%CI: 0.772–0.953; 
p = 0.017) and 0.932 (95%CI: 0.835–1.000; p = 0.040), 
respectively (Fig. 5a, Supplementary Table S11). Simi-
lar results were validated in the validation cohort. The 
nomogram showed better predictive capability for 1-, 2-, 
and 3-year OS than Path-score (1-year OS: nomogram 
vs. Path-score, 0.802 (95%CI: 0.624–0.980) vs. 0.649 
(95%CI: 0.443–0.855), p = 0.068; 2-year OS: nomogram 
vs. Path-score, 0.768 (95%CI: 0.576–0.960) vs. 0.679 
(95%CI: 0.445–0.913), p = 0.425; 3-year OS: nomogram 

Fig. 3  The correlation between the Path-score and clinical character-
istics among the combined cohort. a. The distribution of Path-score 
based on the treatment evaluation in the combined cohort. Patients 
with the best response to progression disease (PD) after initial treat-
ment show higher Path-scores than others. p = 0.007 by the Kruskal–
Wallis test. b. Comparisons of the Path-score value in Responders 
and Non-responders. p = 0.002 by the Wilcoxon test. c. The distribu-
tion of Path-score based on primary tumor resistance. p < 0.001 by 
the Wilcoxon test. d. Distribution of patients in complete remission 
(CR)/partial remission (PR)/stable disease (SD)/PD between Path-
score groups. e. Distribution of Non-Responders/Responders between 
Path-score groups. A significantly lower response rate to initial treat-
ment is found in the high Path-score group compared to the low Path-
score group. f. Distribution of patients who are primarily resistant to 
treatment or not between Path-score groups. A significantly higher 
rate of primary tumor resistance is found in the high Path-score group 
than the low Path-score group. g. Heatmap shows the relationship 
between Path-score group and each clinical characteristic. Risk rep-
resents the grouping of patients based on Path-score. ** p < 0.01; *** 
p < 0.001

◂
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vs, Path-score, 0.938 (95%CI: 0.837–1.000) vs. 0.733 
(95%CI: 0.506–0.959); p = 0.033) (Fig.  5b, Supple-
mentary Table  S11). Meanwhile, the predicted AUC 
of the IELSG model for 1-year (AUC 0.620, 95%CI: 
0.494–0.747, p = 0.046), 2-year (AUC 0.769, 95%CI: 
0.636–0.901, p < 0.001), and 3-year OS (AUC 0.733, 
95%CI: 0.580–0.887, p = 0.001) were significantly 
worse than nomogram in the training cohort (Fig. 5a, 
Supplementary Table S12). Consistently, the predic-
tive performance of the MSKCC model was also worse 
than the nomogram (Fig. 5a, Supplementary Table S13). 
The abovementioned results were well validated in the 
validation cohort (Supplementary Tables S12-13). DCA 
was performed to evaluate the clinical decision utility of 

the nomogram. The combined nomogram also showed 
a higher overall net benefit than the Path-score, KPS, 
IELSG, and MSKCC in the training and validation 
cohorts (Fig. 5c-d). Furthermore, the pathomics nomo-
gram exhibited an NRI of 0.469 (95% CI: 0.157–0.643; 
p = 0.004) and an IDI of 0.152 (95%CI: 0.059–0.308; 
p < 0.001) compared to the Path-score in the training 
cohort (Supplementary Table S14). An NRI of 0.457 
(95% CI: 0.082–0.767; p = 0.016) and IDI of 0.229 (95% 
CI: 0.047–0.501; p = 0.004) for OS were also observed in 
the validation cohort (Supplementary Table S14). Con-
sequently, the combined nomogram showed incremental 
performance and improved classification accuracy for 
survival outcomes compared with the other models.

Fig. 4  Performance of the pathomics nomogram for the prediction 
of overall survival. a. The time-independent ROC curves of nomo-
gram in the training cohort. b. The time-independent ROC curves of 
nomogram in the validation cohort. c. The calibration curves of the 
nomogram between predicted and actual 1- and 2-year OS in the 

training cohort. d. The calibration curves of the nomogram between 
predicted and actual 1- and 2-year OS in the validation cohort. Solid 
vertical lines and error bars represent the mean agreement between 
nomogram-predicted survival and actual probability of survival and 
the corresponding 95% confidence interval, respectively
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Fig. 5  The incremental value of the pathomics nomogram. a. 
AUROC comparisons between the pathomics nomogram and other 
models at 1-year, 2-year, and 3-year overall survival (OS) in the train-
ing cohort. b. AUROC comparisons between the pathomics nomo-
gram and other models at 1-year, 2-year, and 3-year OS in the vali-
dation cohort. The comparisons of AUCs between two models are 
performed using a two-sided Delong test. c. Decision curve analysis 

of OS for different models in the training cohort. d. Decision curve 
analysis of OS for different models in the validation cohort. The 
y-axis measures the net benefit. The net benefit was calculated by 
summing the benefits (true positive results) and subtracting the harms 
(false positive results). The pathomics nomogram had the highest net 
benefit compared to both the other models
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Discussion

To our knowledge, this is the first study to investigate the 
utility of a predictive model in PCNSL patients by the 
quantitative histopathological features extracted from 
whole-slide pathology images. In the current study, we 
constructed an eight-feature-based pathomics signature 
to predict the outcomes of patients with PCNSL, which 
successfully stratified patients into high- and low-score 
groups with significant differences in OS and PFS, and 
was confirmed to be an independent prognostic factor. 
Moreover, by incorporating the pathomics signature with 
clinical characteristics, we developed and validated a path-
omics nomogram that exhibited improved discrimination 
and calibration.

Although the outcomes of patients with PCNSL have 
significantly improved with advances in initial treatment, 
many patients still die because of relapse or chemother-
apy-resistant disease [30]. The most commonly used 
IELSG and MSKCC prognostic models were developed 
over a decade ago [13, 14], and most recent studies have 
failed to validate them [31–33]. Several prognostic mod-
els regarding clinical and laboratory parameters have 
been proposed for PCNSL in the past few years, but a 
consensus on the optimal model for patients is lacking. 
Thus, it is crucial to develop an innovative and reliable 
predictive model that will provide an accurate prognosis 
for patients and allow appropriate therapeutic decision-
making. With the rapid development of innovative tech-
nologies and requirements of precision medicine, medical 
imaging has transformed from a simple diagnostic tool to 
an enormous source of clinical data. Two new representa-
tive research fields including “radiomics” and “pathomics” 
have attracted increasing attention. The vast amount of 
information contained in WSIs is available to assist oncol-
ogists in detecting hidden information based on advances 
in digital pathology [34]. Pathomics is a novel method that 
has proven to be effective in tumor diagnosis, classifica-
tion, and survival prediction in several highly prevalent 
common cancer types, such as malignant lymphoma [35], 
glioma [18], hepatocellular carcinoma [36], and colorec-
tal cancer [37]. However, for rare cancer types, especially 
PCNSL, the study is still very limited. Currently, almost 
all published studies related to PCNSL have focused on the 
differentiation of PCNSL from glioblastoma (GBM) [38, 
39]. Chen et al. evaluated the prognostic value of texture 
features on contrast-enhanced magnetic resonance imaging 
(MRI) in 52 patients with PCNSL. To date, the literature 
regarding the prognostic prediction of digital pathology 
analysis in PCNSL is yet to be reported. Herein, as the 
first attempt, to the best of our knowledge, we discovered 
that the pathomics signature extracted from pathology 

images could also contribute to the prediction of progno-
sis in PCNSL. The Path-score, containing eight features 
selected by the Lasso-Cox regression model, was observed 
to be significantly associated with OS and PFS. As H&E-
stained slides are routinely used in the clinic, the present 
pathomics signature, which was derived from pathology 
slides, might be a noninvasive, convenient, low-cost, and 
reproducible approach to characterize tumor phenotypes.

Despite therapeutic progress in the treatment of PCNSL, 
approximately 15–25% of patients do not respond to HD-
MTX-based chemotherapy and up to half of patients relapse 
after the initial response [40]. Patients with primary refrac-
tory disease or relapse exhibit poor prognosis, with a median 
survival of 2 months without additional treatment [6, 41]. 
Relapse-acquired drug resistance after HD-MTX treatment 
remains a serious challenge. A recent metabolomic profiling 
demonstrated that glycolysis was excessive via PI3K/AKT/
mTOR and RAS/MAPK Signaling in methotrexate-resistant 
PCNSL-derived cells, which is valuable to understanding 
targeted therapies with selective anticancer drugs in recur-
rent CNS lymphoma [42]. Accurate biomarkers that can 
identify patients who are likely to benefit from the initial 
treatment will improve their prognostic ability and personal-
ized therapy. Lin et al. reported that NK cells in the periph-
eral blood have an impact on the outcome and chemotherapy 
benefits of PCNSL [43]. In the present study, we showed 
that patients who achieved CR/PR had a lower Path-score 
than those who achieved SD/PD. The high Path-score group 
included more patients who progressed during the initial 
treatment, while the low Path-score group comprised more 
patients who responded to treatment. Thus, patients with 
higher Path-score had a higher likelihood of progression. 
Additionally, our pathomics signature demonstrated good 
predictive performance for treatment response, primary 
resistance, and disease recurrence. Our results indicated that 
the pathomics features reflected intratumor heterogeneity 
and might be a potential indicator of treatment response in 
patients with PCNSL.

In the present study, we demonstrated that the pathomics 
signature successfully identified high-risk patients with poor 
survival outcomes. It remained an effective predictive value 
after the stratified analysis of clinical characteristics, as 
depicted in the forest plot (Supplementary Fig. 2b, HR > 1, 
p < 0.05). Supplementary Fig. 6a-b showed some examples 
of histopathology images from two PCNSL patients with the 
same pathology subtype and similar clinical characteristics 
(Patient A: a 39-year-old female, with non-GCB subtype, 
single lesion, no deep involvement, KPS ≥ 70, ECOG < 3, 
IELSG 0–1, treated with HD-MTX based chemotherapy; 
Patient B: a 51-year-old male, with the same baseline char-
acteristics), but with different survival outcomes. These 
quantitative image features are often difficult to detect 
through manual inspection, but computer methods can 
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identify these features efficiently and effectively. Pathomics 
is a novel method, that is available to explore tumor hetero-
geneity since varying degrees of disease progression, clini-
cal outcomes, and treatment response correspond to histo-
logic features in different tumor cells [44]. Digital pathology 
can empower pathologists with the ability to quantitatively 
assess diagnostic features of cancer by providing quantita-
tive data about different types of cells and tissue structures 
and calculated features of nuclei like size, area, color, chro-
matin density, and mitotic activity [44]. The quantitative 
features covered the size, shapes, pixel intensity distribu-
tions, textures of the objects, as well as the relation between 
neighboring objects. These features have been proved to be 
valuable in characterizing the microscopic cell morphol-
ogy [45]. We also investigated the top features associated 
with prognosis in PCNSL. The primary prognostic features 
included Zernike shape features of the cell, nuclei, cyto-
plasm, texture features, and nuclei intensity. Zernike shape 
features were extracted by identifying the circle of the small-
est diameter covering the tumor nuclei of each cell, setting 
all pixels within the nuclei to one and background to zero. 
The resulting binary image is then decomposed into Zernike 
polynomials, where the coefficients are used as features. 
Texture features quantify the correlation between nearby 
pixels within a region of interest. This showed that both 
local anatomical features (shape of cell, nuclei, and cyto-
plasm) and global patterns (texture of the cytoplasm) were 
associated with survival outcomes. Recently, comprehensive 
analysis of histopathological images and genomic data has 
provided a feasible approach to explore the potential mecha-
nisms of pathomics signature with prognosis and therapeutic 
response [46, 47]. We expect that genomics, radiomics, and 
pathomics can be utilized together to improve the prediction 
of patient outcomes and therapeutic response of PCNSL in 
the future, thereby accelerating the development of personal-
ized medicine.

To provide a more individualized prognostic prediction 
tool, a nomogram that combines pathomics and clinical 
features has been developed to better predict the overall 
survival of individual patients. The nomogram exhibited a 
higher predictive ability than the Path-score alone (C-index, 
0.749 vs. 0.849). Higher time-AUCs, NRIs (p < 0.05), and 
IDIs (p < 0.05) were also observed in the novel combined 
nomogram. The decision curve analysis confirmed that the 
nomogram was superior to the Path-score, KPS, IELSG, 
and MSKCC models, which indicated that the combined 
nomogram showed incremental value for individualized 
prediction.

Deep learning has been proven to be a novel approach 
for tumor diagnosis, grading, and molecular predic-
tion within histopathological images, which can adap-
tively extract image features based on learning objec-
tives [48, 49]. Despite remarkable developments in other 

applications, deep learning has not yet been widely used to 
solve time-to-event prediction problems. Learning survival 
directly from histology is considerably more complex. In 
addition, the inherent complexity of deep neural networks 
often regards them as "black boxes," raising significant 
concerns regarding the interpretability and reproducibility 
of their results. In this study, we established an automated 
pipeline to identify tumor cells and extract a variety of fea-
tures directly from images. Machine-learning models with 
selected features successfully distinguished tumors from 
adjacent normal tissues, showing that our image features 
can capture hidden important image labels. Moreover, 
CellProfiler is a versatile, open-source software designed 
for high-throughput image analysis and has been used in 
digital pathology analysis with favorable performance [28, 
29]. Accordingly, CellProfiler stands as a robust and acces-
sible solution that allows researchers to extract quantita-
tive pathological features.

Our study has some limitations. First, the retrospec-
tive nature of the data collection may have influenced its 
reproducibility and generalization. This retrospective study 
might be subject to inherent biases and unknown confound-
ers, although we have verified our major results in a valida-
tion cohort. Second, the sample size was relatively small, 
mainly because of the low incidence of PCNSL [1]. For rare 
cancer types, especially PCNSL, data acquisition is chal-
lenging, and we cannot get data from public databases. We 
have tried our best to collect all the slides we can get. We 
are currently trying to continue collecting pathological slides 
from PCNSL patients, and hope to establish a larger sample 
cohort in the future to further validate our findings. Third, 
further investigation in prospective randomized trials incor-
porating different populations is necessary to explore the 
clinical utility of the pathomics signature for individualized 
decision-making. Despite the requirement for a large-sample 
independent prospective multicenter validation cohort, the 
decision curve analysis in this study, which evaluates the 
clinical utility without additional validation data, indicates 
that the pathomics nomogram has considerable potential in 
clinical applications for patient prognosis prediction.

Conclusion

In summary, as a non-invasive, accessible, and convenient 
approach, the pathomics signature can successfully predict 
the survival outcomes of patients with PCNSL. By integrat-
ing the pathomics signature with the clinical characteristics, 
we developed and validated a nomogram that adds incremen-
tal prognostic value compared to existing prognostic models. 
Furthermore, the pathomics signature may be a potential tool 
for predicting patient benefits from initial treatment.
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