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Introduction

Brain metastases are the most common type of brain tumors, 
affecting 10–40% of patients with solid tumors during their 
clinical course. Their prevalence is ~ 10 times higher than 
that of primary malignant brain tumors. About half of the 
patients with clinical and radiological evidence of cerebral 
metastases present multiple lesions during the course of 
their disease [1, 2].

Close MRI surveillance of patients with brain metasta-
ses following Stereotactic Radiosurgery (SRS) treatment 
is essential for assessing treatment response, current dis-
ease status, and the emergence of new metastases. This 
follow-up necessitates the comparison of irradiated lesion 
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Abstract
Purpose  Close MRI surveillance of patients with brain metastases following Stereotactic Radiosurgery (SRS) treatment is 
essential for assessing treatment response and the current disease status in the brain. This follow-up necessitates the com-
parison of target lesion sizes in pre- (prior) and post-SRS treatment (current) T1W-Gad MRI scans. Our aim was to evaluate 
SimU-Net, a novel deep-learning model for the detection and volumetric analysis of brain metastases and their temporal 
changes in paired prior and current scans.
Methods  SimU-Net is a simultaneous multi-channel 3D U-Net model trained on pairs of registered prior and current scans 
of a patient. We evaluated its performance on 271 pairs of T1W-Gad MRI scans from 226 patients who underwent SRS. 
An expert oncological neurosurgeon manually delineated 1,889 brain metastases in all the MRI scans (1,368 with diam-
eters > 5 mm, 834 > 10 mm). The SimU-Net model was trained/validated on 205 pairs from 169 patients (1,360 metastases) 
and tested on 66 pairs from 57 patients (529 metastases). The results were then compared to the ground truth delineations.
Results  SimU-Net yielded a mean (std) detection precision and recall of 1.00±0.00 and 0.99±0.06 for metastases > 10 mm, 
0.90±0.22 and 0.97±0.12 for metastases > 5 mm of, and 0.76±0.27 and 0.94±0.16 for metastases of all sizes. It improves 
lesion detection precision by 8% for all metastases sizes and by 12.5% for metastases < 10 mm with respect to standalone 3D 
U-Net. The segmentation Dice scores were 0.90±0.10, 0.89±0.10 and 0.89±0.10 for the above metastases sizes, all above 
the observer variability of 0.80±0.13.
Conclusion  Automated detection and volumetric quantification of brain metastases following SRS have the potential to 
enhance the assessment of treatment response and alleviate the clinician workload.

Keywords  Stereotactic radiosurgery evaluation · Brain metastases detection and segmentation · Volumetric brain 
metastases assessment · Longitudinal evaluation
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sizes and characteristics in pre-treatment (baseline, prior) 
and post-treatment (follow-up, current) T1W-Gad MRI 
scans acquired every 2–3 months. Longitudinal radiologi-
cal tracking of cerebral metastatic patients usually involves 
numerous metastases, thus posing significant challenges. 
It is prone to errors, might be affected by inter and intra-
observer variability, and may be a time-consuming task for 
neurosurgeons, oncologists, and radiologists.

Recently, deep learning models have demonstrated sig-
nificant promise in medical image analysis, excelling in 
tasks such as detection and segmentation. Stereotactic 
radiosurgery for brain metastases relies on accurate tumor 
detection and precise lesion volume, emerges as a promis-
ing candidate for Artificial Intelligence (AI) model develop-
ment [3–8].

In a recent paper [9], we described a novel automatic 
pipeline for the simultaneous detection of liver lesions and 
their changes in longitudinal contrast-enhanced CT liver 
scans. This pipeline includes SimU-Net, a simultaneous 
multi-channel 3D U-Net model trained on pairs of registered 
scans of each patient. The model identifies liver lesions and 
their changes based on the differences in the appearance 
between the lesion and the healthy tissue. It matches and 
classifies the lesion changes and produces a comprehensive 
report of temporal lesion changes.

In the current study, we have extended the simultaneous 
analysis pipeline SimU-Net for the detection of cerebral 
metastases and their temporal changes in longitudinal brain 

T1W-Gad scans. Our primary hypothesis was that a deep 
neural network trained on two consecutive scans yields 
superior accuracy and recall than the same state-of-the-art 
single, standalone 3D nnU-Net model trained on the same 
scans. Our secondary hypothesis was that the pipeline can 
successfully match cerebral metastases and correctly clas-
sify their temporal changes (Fig. 1).

The aim of the current study was to evaluate the perfor-
mance of the SimU-Net pipeline for pairs of pre- and post 
SRS T1W-Gad scans for the detection and segmentation of 
cerebral metastases and for their matching and classification 
of lesion changes.

Materials and methods

Figure 2 summarizes the dataset creation process, the deep 
learning models, and the experimental studies and their 
characteristics.

Patient studies

Brain MRI studies of patients with metastatic disease 
who underwent SRS were retrospectively obtained from 
Hadassah Ein Kerem University Medical Center (Jerusa-
lem, Israel) by the clinician co-authors. The studies, each 
with at least two scans, were acquired in 2011-22. Studies 
of patients with non-metastatic cancer or who underwent 

Fig. 1  Illustration of the analysis of temporal changes of brain metas-
tases of a patient before and after SRS: (a) representative registered 
slices of prior (top) and current (bottom) T1W-Gad scans; (b) annota-
tion of two brain metastases (red) in the prior scan slice (top) and one 
in the current scan slice (bottom); one additional brain metastases in 
the prior scan and two in the current scans appear in different slices 
are not shown; (c) matching of the detected brain metastases in the 
prior scan (top, numbers) and in the current scan (bottom, letters) for 
the brain metastases appearing in the slices: metastasis 1 (red) in the 
prior scan slice and metastases A (green) and B (red) in the current 

slice scan. Brain metastases 2 (prior scan) and C and D (current scan) 
appear different slices are not shown; (d) lesion matching graph for the 
entire prior and current scans (top): nodes correspond to brain metas-
tases in the prior (left) and current (right) scans; edges correspond to 
lesion matchings; the matching of 1 and B is seen in the prior and cur-
rent scan slices, while the matching of 2 and D appear on other slices. 
Summary of lesion (brain metastases) changes (bottom): number of 
lesions in each scan and of each type of lesion changes– existing (per-
sistent), new, disappeared (numbers and letters indicate matchings). 
Volumetric measurements are also computed but were omitted here
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surgery were excluded. Patients’ details were anonymized; 
informed consent was waived and IRB approval was 
obtained (0338 − 20 HMO). The scans were acquired on 
three scanners: GE SignaTM Voyager (Chicago, USA) Sie-
mens Magnetom Avantofit (Munich, Germany) and Philips 
Ingenia (Amsterdam, Netherlands). The scans voxel sizes 
were 0.2–1.2 × 0.2–1.2 × 0.7-4.4mm3.

LINAC-based SRS and FSR treatment was delivered 
by the LINAC-based platform available at the time (2005-
15 Varian DBX with Brainlab M3 and 2016-20Truebeam 
Novalis STx with ExacTrac X-Ray). Patients were assigned 
to receive either Fractionated Stereotactic Radiotherapy 
(FSR) or Single Fraction Stereotactic Radiosurgery (SRS) 
based on a multidisciplinary discussion in adherence to 
consensus guidelines. For non-brain stem metastases, a 
single-shot treatment of 18–24  Gy (RTOG 90 − 05) was 
prescribed, while metastases whose volume exceeded 6 cc 
were treated with a marginal dose of 27 Gy administered 
in three daily fractions. Before 2016, single-fraction SRS 
treatment was performed with rigid stereotactic frame head 
fixation; FSR treatments utilized a rigid thermoplastic face-
specific mask. From 2016 on, both SRS and FSR patients 
underwent treatment with a rigid thermoplastic face-specific 
mask. The imaging protocol included high-definition CT 
scans followed by Axial 3D T1W-GaD MRI with 0.5 mm 

slice thickness sequences. The fusion of the data sets was 
performed through treatment planning, delineating tumor 
volume and organs at risk. Treatment planning involved 
dynamic conformal arc therapy or Intensity Modulated 
Radiotherapy (IMRT) and received approval from the treat-
ing physician. Patients who had undergone a recent crani-
otomy for the resection of large cerebral metastases were 
excluded from the study. This exclusion was based on the 
challenges posed by multiple post-surgical changes, metal 
artifacts, and the inherent difficulties in accurately delin-
eating the tumor bed and distinguishing between residual 
tumor and post-operative changes.

Scans datasets

Three datasets of scans were created (Fig.  2a). Dataset 
D-STUDIES included 226 patient studies of 110 males 
and 116 females, mean age 63, range 23–89 years (step 1). 
The primary tumor sources (number of patients) were lungs 
(116), breast (49), gastrointestinal tract (17), melanoma 
(14), renal (11), other (19), with a mean of 4.6 (std = 3.2, 
range = 0.7–18.1) months between scans (no demographic 
information for the last three categories was available).

Dataset D-SCANS consisted of 500 T1W-Gad scans 
from the 226 patient studies (step 2).

Fig. 2  (a) flowchart of the steps of the creation of the three scans data-
sets D-STUDIES, D-SCANS, D-SCAN-PAIRS and the two manual 
brain metastases (lesions) annotation datasets D-LESIONS-GT and 
D-LESION-PAIRS-GT; (b) three deep learning models M1, M2, M3 

and their training and testing datasets; (c) experimental studies with 
the models and the testing datasets used to conduct them. The number 
of patients, scans, pairs of scans and brain metastases are listed
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of lesions/scan of 3.6 ± 4.9 and a mean lesion diameter of 
10.69 mm (0.64 cc).

Method

We extended the pipeline described in [9] for metastatic 
brain lesions. The input is a pair of prior and current brain 
MRI scans, and, when available, the prior scan lesion seg-
mentations. The output is the analysis of lesion changes 
consisting of the lesion segmentation in the scans and the 
report of the lesion changes (Fig. 1d).

The pipeline uses SimU-Net, a simultaneous multi-
channel model trained on pairs of registered scans of each 
patient. The SimU-Net is a modified 3D U-Net [11] in which 
the encoding path single-channel input layer is replaced by 
a multiple-input layer. The two-channel SimU-Net inputs 
matching pairs of 3D patches from the registered prior and 
current scans. The three-channel SimU-Net inputs in addi-
tion the lesions segmentation masks in the prior scan.

The pipeline consists of five steps (Fig. 3): (1) brain seg-
mentation in each of the prior and the current scans with a 
deep learning brain classifier model; (2) registration of the 
prior and the current scans and of their brain segmentations; 
(3) simultaneous lesion detection and segmentation in the 
current and prior brain with SimU-Net; (4) detection and 
classification of lesion changes with a graph-based lesion 
matching method; (5) quantification of lesions and lesion 
changes.

Dataset D-SCAN-PAIRS consisted of pairs of time-
ordered pre-SRS and post-SRS scans of the same patient 
created from dataset D-SCANS (step 2). The pairs were cre-
ated by pairing the pre-SRS scan with one of the follow-up 
post-SRS scans. This resulted in a total of 271 pairs from the 
500 brain MRI scans.

Manual annotations datasets

Two brain metastases (lesions) annotations datasets were 
created as follows (Fig. 2a, step 3). Dataset D-LESIONS-
GT consisted of ground-truth annotations of brain metasta-
ses created from the patient scans in D-SCANS as follows. 
First, manual annotations for 1,571 lesions in 439 scans 
were created using ITK-SNAP [10] by the two senior neu-
rosurgeons’ co-authors (> 30 and > 10 years of experience). 
Second, 318 lesions in the remaining 61 scans were created 
by having the radiologists correct the segmentations com-
puted by SimU-Net. This resulted in a total of 1,889 lesions, 
of which 1,368 are > 5 mm in diameter (0.07 cc) and 834 
are > 10  mm in diameter (0.52  cc), with a mean number 
of lesions/scan of 3.6 ± 5.11 and mean lesion diameter of 
10.84 mm (0.66 cc).

Dataset D-LESION-PAIRS-GT consisted of the corre-
sponding pairs of lesion annotations in D-SCAN-PAIRS. It 
included a total of 2,055 lesions (more than 1,889 because 
of pre-SRS scan repetitions in D-SCAN-PAIRS), of 
which 1,748 are > 5  mm in diameter (0.07  cc) and 1,065 
are > 10  mm in diameter (0.52  cc), with a mean number 

Fig. 3  Flow diagram of the SimU-Net pipeline for the analysis of brain 
metastases (lesions) and their temporal in pairs of pre- and post-SRS 
brain T1W-Gad MRI scans. The inputs are the prior and the current 
MRI scans of a patient. The outputs are the lesion segmentations in 
each scan and the lesion changes report. The steps are: (1) brain seg-

mentation in the prior and current scans; (2) registration of the prior 
scan to the current scan; (3) simultaneous brain lesion detection and 
segmentation in the prior and current scans with SimU-Net; (4) detec-
tion and classification of lesion changes; (5) quantification of lesions 
and lesion changes
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relative detection precision and recall and lesion segmenta-
tion Dice score. The clinicians examined the discrepancies 
and established consensus.

Study 2  Quantifies the performance of the SimU-Net pipe-
line on D-LESIONS-GT in four scenarios: (1) Simultane-
ous with prior: inference on current and prior scans and 
prior lesion segmentation with M3; (2) Simultaneous: 
inference on a pair of registered prior and current scans with 
M2; (3) Standalone pairs: inference on a single scan with 
M2 performed by using the same scan in both input chan-
nels (duplicate); (4) Standalone single: inference on a sin-
gle scan with M1–– the reference scenario for comparison 
with the state-of-the-art.

Study 3  Quantifies the performance of the lesion matchings 
and the classification of lesion changes of the prior and cur-
rent brain segmentations on a subset of D-STUDIES and 
their corresponding lesion annotations in D-LESIONS-GT. 
Lesion matchings and classification of lesion changes were 
created by automatically registering the scans, computing 
an initial lesion matching with the method in [9] and subse-
quently having the senior neurosurgeon review and correct 
them. The set consisted of 30 patient studies (14 males, 16 
females, mean age of 62, range 34–77) with at least three 
scans from different timepoints per patient. In total, there 
were 102 scans with a mean 3.4 ± 0.5 scans/patient (maxi-
mum 5 scans/patient) and mean time of 102.1 ± 93.6 days 
between consecutive scans It included a total of 266 lesions, 
of which 142 are > 5 mm and 38 are > 10 mm. The mean 
number of lesions/scan was 7.79 ± 6.34 with a mean lesion 
diameter of 6.27 (0.13 cc). Of the 266 lesions, 128 are exist-
ing lesions, 66 are lesions that disappeared, and 72 are new 
lesions.

Statistical analysis

Lesion detection was evaluated with the standard precision 
and recall and their standard deviation. Lesion segmenta-
tions were evaluated with the Dice score (Dice) and the 
Average Symmetric Surface Distance (ASSD). Independent 
t-test two-tails comparison with p < 0.01 set for statistical 
significance was performed.

The lesion matching and classification of lesion changes 
were evaluated on the lesions matching graph with the 
precision and recall of two metrics: (1) matching lesions 
(edges): a True Positive edge is present in both the ground 
truth and the computed graph; a False Positive edge is a 
computed edge that is not present in the ground truth graph; 
a False Negative edge is present in the ground truth graph 
and is missing in the computed graph; (2) Classification of 

We briefly describe next the adaptations made to the met-
astatic liver lesions pipeline for the brain MRI scans next.

For brain segmentation (Step 1), we remove the skull 
using the SynthStrip model described in [12]. Accurate 
brain segmentation is not necessary, as a brain region of 
interest is sufficient to filter out false positive lesions out-
side the brain. For the registration of the prior and cur-
rent scans, we perform rigid registration with FreeSurfer 
[13] since deformable registration is not needed. For brain 
metastases detection and segmentation (Step 3), we use a 
SimU-Net model trained on pairs of brain scans and their 
manual delineations. Steps 4 and 5 are generic and are thus 
performed with the method described in [14].

Deep learning models

Three deep learning models for brain metastases detection 
and segmentation were built (Fig.  2b): (1) M1, a single-
channel 3D nnU-Net model trained on individual scans 
[15]; (2) M2, a two-channel SimU-Net model trained on 
registered pairs of prior and current scans; (3) M3, a three-
channel SimU-Net model trained on pairs of registered pairs 
of current and prior scans and prior lesion segmentations. 
To allow direct comparison of their performance, the train-
ing/validation and test sets were the exact same ones for 
the three models. Model M1 was trained/validated on 377 
scans (169 patients, 1,360 metastases) and tested on 123 
scans (57 patients, 529 metastases) from D-SCANS and 
D-LESIONS-GT. Models M2 and M3 were trained/vali-
dated on 205 pairs (same 169 patients and scans than for 
M1) and tested on 66 pairs (same 57 patients and scans than 
for M1) from D-SCAN-PAIRS and D-LESION-PAIRS-
GT. The training, validation and test sets were chosen so 
that their distribution for each lesion diameter class reflects 
that of the entire dataset.

For the visual evaluation of the lesion detection, segmen-
tation, and matching, we developed a viewer that allows 
the simultaneous viewing of synchronized scan slices. Fig. 
S2 in the Supplemental Material shows a screenshot of the 
viewer, which proved to be of great use for the experimental 
studies.

Experimental studies

We conducted three experimental studies as follows 
(Fig. 2c).

Study 1  Quantifies the observer variability of the detec-
tion and segmentation of the brain metastases by two expert 
neurosurgeons [16]. Each clinician independently annotated 
the brain metastases on 98 scans from 48 patients from 
D-SCANS. The annotations were compared to establish the 
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truth between two clinicians and sets the desired goal for the 
automatic analysis.

Study 2  Table 1 summarizes the results. For lesion detec-
tion, all scenarios yield a perfect recall and perfect precision 
(1.00 ± 0.00) for lesions > 10 mm. For all scenarios and all 
sizes, the Recall was not statistically significantly. However, 
the Precision of the Simultaneous scenarios was statistically 
significant.

For lesions > 5  mm, all scenarios yield high, very similar 
mean recall range of 0.95–0.96 with a std range of 0.13–
0.14; the Simultaneous without prior and Standalone pairs 
scenarios yield the highest mean precision range of 0.92–
0.93 with a std range of 0.18–0.19 vs. mean precision range 
of 0.86–0.89 with a std range of 0.24–0.28. For all lesions, 
the Standalone scenarios yield slightly better mean recall 
range of 0.82–0.83 with std range of 0.28–0.29 vs. mean 

lesion changes: comparison between the computed and the 
ground truth classes of lesion changes: new, existing and 
disappeared.

Results

Study 1  Table S1 in the Supplemental Material summarizes 
the observer variability results. For lesions > 5 mm, the mean 
precision is 0.88 ± 0.24, the mean recall is 0.96 ± 0.12, the 
mean Dice is 0.82 ± 0.12 and the mean ASSD is 0.65 ± 0.78. 
For lesions > 10 mm, the mean precision is 0.95 ± 0.19, the 
mean recall is 0.98 ± 0.12, the mean Dice is 0.85 ± 0.10 
and the mean ASSD is 0.66 ± 0.76. For lesions of all 
sizes, the mean precision is 0.92 ± 0.15, the mean recall 
is 0.85 ± 0.23, the mean Dice is 0.80 ± 0.13 and the mean 
ASSD is 0.62 ± 0.75. This establishes the consensus ground 

Table 1  Results of the testing set detection and segmentation of brain metastases (lesions) with diameters > 10 mm, > 5 mm, < 10 mm and all sizes 
in four scenarios: Simultaneous with prior, Simultaneous, Standalone pairs and Standalone. Listed are the mean (std) lesion detection precision 
and recall and the mean (std) lesion segmentation Dice and ASSD. Boldface numbers indicate best per-class results. The number of lesions in each 
category is indicated in parentheses
LESION 
DIAMETER
(# of lesions)

SCENARIO LESION DETECTION LESION SEGMENTATION
Precision Recall Dice ASSD

> 10 mm
(167)

Simultaneous with prior 1.00
(0.00)

1.00
(0.00)

0.87
(0.14)

0.62
(0.88)

Simultaneous 1.00
(0.00)

1.00
(0.00)

0.90
(0.10)

0.48
(0.80)

Standalone
pairs

1.00
(0.00)

1.00
(0.00)

0.89
(0.15)

0.63
(1.06)

Standalone single 1.00
(0.00)

1.00
(0.00)

0.90
(0.11)

0.46
(0.60)

> 5 mm
(204)

Simultaneous with prior 0.89
(0.24)

0.96
(0.13)

0.85
(0.17)

0.50
(0.67)

Simultaneous 0.92
(0.19)

0.95
(0.14)

0.88
(0.15)

0.41
(0.60)

Standalone
pairs

0.93
(0.18)

0.96
(0.13)

0.87
(0.18)

0.50
(0.82)

Standalone single 0.86
(0.28)

0.95
(0.13)

0.87
(0.15)

0.39
(0.48)

< 10 mm
(158)

Simultaneous with prior 0.72
(0.34)

0.75
(0.34)

0.80
(0.15)

0.30
(0.35)

Simultaneous 0.68
(0.36)

0.77
(0.34)

0.83
(0.16)

0.27
(0.43)

Standalone
pairs

0.67
(0.36)

0.81
(0.33)

0.82
(0.22)

0.43
(1.27)

Standalone single 0.63
(0.37)

0.80
(0.32)

0.81
(0.17)

0.28
(0.42)

All
(529)

Simultaneous with prior 0.83
(0.24)

0.80
(0.28)

0.83
(0.17)

0.46
(0.59)

Simultaneous 0.77
(0.28)

0.80
(0.31)

0.87
(0.14)

0.36
(0.50)

Standalone
pairs

0.78
(0.28)

0.82
(0.29)

0.85
(0.19)

0.50
(0.83)

Standalone single 0.75
(0.26)

0.83
(0.28)

0.86
(0.16)

0.35
(0.44)
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annotations. When SimU-Net also incorporates the prior lesion 
segmentations, it further improves lesion detection, yielding a 
statistically significant improvement in the precision by 8% for 
all lesion sizes, and 12.5% for lesions < 10 mm. These results 
establish the state-of-the-art performance and are within the 
manual delineation observer variability.

The experimental results confirm our hypothesis that the 
accuracy and robustness of the detection and segmentation of 
brain lesions in the current scan improves as more information 
about the prior scan and prior lesion segmentation is added. The 
simultaneous deep learning networks leverage the radiological 
information in the same brain location from two time points 
and thus increase the accuracy of the voxel-level classification. 
It decreases the number of false negative lesion detections and 
improves lesion segmentation accuracy. Our results also show 
that a deep learning model trained on pairs of registered prior 
and current scans outperforms a model trained on individual 
scans with the exact same training and validation scans.

The precision and recall quantify the performance of the 
method on wrongly identified brain metastases (false positives) 
and missed brain metastases (false negatives). In a clinical set-
ting, wrongly identified lesions are easier deal with, as they can 
be inspected by an expert on few slices and can be eliminated 
with a single mouse click. However, missed lesions require the 
inspection of the entire scan. SimU-Net has an excellent recall 
of 0.96 ± 0.13 and precision of 0.93 ± 0.18 for lesions > 5 mm, 
which are the lesions that are reported.

The method for lesion matching and for classification of 
lesion changes achieve a perfect score. The SimU-Net pipeline 
is an accurate, reliable and fully automatic end-to-end method 
for the comprehensive analysis of longitudinal changes of 
brain metastases in MRI scans.

recall of 0.80 with std range of 0.28–0.31; the Simultane-
ous with prior scenario yield the highest mean precision of 
0.83 ± 0.24 vs. mean precision range of 0.75–0.78 with a 
mean std range of 0.26–0.28. This constitutes a statistically 
significant improvement in the mean lesion detection preci-
sion of 8% for all lesion sizes (0.83–0.765)/0.83 × 100), and 
12.5% for lesions < 10 mm ((0.72–0.63)/0.72 × 100).

For lesion segmentation, the Dice score and ASSD are 
above the observer variability for all scenarios and lesion 
sizes, with a larger std in some cases: 0.80–0.90 ± 0.10–0.21 
computed vs. 0.80–0.85 ± 0.10–0.13 manual and 0.27–
0.62 ± 0.35-1.27  mm computed vs. 0.51–0.66 ± 0.56–0.76 
manual, respectively. The Simultaneous without prior sce-
nario yields the best Dice scores for all lesion sizes, 0.83–
0.90 ± 0.10–0.22. For the ASSD, the results are mixed.

Figure  4 illustrates the advantage of the Simultaneous 
without prior scenario over the Standalone scenario. It 
demonstrates how more information yields better detection 
and segmentation results.

Study 3  The SimU-Net pipeline achieves perfect results on 
lesion matching and classification of lesion changes: the 
precision and recall are 1.0 ± 0.0 on all 266 lesions.

Discussion

Our studies show that the simultaneous detection and seg-
mentation of brain metastases with a SimU-Net outperforms 
a standard standalone 3D U-Net trained on the same dataset. 
SimU-Net also improves lesion detection in a single scan 
when the deep learning model was trained on pairs of scan 

Fig. 4  Illustration of the per-
formance of the Simultaneous 
with prior and the Standalone 
scenarios: (a) Representative 
matching slices of prior (top) 
and current (bottom) brain MRI 
scans of a patient acquired three 
months apart; (b) Ground truth 
lesions’ segmentation (red) of 
prior (top) and current (bottom) 
scans; (c) Standalone model 
results: lesions are not detected 
(yellow circle) and over-detected 
(red arrow) in prior and current 
scans; (d) Simultaneous with 
prior model results: the lesion is 
correctly detected and accurately 
segmented in both the prior (top) 
and current (bottom) scans
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Supplementary Information  The online version contains 
supplementary material available at https://doi.org/10.1007/s11060-
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