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Abstract
Purpose Glioma is associated with pathologically high (peri)tumoral brain activity, which relates to faster progression. 
Functional connectivity is disturbed locally and throughout the entire brain, associating with symptomatology. We, therefore, 
investigated how local activity and network measures relate to better understand how the intricate relationship between the 
tumor and the rest of the brain may impact disease and symptom progression.
Methods We obtained magnetoencephalography in 84 de novo glioma patients and 61 matched healthy controls. The offset 
of the power spectrum, a proxy of neuronal activity, was calculated for 210 cortical regions. We calculated patients’ regional 
deviations in delta, theta and lower alpha network connectivity as compared to controls, using two network measures: clus-
tering coefficient (local connectivity) and eigenvector centrality (integrative connectivity). We then tested group differences 
in activity and connectivity between (peri)tumoral, contralateral homologue regions, and the rest of the brain. We also cor-
related regional offset to connectivity.
Results As expected, patients’ (peri)tumoral activity was pathologically high, and patients showed higher clustering and 
lower centrality than controls. At the group-level, regionally high activity related to high clustering in controls and patients 
alike. However, within-patient analyses revealed negative associations between regional deviations in brain activity and 
clustering, such that pathologically high activity coincided with low network clustering, while regions with ‘normal’ activity 
levels showed high network clustering.
Conclusion Our results indicate that pathological activity and connectivity co-localize in a complex manner in glioma. This 
insight is relevant to our understanding of disease progression and cognitive symptomatology.
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Introduction

Prognosis of glioma is poor, and many patients experience 
debilitating symptoms. Patients show differences in whole-
brain neurophysiology compared to controls. Disturbances in 
neuronal activity and functional brain network connectivity 
have been found throughout the entire brain. However, it is 
unclear how these indices of brain functioning relate to each 
other, while the interplay between activity and connectivity 
might be essential for prognosis and patient functioning.

In preclinical studies, glioma cells reciprocally interact 
with their immediate neuronal environment [1, 2]. Via the 
formation of neuron-to-glioma synapses, neuronal spiking 
activity in the tumor’s proximity promotes tumor prolifera-
tion and invasion [2, 3]. Translational studies have used 
magnetoencephalography (MEG) as a non-invasive meas-
urement of neuronal activity, reporting high activity around 
the tumor and across the tumor hemisphere as compared 
to controls [4]. This pathologically high activity relates to 
shorter progression-free survival [5, 6], underlining the 
clinical relevance of widespread activity for tumor growth.

Glioma patients also show different functional connectiv-
ity between brain regions compared to healthy people. Func-
tional connectivity is the statistical dependency between 
activity patterns from different brain regions [7]. Network 
theory can be used to extract regional or whole-brain topo-
logical markers from this connectivity [8, 9]. A combination 
of local specialization (segregation) and overall integration 
is considered essential for network functioning [9]. Glioma 
patients show higher segregative connectivity and lower 
integrative connectivity in comparison to controls [10–14]. 
Higher functional connectivity of the tumor region asso-
ciates with shorter survival [14]. Moreover, pathologically 
high clustering, describing the segregative properties of the 
network [8, 9], relates to poorer cognitive performance [13, 
15–17]. These disturbances go beyond the (peri)tumoral 
region and are a truly global network pathology [12].

In support of the idea that the interaction between the 
‘rest of the brain’ and glioma is complex and clinically 
important, we recently found that gliomas tend to occur 
in regions with intrinsically higher brain activity in con-
trols [18]. Moreover, while most tumors seem to occur in 
regions with intrinsically high clustering and integrative 
connectivity [18–20], patients with gliomas in regions 
with intrinsically low clustering have more extensively 
different network clustering at diagnosis [12]. However, 
it is unclear how activity and connectivity are interrelated 
throughout the brain. Answering this question could help 
guide our thinking on tumor-brain cross-talk and its impact 
on disease progression and symptomatology.

Here, we investigated how these two aspects of neu-
rophysiological functioning co-occur regionally, by 

collecting MEG in glioma patients and controls. Since 
higher local activity measured with MEG reflects more 
synchronous activity of large groups of neurons and poten-
tially higher local clustering [21], and, brain regions with 
higher neuronal spiking activity show higher integra-
tive connectivity in (computational) studies [22–24], we 
hypothesized positive correlations between activity and 
connectivity, at least in controls.

Materials and methods

Participants

Patient (preoperative) data stemmed from an ongoing study 
of the Amsterdam UMC location VUmc (Supplementary 
Table S1). Inclusion criteria were glioma of grade ≥ II [25], 
age > 18 years and no neuropsychiatric disorders or comor-
bidities of the central nervous system.

Healthy controls (HCs) came from two studies using 
the same MEG system and procedures [26, 27]. They were 
matched to patients on sex and age.

We investigated activity and network connectivity at the 
(peri)tumor area, its contralateral homologue, and all areas 
without tumor. To define the (peri)tumoral regions, tumor 
masks were manually drawn in [LD] on post-gadolinium 
T1-weighted and FLAIR anatomical images, or automati-
cally segmented and visually checked [28]. Regions (Brain-
netome atlas, BNA [29]) were considered part of the (peri)
tumoral area when ≥ 12% of their volume overlapped with 
the tumor mask (Supplementary materials). The contralat-
eral homologue of the (peri)tumoral area was the same 
tumor region(s) but in the contralateral hemisphere. Patients 
with bilateral tumors or tumors without regional overlap 
were excluded from analyses concerning the (peri)tumoral 
and homologue areas. The rest of the brain were all regions 
with 0% tumor overlap.

Magnetoencephalography

Participants underwent 5-min eyes-closed resting-state 
MEG, using a 306-channel Elekta Neuromag Oy MEG sys-
tem, with a sampling frequency of 1250Hz and 0.1Hz high 
pass and 410Hz antialiasing filters (Supplementary materi-
als). We used cross-validation signal space separation, after 
which raw data were visually inspected and malfunctioning 
channels excluded [LD]. The signal was filtered between 
0.5-45Hz. We used a 3D digitizer (Fastrak; Polhelmus) to 
digitize 4–5 head position indicator coils and the scalp-nose 
surface for co-registration of the MEG data to patients’ ana-
tomical MRIs. A scalar beamformer implementation (Elekta 
Neuromag Oy, version 2.1.28) source-reconstructed broad-
band (0.5-45Hz) time series to the 210 BNA centroids [27, 
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29, 30]. We selected 15 and 8 epochs for patients and HCs, 
respectively (3.27s).

Regional brain activity

The offset of the aperiodic part of the power spectrum was 
used as a proxy for neuronal spiking activity [31]. Power 
spectra were obtained using Welch’s method with a Ham-
ming window for each epoch and cortical brain region. 
These were averaged over all epochs per subject to obtain 
one spectrum per brain region. The Fitting Oscillations & 
One Over F (FOOOF) toolbox was used to estimate the off-
set by fitting the non-oscillatory part of the power spectrum 
using the exponential function: L = b – log(k + Fx) (Sup-
plementary materials) [31].

To obtain values representing deviations from HCs, we 
standardized patients’ and HCs’ regional values using the 
regional mean and standard deviation of HCs (hereafter 
referred to as ‘dev’; Fig. 1).

Functional networks

Functional networks were constructed in Python.We 
employed a fast Fourier transform-based band-pass filter 
to every epoch per brain region. Functional networks were 
reconstructed for the delta (0.5-4Hz), theta (4-8Hz), and 
lower alpha (8-10Hz) bands [10, 17]. We used the Phase Lag 
Index (PLI) to calculate functional connectivity between all 
210 cortical regions [13, 15, 17, 33]. PLIs were calculated 
per epoch and averaged over epochs per frequency band. 
We thresholded and binarized frequency-specific networks 
using a proportional threshold, keeping the strongest 20% 
or 30% of connections, yielding six networks per partici-
pant (Supplementary materials). We avoided constructing 
networks with many nodes (e.g.threshold of 10%) or highly 
connected networks with many false positive connections 
(i.e. threshold of > 30%) [34].

We calculated the regional local clustering coefficient 
(CC) and eigenvector centrality (EC) using the Networkx 
package [35]. The local CC denotes the number of triangles 
formed between neighboring regions, representing segre-
gative, ‘local’ connectivity [9]. EC reflects the integrative 
properties of a node. It denotes the number of connections 
and connections of a nodes’ neighbors and neighbor’s neigh-
bors etc. [36].

All CC and EC values were standardized, representing 
deviation from controls  (CCdev,  ECdev).

Statistical analysis

To test matching between patients and HCs, we used 
Mann–Whitney U and Chi-square tests.

Differences in  offsetdev, local  CCdev and  ECdev between 
patients’ (peri)tumoral, homologue and rest of the brain val-
ues and HCs whole-brain  valuesdev were calculated using 
the Mann–Whitney U test. To test whether (peri)tumoral 
and contralateral homologue areas differed within patients, 
Wilcoxon signed-rank tests were used. Tests were performed 
for two network densities and three frequency bands.

To explore the group-level relationship between regional 
activity and functional network connectivity (Fig. 1) we 
averaged raw offset, EC and CC values for every region over 
all participants per group. We correlated offset with EC and 
CC using the spin test with a Pearson’s correlation imple-
mentation (5000 permutations) [32].

For within-subject effects (Fig. 1), we used standardized 
values and linear mixed models (LMMs) to handle within-
subject dependencies between regions (Supplementary 
materials for alternative approach). We fitted a model with 
 offsetdev as independent variable and  CCdev and  ECdev as 
predictors and a random intercept for participants (Python, 
statsmodels). We fitted a separate model for every frequency 
band, density and group. In another six models, group differ-
ences were tested through interaction terms. We reran this 
analysis using standardized values to obtain effect size met-
rics. In patients, all analyses focused on the rest of the brain.

P-values were adjusted for multiple comparisons (across 
frequency bands and densities, false discovery rate, FDR 
[37]) and deemed significant at pFDR < 0.05. Results repli-
cated for both network densities (20%, 30%) were deemed 
robust.

Results

Participant characteristics

84 glioma patients and 61 HCs, similar in sex (p = 0.053) 
and age (p = 0.115), were included (Table 1).

Higher activity and clustering in patients

Patients’  offsetdev was significantly higher than controls’ in 
all areas: the (peri)tumoral area (mean = 1.559, SD = 1.513, 
U = 3554, pFDR =  < 0.001), contralateral homologue area 
(mean = 0.373, SD = 1.168, U = 2616, pFDR = 0.006) and 
rest of the brain (mean = 0.375, SD = 1.269, U = 3319, 
pFDR = 0.004), suggesting that brain activity is pathologi-
cally high throughout the brain in glioma (Fig. 2a). (Peri)
tumoral  offsetdev was higher than its contralateral homologue 
(Z = 133, p < 0.001).

Compared to HCs,  CCdev was higher (peri)tumorally 
(delta band), in the contralateral homologue (delta, lower 
alpha band) and the rest of the brain (all bands, Table 2, Sup-
plementary Table S2 for 30% density, Fig. 2b). Delta band 
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Fig. 1  a Standardization procedure to obtain regional deviations. b Group-level analysis using regional means of the raw offset, EC and CC val-
ues for the spin-test [32] c Within-subject analysis with standardized values and LMMs
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 ECdev was lower in patients in the rest of the brain (Table 2, 
Fig. 2b). These results suggest that clustering is globally 
higher in patients, while integrative connectivity is lower in 
the non-tumoral area.  CCdev and  ECdev did not differ between 
the (peri)tumoral area and its homologue within patients 
(Supplementary Table S4, Fig. 2b).

A post-hoc test revealed similar profiles for the different 
glioma subtypes (Supplementary Tables S5-S7).

Positive group‑level regional correlations

Raw offset values related positively to clustering across 
frequencies in HCs and patients, while it related positively 
to theta band EC in HCs, but not patients (Supplementary 
Table S8).

Negative within‑patient regional correlations

Within-patients, regional  offsetdev related negatively to 
regional lower alpha band  CCdev in the rest of the brain of 
patients (Table 3, Fig. 2C, Supplementary S3). This relation-
ship differed significantly from that in HCs (Supplementary 
Table S9), where no significant associations were found 
for the lower alpha band (Supplementary Table S10). HCs 
showed a positive relationship between  offsetdev and  CCdev 
in the delta band (Supplementary Table S11).

These results counterintuitively indicate that in 
patients, regionally, pathologically high offset associates 
with lower deviating CC, even though our previous results 
established pathologically high offset and CC in patients 

throughout the brain. As can be seen in Fig. 2C,  offsetdev 
values that were more similar to HCs were associated 
with pathologically high  CCdev.

Similarly,  offsetdev related negatively to lower alpha 
band  ECdev (Table 3, Fig. 2C). Again, there was a signifi-
cant difference between patients and HCs in this relation-
ship (Supplementary Table S9), with HCs not showing an 
association between  offsetdev and  ECdev in the lower alpha 
band (Supplementary Table S10). HCs showed a positive 
relationship between  offsetdev and  ECdev in the delta band 
(Supplementary Table S10), which differed significantly 
from patients (Supplementary Table S9).

Using Pearson correlations yielded similar results as the 
LMMs (Supplementary Table S11).

The negative relationships were predominantly present 
in IDH-wildtype glioblastomas (between  CCdev,  ECdev 
and  offsetdev) and IDH-mutant, 1p/19q codeleted gliomas 
(between  ECdev and  offsetdev, Supplementary Tables S12-
S13). Local (peri)tumoral activity did not drive these 
correlations (Supplementary Table S14). The post-hoc 
covariates handedness, tumor lateralization and tumor in 
dominant hemisphere were not significant (Supplementary 
Tables S18-S20).

Reanalysis with the cortical Automated Anatomical 
Labeling atlas [40] yielded similar directions and sizes of 
effects (Supplementary Tables S15-S17). However, lower 
alpha band clustering only stayed significant for 30% den-
sity in the LMMs. This relationship significantly differed 
from HCs for  CCdev (30% density), but not for  ECdev. The 
Pearson’s correlational analyses were not significant.

Table 1  Participant 
characteristics

Tumor histology is based on the 2007 and 2021 WHO classification of human brain tumors [25, 38]. IDH-
mutation status and codeletion status were identified using the 2021 WHO classification and extrapolated 
for the subjects recruited before 2016.
SD Standard Deviation, GBM Glioblastoma, A Astrocytoma, O Oligodendroglioma, NA Not available

Characteristics Healthy 
controls 
(N = 61)

Glioma patients (N = 84) p

Age (mean (SD)) 48.03 (9.62) 45.68 (15.23) 0.115
Sex (number of females (males)) 27 (34) 23 (61) 0.053
Tumor WHO grade (II/III/IV) NA 37/17/30
Tumor histology (GBM/A/O/NA) NA 30/30/23/1
Tumor volume, corrected for headsize (mean ml (SD)) NA 39.8 (38.0)
Tumor side (left/right/bilateral) NA 49/31/4
IDH-mutant, 1p/19q non-codeleted glioma (number (%)) NA 28 (33.3)
IDH-mutant, 1p/19q-codeleted glioma (number (%)) NA 17 (20.2)
IDH-wildtype glioblastoma (number (%)) NA 30 (35.7)
Unknown molecular subtype (number (%)) NA 9 (10.7)
Epilepsy (yes (no)) NA 70 (14)
KPS (median (range) / NA) NA 100 (50—100) / 11
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Discussion

We investigated how regional brain activity and functional 
network connectivity relate to each other in glioma patients 
and healthy subjects. We found that glioma patients had 
higher brain activity and network clustering but lower 
regional centrality than controls, corroborating previous 
MEG and functional MRI studies [10–13, 16, 17, 41–43]. 
Interestingly, regions marked by pathologically high brain 
activity typically showed very low network clustering com-
pared to controls, while regions with regular brain activity 
had very high network clustering.

As expected, brain activity was higher around the tumor, 
which aligns with others’ and our previous work [2, 4]. We 
may speculate that around the tumor, heightened activity 
is driven by direct and indirect reciprocal neuron-glioma 
cell interactions [1, 2]. The mechanisms leading to height-
ened activity further away from the tumor, as we find here 
and in previous work [2, 4], remain elusive. Do invasive 
glioma cells form neuron-glioma synapses far away from the 
tumor? Does high activity in the (peri)tumoral area ‘spread’ 
to other brain areas? Or are oncometabolites stemming from 
the IDH-mutant enzyme responsible for higher excitability, 
acting in a similar way as glutamate [44]?

Similarly, what mechanisms could be responsible for the 
widespread network disturbances in segregative and inte-
grative connectivity? We could speculate that the growing 
tumor initially has a local impact on the functional network, 
which affects the network further away, potentially through 
cascadic network failure [45]. Also, a recent study finds that 
glioblastomas remodel functional neural circuits and this 
associates with worse prognosis and cognition [14]. Alter-
natively, invasive glioma cells might affect the functional 
network topology throughout the brain. Such cells infiltrate 
the surrounding brain via white matter tracts, blood vessels, 
and microtubules. There, they adhere to other cells, such 
as neurons [46]. Potentially, the invasive cells impact the 
functioning of neuronal cell populations further away from 
the tumor mass, impacting functional network dynamics. 
Especially clustering is typically a local network process 
emerging from the communication between (functionally) 
close groups of neurons [21]. Such local cellular dynam-
ics might regionally disturb this local process in regions 
away from the tumor. Also, the biological characteristics of 
regions largely determine functional brain network dynam-
ics [47]. The biological underpinnings of the abstract graph 

theoretical measures may therefore give insight into their 
disturbances—particularly in glioma, in which we may 
expect pathological cellular processes. Longitudinal studies 
investigating these cellular processes and directly connecting 
them to the functional network differences are warranted.

Our findings confirm the hypothesis that higher regional 
brain activity generally relates to higher connectivity, as 
seen in our group-level results. Indeed, few studies investi-
gated the relationship between brain activity and connectiv-
ity and found that they positively relate to each other in the 
healthy setting [22–24].

Interestingly, our within-patient analyses revealed a dif-
ferent relationship between activity and connectivity. Devi-
ations in brain activity and lower alpha clustering related 
negatively, indicating that pathologically high regional brain 
activity went hand in hand with very low clustering within 
the same patient. Conversely, regions with more typical 
activity levels show either normal or very high clustering. 
This was surprising as we found brain activity and cluster-
ing to be high throughout the patients’ brains. This study 
was cross-sectional, so we cannot draw clear conclusions 
on the chronological emergence of deviations in clustering 
and brain activity. However, hypothetically, regions with the 
highest brain activity show altered connectivity patterns and 
they disconnect from other regions. For regions showing 
activity similar to HCs but very high clustering, we may 
postulate a protective pattern: maybe high clustering helps 
to maintain normal levels of activity throughout the brain 
by ‘breaking up’ the functional network. This scenario was 
posited in the epilepsy literature previously, which is rel-
evant to the here studied glioma population, as more than 
80% of patients included suffered from epilepsy. Epilepsy 
patients show less integration and heightened segregation 
of the functional network during the interictal period [48]. 
The epileptic zone is functionally isolated from other regions 
through higher connectivity within itself and lower central-
ity, potentially lowering susceptibility to new seizures [49]. 
This mechanism may play a role in glioma patients, who 
often suffer from epilepsy [50].

Maybe the growth rates of different tumor subtypes also 
play a role. Hypothetically, in slow-growing oligodendro-
gliomas, network deviations are present in the entire brain 
due to plasticity. This might explain why we observed this 
interesting relationship for the oligodendrogliomas but not 
the faster-growing astrocytomas. Counterintuitively then, 
the fastest-growing IDH-wildtype GBMs, showed a similar 
effect as the oligodendrogliomas. As this study was cross-
sectional, we cannot disentangle the relevance of tumor 
growth rate. Also, the small-sized groups were potentially 
not powered for this subgroup analysis.

We similarly found a negative relationship between brain 
activity and centrality in the lower alpha band. This was less 
surprising, as we observed centrality to be lower throughout 

Fig. 2  a Offset in (peri)tumoral, homologue and rest of the brain 
areas in glioma patients and the whole brain of HCs. b Delta, theta 
and lower alpha band  CCdev (higher panel) and  ECdev (lower panel) 
in patients (rest of the brain) and HCs (30% density of network). c 
Within-subject relations between  offsetdev and lower alpha band  CCdev 
(higher panel) and  ECdev (lower panel; rest of the brain area; 30% 
density of network; plots created with [39])

◂
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the brain in the patient group, but only for the delta band. 
This might indicate that regions showing the most pathologi-
cally high activity exhibit the lowest levels of centrality and 
vice versa. This is relevant when considering the cascadic 
network failure model, where central regions take over func-
tions from lesioned regions [45]. Subsequently, the central 
region may fail as a network hub. Speculatively, such failing 
is reflected in our results: regions with the highest activity 
failed to be central integrators and showed the lowest cen-
trality. Interestingly, (peri)tumoral activity is pathologically 
high in glioma, while glioma is known to occur most often 
in regions with intrinsically high activity and connectivity 
in controls [18–20]. Based on our cross-sectional data, we 
cannot disentangle whether high-activity regions in glioma 
were premorbidly highly active or became pathological upon 
glioma occurrence.

Limitations

This study was cross-sectional and correlational, limiting 
conclusions on the chronology of disturbances and their 
development. The patient group was heterogeneous includ-
ing different tumor subtypes, complicating the interpretation 

of results. Another limitation is the size of the effects 
observed. Also, specific preprocessing choices may have 
affected the activity measures. Future studies should explore 
the parameters of the FOOOF model. The same holds for 
choices in thresholding and binarization of the functional 
networks. Researchers should clearly report the preprocess-
ing and analytical choices they make and share their data, to 
make the field more consistent.

Conclusion

While brain activity and local clustering are pathologi-
cally high throughout the brain in glioma patients, region-
ally, these neurophysiological deviations present in a 
complex manner at the individual patient level. Future 
studies should further characterize these deviations and 
their development over time. Is the negative relation-
ship strongest close to the tumor or further away e.g. in 
relevant cognitive networks? Can we predict patients’ 
clinical and cognitive trajectories using these deviations? 
Answering these questions may aid in uncovering how 
neuron-glioma interactions shape clinical functioning and 

Table 2  Network characteristics (density 20%) in the investigated areas of patients and their comparison to whole brain characteristics of HCs

For network characteristics p-values were corrected for the different frequencies and densities. The means of the measures were calculated with 
the values standardized on the regional means and SD of HCs (dev). Therefore, the mean of HCs is 0 and the SD around 1. Here density 20% is 
shown. Results for density 30% are similar and can be found in the supplementary Table S2
HCs Healthy controls; SD Standard Deviation; U U statistic of the Mann–Whitney U test; pFDR False Discovery Rate adjusted p-value
* indicates p < 0.05, ** indicates p < 0.001

Measure Delta Theta Lower Alpha

20% 20% 20%

mean
(SD)

U p
(pFDR)

mean
(SD)

U p
(pFDR)

mean
(SD)

U p
(pFDR)

Clustering Coefficient
  (Peri)tumoral Area 0.370

(1.179)
2910  < 0.001

(< 0.001**)
0.257
(1.447)

2254 0.316
(0.507)

0.129
(1.323)

2232 0.368
(0.507)

  Contralateral Homologue Area 0.276
(1.137)

2817  < 0.001
(< 0.001**)

0.289
(1.301)

2167 0.557
(0.557)

0.233
(1.227)

2619 0.006
(0.009*)

  Rest of the brain 0.327
(1.225)

3857  < 0.001
(< 0.001**)

0.324
(1.410)

3634  < 0.001
(< 0.001**)

0.316
(1.363)

3424  < 0.001
(< 0.001**)

  HCs 0
(0.992)

0
(0.992)

0
(0.992)

Eigenvector Centrality
  (Peri)tumoral Area 0.139

(1.313)
2288 0.244

(0.717)
-0.010
(1.114)

1967 0.717
(0.717)

-0.092
(1.044)

1674 0.08
(0.470)

  Contralateral Homologue Area 0.037
(1.059)

2121 0.713
(0.966)

0.058
(1.109)

2167 0.557
(0.966)

-0.031
(1.079)

1983 0.775
(0.966)

  Rest of the brain -0.061
(1.089)

1663  < 0.001
(< 0.001**)

-0.032
(1.118)

2163 0.110
(0.166)

-0.033
(1.139)

2093 0.061
(0.121)

  HCs 0
(0.992)

0
(0.992)

0
(0.992)
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prognosis. Ultimately, this may help clinicians to commu-
nicate expectations and identify patients that would benefit 
from clinical interventions.
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Table 3  Linear mixed model 
with  offsetdev as dependent and 
 ECdev and  CCdev as independent 
variables for the rest of the brain 
of patients

* indicates p < 0.05, ** indicates p < 0.001; A random intercept was fitted for participants; CI Confidence 
interval for coefficient; Std Standardized; pFDR False Discovery Rate adjusted p-value. The p-values were 
corrected for the different frequency bands and densities. Only the independent variables were included in 
this correction

Frequency, Density Variable Coefficient [CI] Std coefficient
(beta)

Z p pFDR

Delta
  20% Intercept 0.383 [0.225, 0.542] 4.734  < 0.001

ECdev 0.005 [-0.010, 0.020] 0.004 0.681 0.496 0.541
CCdev 0.011 [-0.003, 0.025] 0.011 1.541 0.123 0.211

  30% Intercept 0.381 [0.223, 0.540] 4.708  < 0.001
ECdev -0.001[-0.016, 0.013] -0.001 -0.189 0.850 0.850
CCdev 0.013[-0.001, 0.027] 0.013 1.85 0.064 0.150

Theta
  20% Intercept 0.385 [0.226, 0.544] 4.75  < 0.001

ECdev 0.013 [-0.001, 0.028] 0.012 1.778 0.075 0.150
CCdev 0.007 [-0.007, 0.020] 0.007 0.984 0.325 0.390

  30% Intercept 0.384 [0.225, 0.543] 4.739  < 0.001
ECdev 0.011 [-0.004, 0.025] 0.009 1.436 0.151 0.227
CCdev 0.008 [-0.006, 0.022] 0.008 1.111 0.267 0.356

Lower Alpha
  20% Intercept 0.392 [0.234, 0.551] 4.845  < 0.001

ECdev -0.063 [-0.077, -0.048] -0.056 -8.349  < 0.001  < 0.001**
CCdev -0.025 [-0.039, -0.012] -0.027 -3.636  < 0.001  < 0.001**

  30% Intercept 0.398 [0.240, 0.557] 4.922  < 0.001
ECdev -0.056 [-0.071, -0.042] -0.05 -7.564  < 0.001  < 0.001**
CCdev -0.044 [-0.058, -0.030] -0.044 -6.103  < 0.001  < 0.001**
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