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Abstract
Purpose Various molecular profiles are needed to classify malignant brain tumors, including gliomas, based on the latest 
classification criteria of the World Health Organization, and their poor prognosis necessitates new therapeutic targets. The 
Todai OncoPanel 2 RNA Panel (TOP2-RNA) is a custom-target RNA-sequencing (RNA-seq) using the junction capture 
method to maximize the sensitivity of detecting 455 fusion gene transcripts and analyze the expression profiles of 1,390 
genes. This study aimed to classify gliomas and identify their molecular targets using TOP2-RNA.
Methods A total of 124 frozen samples of malignant gliomas were subjected to TOP2-RNA for classification based on their 
molecular profiles and the identification of molecular targets.
Results Among 55 glioblastoma cases, gene fusions were detected in 11 cases (20%), including novel MET fusions. Seven 
tyrosine kinase genes were found to be overexpressed in 15 cases (27.3%). In contrast to isocitrate dehydrogenase (IDH) 
wild-type glioblastoma, IDH-mutant tumors, including astrocytomas and oligodendrogliomas, barely harbor fusion genes 
or gene overexpression. Of the 34 overexpressed tyrosine kinase genes, MDM2 and CDK4 in glioblastoma, 22 copy num-
ber amplifications (64.7%) were observed. When comparing astrocytomas and oligodendrogliomas in gene set enrichment 
analysis, the gene sets related to 1p36 and 19q were highly enriched in astrocytomas, suggesting that regional genomic DNA 
copy number alterations can be evaluated by gene expression analysis.
Conclusions TOP2-RNA is a highly sensitive assay for detecting fusion genes, exon skipping, and aberrant gene expression. 
Alterations in targetable driver genes were identified in more than 50% of glioblastoma. Molecular profiling by TOP2-RNA 
provides ample predictive, prognostic, and diagnostic biomarkers that may not be identified by conventional assays and, 
therefore, is expected to increase treatment options for individual patients with glioma.
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Introduction

Gliomas, a clinically heterogeneous group of primary 
brain tumors, are thought to be derived from genetically 
or epigenetically aberrant cells with neuroglial stem/
progenitor-like properties and are found in approximately 
100,000 people per year worldwide [1]. They are among 
the most common and deadly types of primary brain 
tumors, accounting for approximately 28% of all brain 
tumors but the majority of deaths [2]. Adult gliomas are 
currently classified into two major groups based on the 
mutational status of isocitrate dehydrogenase (IDH)1/2, 
the key glioma driver gene encoding IDH [3–6]. IDH-
mutant gliomas typically present as lower histologic 
grades with improved prognosis and a median survival 
of > 12 years [7]; however, later in the natural history of 
the disease, they often transform into higher grades with 
aggressive clinical behavior.

In contrast, IDH-wildtype gliomas usually present as 
glioblastomas (GBM), the most common and clinically 
aggressive World Health Organization (WHO) grade IV 
gliomas, with a median survival of 15–18 months despite 
aggressive multimodality therapy [8, 9].

Over the past decade, comprehensive molecular char-
acterization has identified complex genetic, epigenetic, 
and chromosomal changes that segregate gliomas into 
distinct molecular subtypes, with some genetic differ-
ences affecting their response to therapy [10–12]. For 
example, MGMT promoter methylation is both prog-
nostic and predictive of temozolomide benefits [13]. 
However, relatively few patients with gliomas benefit 
from genome-driven oncology [14, 15]. However, bio-
marker-driven targeted therapy has proven effective in 
GBM based on case stories with specific aberrations 
[16, 17]. This includes gene fusions that have resulted 
in the approval of tropomyosin receptor kinase (TRK) 
inhibitors for TRK fusion-positive cancers, regardless of 
histology [18, 19] or dabrafenib–trametinib combination 
for solid tumors with BRAF mutations [20].

As clinical sequencing is implemented in global clinical prac-
tice, the clinical utility of DNA panels that interrogate several 
hundred genes has been evaluated. Although RNA-sequencing 
(RNA-seq) technologies greatly promote the exploration of the 
complex and dynamic nature of cancer [21] and can provide 
insights into previously undetected changes occurring in a dis-
ease, the clinical utility of RNA-seq has not been comprehen-
sively evaluated [22]. RNA-seq data have been successfully used 
to identify single nucleotide variant mutations [23], alternative 
splicing [24], fusion genes [25], and RNA editing [26].

The Todai OncoPanel (TOP) is a dual DNA–RNA panel 
as well as a paired tumor–normal matched test developed 
by our group [27]. Two hundred patients with cancer 

without standard treatment or those who had already 
undergone standard treatment underwent TOP as part of 
Advanced Medical Care B (UMIN000033647). The per-
centage of patients who received therapeutic or diagnostic 
recommendations was 61% (120/198 patients). One hun-
dred and four samples (53%) harbored gene alterations that 
were detected using the DNA panel and had potential treat-
ment implications. Twenty-two samples (11.1%) harbored 
30 fusion transcripts or MET exon 14 skipping, which were 
detected using the RNA panel. Overall, 12 patients (6%) 
received recommended treatment [28]. After the trial, we 
revised the TOP panel to TOP2 to expand 737 gene altera-
tions with its DNA panel and 455 fusion transcripts and 
1390 gene expression with its RNA panel. For the RNA 
panel, probes were designed to cover fusions reported in 
databases, such as COSMIC (https:// cancer. sanger. ac. uk/ 
cosmic/ fusion) and FusionGDB (https:// ccsm. uth. edu/ 
Fusio nGDB/). For gene expression, probes cover all genes 
targeted by the DNA panel and fusion genes, as well as 
genes whose protein expression is commonly evaluated by 
immunohistochemistry in pathological diagnosis.

As RNA-seq is a reliable method for detecting fusion 
genes, molecular profiling of gliomas using the TOP2 RNA 
Panel (TOP2-RNA) was performed in this study, and its 
validity and potential utility in the molecular diagnosis and 
stratification of patients for clinical trial enrollment were 
evaluated.

Materials and methods

Study design and patient specimens

The study cohort was comprised of 131 patients with gliomas 
who underwent surgical resection between 2005 and 2017 at 
the National Cancer Center, Japan. Seven cases with poor 
RNA quality isolated from the specimens were excluded. 
Analysis was conducted on the remaining 124 patients. 
Fresh frozen specimens of surgically resected tumors were 
obtained. This study was approved by the Ethics Commit-
tee of the National Cancer Center, Japan (No. 2013–042). 
All patients provided written informed consent, except for 
those who could not be reached because of loss to follow-up 
or death after registration. In these cases, the Institutional 
Review Board at the National Cancer Center granted permis-
sion to use existing tissue samples for research. No samples 
from patients who opted out of participation were used.

RNA‑seq with the TOP2 cancer gene panel 
for mutation calls

Total RNA was extracted from fresh frozen samples using 
the RNeasy Mini Kit (QIAGEN, Hilden, Germany). Then, 

https://cancer.sanger.ac.uk/cosmic/fusion
https://cancer.sanger.ac.uk/cosmic/fusion
https://ccsm.uth.edu/FusionGDB/
https://ccsm.uth.edu/FusionGDB/
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200 ng of RNA was converted to cDNA using the Proto-
Script II First Strand cDNA Synthesis Kit and NEBNext 
Ultra II Non-Directional RNA Second Strand Synthesis 
Module (New England Biolabs, Ipswich, MA, USA) and 
subjected to subsequent target enrichment using TOP-
RNA-V6 probes with the Twist Library Preparation EF Kit 
(Twist Bioscience, South San Francisco, CA, USA). Using 
a paired-end option, massive parallel sequencing of the 
isolated fragments was conducted using a NovaSeq 6000 
(Illumina). Paired-end reads containing masked nucleotides 
with a quality score < 20 were aligned to the human refer-
ence genome (hg38) using STAR (v2.5.2a; https:// github. 
com/ alexd obin/ STAR). Mutations were called using an 
in-house mutation caller based on the SAMtools’ mpileup 
results. Mutations were discarded if any of the follow-
ing criteria were met: read depth < 20, variant allele fre-
quency < 0.001, and the presence of the variant in normal 
human genomes in either the 1000 Genomes Project data-
set (https:// www. inter natio nalge nome. org/) or our in-house 
database. Gene mutations were annotated using SnpEff 
(http:// snpeff. sourc eforge. net).

Detection of fusion genes and exon skipping, 
and expression analysis

Gene fusion was detected using STAR-Fusion (v1.2.0; 
https:// github. com/ STAR- Fusion) and an in-house pipeline. 
The detection criterion was set to ≥ 10 reads. In the in-house 
pipeline, BWA (v0.7.12; https:// bio- bwa. sourc eforge. net/) was 
used to map hypothetical fusion gene sequences obtained from 
the reported fusion gene information. Reads matching ≥ 30 bp 
from the breakpoints were considered. This pipeline can also 
be used to identify exon skipping based on the same principle. 
For expression-level analysis, transcripts per million (TPM) 
of 1,390 genes from BAM files mapped to hg38 with STAR 
were calculated using an in-house program.

Clustering and prognostic marker identification 
using expression data

All statistical analyses were performed using R software 
version 4.2.0 and related packages. Hierarchical clustering 
was performed using Ward’s method with log-transformed 
TPM as the input. In survival assessment, overall survival 
(OS) period was defined as the time from the start of treat-
ment to the date of death from any cause or the date of 
the last follow-up. Cox regression was performed using the 
RegParallel (1.14.0) package, with log-transformed TPM 
converted to Z-scores as the input, and each of the seven 
genes was p < 0.001. For ATXN3 expression, which was the 
most significant, survival curves were generated for the two 
groups, > 0 and < 0, and evaluated using the log-rank test.

Copy‑number analysis using digital droplet 
polymerase chain reaction (ddPCR)

DNA samples were analyzed by measuring concentrations 
using a Qubit 3.0 fluorometer (Thermo Fisher Scientific), 
and those that met the quality evaluation criteria (DNA 
quantity and quantity) were used. The reaction mix for the 
assay was prepared as follows: 20 ng of DNA per reaction, 
1.1 μL of probes for individual target genes and the con-
trol reference gene, 11.0 μL of ddPCR Supermix, 0.5 μL of 
restriction enzyme, DNA up to 8 μL, and DNase-free water 
up to 22 μL. DNase-free water was used as the negative 
control for the assay, and human reference genomic DNA 
(NA18943; Coriell Institute, Camden, NJ) was used as the 
positive control. The reaction mixture was subjected to 
restriction enzyme treatment (MseI, R0525L, New England 
Biolabs, Ipswich, MA, USA), followed by droplet generation 
using an automated droplet generator (Bio-Rad Laboratories 
Inc., Hercules, CA, USA) and PCR using a Veriti Thermal 
Cycler (Thermo Fisher Scientific). After PCR, the fluores-
cence signal of each droplet was measured using a QX200 
Droplet Reader (Bio-Rad Laboratories, Inc.). The obtained 
measurement data were subjected to copy-number analysis 
using QuantaSoft Analysis Pro software (Bio-Rad Labora-
tories Inc.). RPP30 was used as the reference gene.

Data collection from center for cancer genomics 
and advanced therapeutics (C‑CAT) and GENIE

The C-CAT is a national datacenter for cancer genomic medi-
cine. Clinical information and genomic data from comprehen-
sive genomic profiling tests conducted in Japan are stored in 
the C-CAT [29]. The AACR Project GENIE is an international 
data-sharing consortium focused on generating an evidence 
base for precision cancer medicine by integrating clinical-grade 
cancer genomic data with clinical outcome data for tens of 
thousands of patients with cancer treated at multiple institutions 
worldwide [30]. The C-CAT data were accessed on Aug. 14th 
2022 through the C-CAT portal. CNS/brain is the tumor type 
used to extract data from 498 cases of brain tumors. GENIE 
data were accessed on Aug. 16th 2022 through cBioPotal. In 
total, 8,562 glioma cases were identified. The mutation status 
of IDH1/2 was used to determine GBM, IDH-wildtype.

Statistical analysis

Information on statistical testing is provided in the descrip-
tion of each test in the Methods section and the corre-
sponding result description and figure legends. No statis-
tical method was used to pre-determine the sample size. 

https://github.com/alexdobin/STAR
https://github.com/alexdobin/STAR
https://www.internationalgenome.org/
http://snpeff.sourceforge.net
https://github.com/STAR-Fusion
https://bio-bwa.sourceforge.net/
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Statistical significance was set at p < 0.05, except for in 
Fig. 2A, where statistical significance was set at p < 0.00625 
(Bonferroni correction).

Results

Patient characteristics

The study cohort comprised 124 patients with gliomas who 
presented with a Karnofsky Performance Status (KPS) ≥ 70 
and underwent surgical resection between 2005 and 2017 
at the National Cancer Center in Japan. The demographic 
and clinical data of the patients are summarized in Table 1 
and Supplementary Data 1. The median age was 39 years, 
which was comparable between female and male patients 
(mean, 59.4 vs. 62.6 years; p = 0.5, Student’s t-test). The 
diagnosis was based on the 2016 WHO classification criteria 
for GBM (grade IV), anaplastic astrocytomas (grade III), 
anaplastic oligoastrocytomas (grade III), anaplastic oligo-
dendrogliomas (grade III), diffuse astrocytomas (grade II), 

oligodendrogliomas, oligoastrocytomas (grade II), pilocytic 
astrocytomas (grade I), and other tumors, such as anaplas-
tic ependymomas, subependymomas, gangliogliomas, and 
low-grade gliomas. All patients underwent surgery, and 
after the initial treatment during the median follow-up time 
of 69.2 months, recurrence was observed in 92.7% of the 
patients.

Molecular profiling of gliomas by cancer gene panel 
sequencing

RNA-seq with TOP2-RNA was performed to detect muta-
tions in glioma-related genes, oncogenic fusion genes, and 
gene overexpression (defined as > average + 3 standard 
deviation) for receptor tyrosine kinase (TK) (Supplemen-
tary Data 2). Initially, mutation analysis of IDH1/2 and 
H3F3A was conducted to convert the diagnosis into one 
based on the 2021 WHO classification criteria. IDH1, 
IDH2, and H3F3A mutations were identified in 56, 5, 
and 4 cases, respectively. The molecular status was con-
verted in the cohort into 55 cases of GBM, IDH-wildtype, 

Table 1  Demographic features 
of the 124 patients with glioma

* The 2016 World Health Organization Classification of Tumors of the Central Nervous System
SD standard deviation, ND not determined

No. (%) Age Sex
Median (range), years
Mean (SD), years

Male no. (%)
Female no. (%)

All 124 39 (5–87)
46.3 (19.4)

68 (54.8)
56 (45.2)

Diagnosis*
Glioblastoma (grade IV) age < 40 years 15 (12.1) 31 (17–38)

30.3 (6.5)
9 (7.3)
6 (4.8)

  age ≧ 40 years 38 (30.6) 67 (40–87)
65.9 (14.5)

18 (14.5)
20 (16.1)

Diffuse astrocytoma, grade II 8 (6.5) 36 (5–75)
35.6 (20)

3 (2.4)
5 (4)

Anaplastic astrocytoma, grade III 27 (21.8) 38 (17–80)
40.4 (16.2)

12 (9.7)
15 (12.1)

Oligodendroglioma, grade II 11 (8.9) 43 (31–64)
42.3 (11.7)

8 (6.5)
3 (2.4)

Oligoastrocytoma, grade II 5 (4) 31 (27–42)
33.8 (6.5)

4 (3.2)
1 (0.8)

Anaplastic oligodendroglioma, grade III 7 (5.6) 38 (28–60)
40.9 (10.7)

5 (4)
2 (1.6)

Anaplastic oligoastrocytoma, grade III 8 (6.5) 31 (28–63)
36.4 (11.8)

7 (5.6)
1 (0.8)

Pilocytic astrocytoma, grade I 2 (1.6) 30 (28–32)
30 (2.8)

1 (0.8)
1 (0.8)

Subependymoma 1 (0.8) 80
80 (ND)

0 (0)
1 (0.8)

Anaplastic ependymoma 1 (0.8) 13
13 (ND)

1 (0.8)
0 (0)

Ganglioglioma 1 (0.8) 42
42 (ND)

0 (0)
1 (0.8)



79Journal of Neuro-Oncology (2024) 167:75–88 

grade 4; 32 cases of astrocytomas, IDH-mutant, grade 
2/3/4; 27 cases of oligodendrogliomas, IDH-mutant, and 
1p/19q-codeleted, grade 2/3; and 10 cases of other glio-
mas, including 4 cases of diffuse midline glioma, H3 K27-
altered (Supplementary Fig. 1).

Mutational analysis identified recurrent oncogenic 
mutations in GBM, including 10 cases with EGFR muta-
tions and 3 with BRAF mutations (Fig. 1A and B). Patho-
genic mutations in tumor suppressor genes such as TP53, 
PTEN, and NF1 were also identified in 13, 14, and 4 GBM 
cases, respectively. Frequent mutations in TP53 (n = 26, 
81.3%) and ATRX (n = 20, 62.5%) were identified in astro-
cytomas (A), whereas no frequent mutations other than 
IDH1/2 were identified in oligodendrogliomas. These 
mutation frequencies are consistent with those reported 
in previous studies [31].

Fusion and exon skipping analyses identified 
EGFR-SEPT14, EGFR variant III, FGFR2–TACC2, 
FGFR3–PDE4DIP, FGFR3–TACC3, CAPZA2–MET, 
CTTNBP2–MET, and LINC01004–MET, which retained the 
TK domain (Fig. 1C). CTTNBP2-MET and LINC01004–MET 
were novel fusion genes. CTTNBP2–MET contains a coiled-
coil domain that promotes TK dimerization, suggesting 
oncogenic fusion. LINC01004–MET did not harbor any 
functional domains in LINC01004. The frequency of fusion 
genes in this study was higher than that reported in previous 
studies [32, 33].

Expression analysis revealed the mRNA overexpres-
sion of EGFR, FGFR1, FGFR2, FGFR3, MET, PDGFRA, 
PDGFRB, MET, MDM2, and CDK4 in four, two, three, 
two, three, seven, three, five, and five cases, respectively 
(Fig. 1A and Supplementary Fig. 2). Tyrosine kinase gene 
overexpression was observed in 15 (27.3%) GBM cases. 
In contrast, gene overexpression was barely observed in 
astrocytomas or oligodendrogliomas. Overall, altera-
tions in targetable driver genes were identified in 54.5% 
of GBM (Fig. 1B).

Comparison of the frequency of gene fusion 
in GBMs in Japan and the USA

To evaluate the clinical utility of RNA-seq in GBM, the 
frequency of fusion genes identified in this study was com-
pared with that of clinical sequencing cohorts in Japan and 
the USA. The frequency of EGFR, MET, and FGFR1/2/3 
fusions was higher in our cohort, suggesting that RNA-seq 
is superior to DNA-seq for fusion detection, which has been 
commonly used for clinical sequencing to date (Fig. 1D). 
The frequency of gene alterations in GBM was compara-
ble between the GENIE and C-CAT cohorts, suggesting a 
comparable performance of the gene panels used in the two 
cohorts (Fig. 1E).

Evaluation of the relationship between gene 
mutation and gene expression

To evaluate the relationship between gene mutation and 
expression, mRNA expression was compared between cases 
with mutations and those without mutations in eight genes 
that were commonly mutated in GBM, A and O (EGFR, 
ATRX, PTEN, NF1, IDH1, IDH2, BRAF, TP53). A high 
EGFR expression level was observed in cases with EGFR 
mutations, whereas decreased expression was observed 
in cases with ATRX mutations (p = 3.3 ×  10–7, 2.6 ×  10–4, 
respectively, Student’s t-test) (Fig. 2A and Supplementary 
Fig. 3). No alterations in IDH1/2, BRAF, or TP53 expres-
sion levels were observed between cases with and without 
mutations in the respective genes.

Evaluation of the concordance 
between copy‑number amplification and gene 
overexpression

For cases with overexpression of TK genes, MDM2, and 
CDK4, copy number analysis was conducted to assess if 
copy number amplification was the cause of gene overex-
pression (Supplementary Fig. 4). Gene copy number and 
gene expression were strongly positively correlated with 
EGFR (r = 1), whereas moderate positive correlations were 
observed for MET, CDK4, and PDGFRA (r = 0.71, 0.81, and 
0.8, respectively) (Fig. 2B). No strong or moderate posi-
tive correlations were observed for FGFR1/2/3, MDM2 or 
PDGFRB (r = -1, -0.73, 0.39, 0.26 and -0.76, respectively). 
Overall, among 34 cases of overexpression in GBM, 22 copy 
number amplifications (64.7%) were observed, suggesting 
the involvement of other genetic or epigenetic alterations in 
gene overexpression.

Identification of prognostic biomarker of glioma 
by transcriptional profiling

Clustering analysis was conducted using top 100 genes 
with the greatest variation in expression. The cohort was 
divided into two groups: Cluster 1 and Cluster 2 (left and 
right clusters in Fig. 3A). Patients with GBM were enriched 
in cluster 1 (p < 0.01, Fisher’s exact test). Most of cluster 
1 was composed of GBM (46/56, 82.1%), while most of 
cluster 2 was composed of astrocytoma and oligodendro-
glioma (57/68, 83.8%), suggesting a distinct gene expres-
sion profile of GBM compared to the other subtypes of gli-
oma. Patients with tumors located in the frontal lobe were 
enriched in cluster 2 (p < 0.01, Fisher’s exact test). Cluster 
2 comprised of younger patients (p < 0.01 vs Cluster 1, Stu-
dent’s t-test). The median overall survival (OS) period was 
56.7 and 87.4 months for clusters 1 and 2, respectively, and 
was not significantly different (p = 0.38, log-rank test; 95% 
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confidence interval [CI] of ratio = 0.37–1.14 and 0.87–2.71) 
(Supplementary Fig. 5A).

The data are bulk transcriptomes, and the two clusters 
reflect the microenvironment composition of the individual 
tumors. The expression of macrophage marker genes CD68 
and CD163 or genes related to T-cell activation, namely 
CCL5, CD58, and CXCL10, was elevated specifically in 
cluster 1, suggesting immune cell activation of tumors in 
cluster 1 (Supplementary Fig. 5B and Supplementary Data 
3).

Risk of 55 GBM patients was assessed using RNA-seq 
data. The median OS period was 32.8 (95% CI = 21.3–NA) 
months. Univariate Cox proportional hazards regression 
analysis showed a significant correlation between the seven 
genes and OS (p ≤ 1 ×  10–3, log-rank test) (Supplementary 
Data 4). The most significant gene was ATXN3, and its 
expression strongly stratified the prognosis of patients with 
GBM (p = 0.0089, log-rank test; 95% confidence interval 
[CI] ratio = 32.8–NA and 10.1–NA) (Fig. 3B).

Expression of genes on chr1p36 and chr19q13 
is a diagnostic marker to distinguish 
oligodendroglioma

Gene set enrichment analysis (GSEA) between GBMs and 
astrocytomas or oligodendrogliomas identified 26 and 25 gene 
sets enriched in each group (Nominal p value < 0.01, one clus-
ter vs. the other) (Supplementary Data 5). Among these gene 
sets, “ZHANG_PROLIFERATING_VS_QUIESCENT” and 

“GSE28726_NAIVE_VS_ACTIVATED_CD4_TCELL_DN” 
were enriched in GBM, whereas “MIR299_5P” and “HP_
HEMIANOPIA” were enriched in astrocytomas and oligo-
dendrogliomas (Fig. 3C). GSEA between astrocytomas and 
oligodendrogliomas identified 11 and 19 upregulated gene 
sets, respectively (p < 0.01, one cluster vs. the others) (Sup-
plementary Data 6). Among these gene sets, “CHR19Q13” 
and “CHR1P36” were enriched in astrocytomas, whereas 
“GSE21033_3H_VS_12H_POLYIC_STIM_DC_UP” and 
“GSE2585_AIRE_KO_VS_WT_CD80_HIGH_MTEC_DN” 
were enriched in oligodendrogliomas (Supplementary Fig. 6).

Of the 1,390 genes targeted by TOP2-RNA, 28 and 36 
were located at the chr1p36 and chr19q13 loci, respectively. 
The correlation between the z-scores of individual genes 
and the total z-score among the samples was calculated. Of 
the 64 genes, the expression levels of 29 genes were moder-
ately (0.5 < r ≤ 0.8) or highly (0.8 < r) correlated with total 
gene expression. The total z-score and average TPM for the 
29 genes of oligodendrogliomas were lower than those of 
astrocytomas, indicating that the co-deletion of chr1p36 and 
chr19q13 led to decreased expression of genes located at the 
locus (p < 0.001, Student’s t-test) (Fig. 3D and Supplemen-
tary Fig. 7), indicating that the z-score of these genes may 
be applicable as a diagnostic marker for oligodendroglioma.

Discussion

This is the first study to evaluate the feasibility and utility 
of RNA-seq for the detection of fusion genes and aberrant 
transcription in malignant gliomas using TOP2-RNA. The 
utility of RNA-seq has been demonstrated in the detection of 
fusion genes. Specifically, we identified targetable FGFR2/3 
and MET fusions in nine cases (16.4% of GBM). In terms 
of biological sampling, including ethnicity, our cohort is 
the same as the C-CAT cohort, suggesting that the differ-
ence in the frequency of fusion is related to the technologies 
used. The method used in the C-CAT and GENIE cohorts 
is DNA-seq, whereas our method uses RNA-seq, which 
is more suitable for fusion detection [34]. Additionally, 
KIAA1549-BRAF and C11orf95-RELA were found in cases 
of pilocytic astrocytoma and subependymoma, respectively 
(data not shown). There have been recent developments and 
approvals of therapies targeting fusion oncogenes, such as 
those for cholangiocarcinomas with FGFR2 fusions and 
solid tumors with NTRK fusions in the area.

CAPZA2–MET and LINC01004–MET fusions did not 
have dimerization domains, which are usually found in 
TK fusion genes and promote constitutive kinase activa-
tion. However, MET was overexpressed in both the sam-
ples. Copy-number amplification (copy number = 15.3) was 
identified in samples with LINC01004–MET, suggesting 
the involvement of gene rearrangement in amplification. 

Fig. 1  Mutational profile of gliomas. A Frequently mutated genes 
with color coding of their alteration status for each tumor. The sheet 
on the top (highlighted in green) shows the results of mutation analy-
sis on IDH1/2, EGFR, BRAF, TP53, ATRX, PTEN, NF1, and H3F3A. 
The sheet on the middle (highlighted in blue) shows the results of 
fusion and exon skipping detection, and expression analysis. The 
sheet on the bottom (highlighted in orange) shows the results of 
copy-number analysis by digital droplet PCR. SNV; single nucleo-
tide variant, CN; copy number. B Frequency of driver mutations in 
glioblastoma (GBM), astrocytomas (A), and oligodendrogliomas (O) 
in the cohort. C A schematic diagram depicting TK fusions. EGFR, 
FGFR2, FGFR3, and MET fusions identified by RNA-seq is shown 
with their functional domains. Exon 24 of EGFR (NM_005228) 
was ligated to exon 10 of SEPT14 (NM_207366). EGFR variant III 
revealed the ligation of exons 1–8. Exon 17 of FGFR2 (NM_000141) 
was ligated to exon 12 of TACC2 (NM_006997). FGFR3 
(NM_000142) was disrupted downstream of exon 17 and was sub-
sequently ligated upstream of either exon 8 of TACC3 (NM_006342) 
or exon 7 of PDE4DIP (NM_014644). Exons 3, 15, or 2 of MET 
(NM_001324402) were ligated to exon 1 of CAPZA2 (NM_001987), 
exon 4 of CTTNBP2 (NM_033427), or exon 1 of LINC01004 
(ENST00000450686.1), respectively. The TK domain was main-
tained in all identified fusions. CC, coiled-coil domain; TKD, tyros-
ine kinase domain. D Frequency of fusion and exon skipping identi-
fied in the cohorts of C-CAT, GENIE, and this study (TOP2-RNA). 
E Mutation frequency of glioma-related genes in C-CAT (left) and 
GENIE (right). MUT, mutation; AMP, gene amplification; HOM-
DEL, homozygous deletion

◂



82 Journal of Neuro-Oncology (2024) 167:75–88

EGFR FGFR MET

CDK4 MDM2 PDGFR

)egnahc
dlof(

MPT

Copy number

TP
M

 (f
ol

d 
ch

an
ge

)

Copy number

TP
M

 (f
ol

d 
ch

an
ge

)

Copy number

)egnahc
dlof(

MPT

Copy number

TP
M

 (f
ol

d 
ch

an
ge

)

Copy number

TP
M

 (f
ol

d 
ch

an
ge

)

Copy number

FGFR1
FGFR2
FGFR3

PDGFRA
PDGFRB

mut (-) mut (+)
-50000

0

50000

100000

150000

TP
M

mut (-) mut (+)
-500

0

500

1000

1500

TP
M

mut (-) mut (+)
-500

0

500

1000

1500

TP
M

mut (-) mut (+)
-500

0

500

1000

1500

2000

TP
M

A

r = 1

r = -1
r = -0.73
r = 0.39

r = 0.71

r = 0.81

r = 0.26 r = 0.8 
r = -0.76 

mut (-) mut (+)
-500

0

500

1000

1500

IDH1

TP
M

mut (-) mut (+)
-1000

0

1000

2000

3000

4000

IDH2
TP

M

mut (-) mut (+)
-500

0

500

1000

1500

BRAF

TP
M

mut (-) mut (+)
-1000

0

1000

2000

3000

4000

5000

TP53

TP
M

B

p = 0.14 p = 0.84 p = 0.36

N = 68 N = 56

p = 0.86

N = 120 N = 4 N = 118 N = 6 N = 81 N = 43

N = 111 N = 13 N = 99 N = 25 N = 110 N = 14 N = 117 N = 7

p = 2.6 x 10-4 p = 1.9 x 10-2 p = 1.1 x 10-2

p = 3.3 x 10-7

EGFR ATRX PTEN NF1



83Journal of Neuro-Oncology (2024) 167:75–88 

A recent study reported that LINC01004 is a novel super-
enhancer-associated lncRNA and crucial oncogene in hepa-
tocellular carcinoma [35]. Therefore, promoter swapping by 
LINC01004 may further promote MET overexpression and 
augment the transformation potential of this fusion.

In contrast, copy number was normal in the sample with 
CAPZA2-MET, suggesting that MET overexpression was 
caused via promoter swapping by CAPZA2. A recent study 
reported a patient with cholangiocarcinoma harboring a 
CAPZA2–MET fusion along with MET amplification, who 
dramatically responded to capmatinib, a specific MET TK 
inhibitor [36].

In addition, EGFR VIII was detected using an analytical 
pipeline to detect exon skipping. Considering that the iden-
tification of gene alterations affecting relatively long regions 
of the genome (> 100 nt) by short-read sequencing is dif-
ficult, the detection of exon skipping caused by structural 
variations is another advantage of RNA-seq.

This study evaluated the utility of expression analysis 
using RNA-seq and successfully identified TK overexpres-
sion cases. Subsequent ddPCR analysis showed that approxi-
mately half of the cases with gene overexpression harbored 
gene amplification. Specifically, EGFR RNA expression and 
copy number amplification were highly concordant, suggest-
ing that genetic control is dominant for EGFR expression 
in gliomas.

The expression analysis distinguished GBMs from astro-
cytomas or oligodendrogliomas, suggesting distinctive 
features of the microenvironment composition of GBM. 
Across cohorts, transcriptome analyses of human GBM have 
repeatedly been classified into three subtypes: classic (CL), 
mesenchymal (MES), and proneural (PN) [37–40]. Several 
studies have established correlations between subtype-
specific gene expression signatures, differential response to 
therapy, and overall patient survival; the latter is poor in 
highly mesenchymal tumors that exhibit innate immune cell 

infiltration at recurrence [40]. In this study, the comparison 
of RNA expression with prognosis identified several genes, 
namely, ATXN3, GOLGA5, CRBN, MAX, TGFB3, SETD3, 
and SFTPA1, as prognostic markers that may be related to 
the mesenchymal subtype.

ATXN3 (Ataxin 3) encodes a deubiquitinating enzyme 
involved in protein homeostasis, transcription, cytoskeleton 
regulation, myogenesis, and degradation of misfolded chap-
erone substrates [41–44]. ATXN3-associated diseases occur 
as Machado–Joseph disease and Machado–Joseph disease 
type 1, which is an autosomal dominant neurodegenerative 
disorder predominantly involving the cerebellar, pyramidal, 
extrapyramidal, motor neuron, and oculomotor systems. A 
recent study reported that ATXN3 is targeted by piRNAs 
and miRNAs and that its upregulation might induce cell 
proliferation through G-protein-coupled receptor or AKT 
signaling in GBM [45].

Although the methylation status of the MGMT promoter 
was positively correlated with prolonged survival in patients 
who received TMZ-based therapy [8], MGMT mRNA 
expression was not significantly related to OS in our cohort 
(p = 0.32, hazard ratio = 1.24). Further studies on the cor-
relation between MGMT promoter status and the prognosis 
of IDH-wildtype GBM are needed.

Another utility of TOP2-RNA is its diagnostic capabil-
ity in astrocytomas and oligodendrogliomas. Although oli-
godendrogliomas are associated with CIC mutations (up to 
70%) [46, 47], astrocytomas frequently harbor TP53 and 
ATRX mutations [48] and confirmation of 1p/19q co-dele-
tion is needed to distinguish both tumors according to the 
2021 WHO classification. The assessment of gene expres-
sion on the 1p/19q locus with TOP2-RNA may be used as 
a substitute for fluorescence in situ hybridization or SNP 
arrays, which are common assays in routine clinical settings. 
Although copy-number variants such as 1p/19q co-deletion 
by whole genome sequencing, exome sequencing, and tar-
geted NGS assays have been explored in brain tumors using 
various bioinformatics analysis pipelines [49–54], few stud-
ies have reported the utility of targeted RNA-seq for 1p/19q 
co-deletion.

In addition to 1p/19q co-deletion in oligodendrogliomas, 
GSEA revealed intriguing features of glioblastoma. For 
instance, ZHANG_PROLIFERATING_VS_QUIESCENT 
is upregulated in proliferating HDMEC cells (microvascular 
endothelium). This is a reasonable result considering that 
GBM is characterized by extensive vascularization, and 
its tumor angiogenesis is known to be a multi-step process 
involving the proliferation, migration, and differentiation 
of brain microvascular endothelial cells under the stimu-
lation of specific signals derived from cancer cells [55]. 
GSE28726_NAIVE_VS_ACTIVATED_CD4_TCELL_DN 
was downregulated in activated CD4 + T cells. This result 
suggests that GBM has a specific immunosuppressive 

Fig. 2  Correlation of gene expression with mutations. A mRNA 
expression was compared between cases with mutations and those 
without mutations in eight genes that were commonly mutated in the 
GBM, A and O. A high EGFR expression level was observed in cases 
with EGFR mutations, whereas decreased expression was observed 
in cases with ATRX mutation (p = 1.0 ×  10–4, 2.0 ×  10–4, respectively, 
Student’s t-test). No alteration in the expression levels of IDH1/2, 
BRAF, and TP53 expression was observed between cases with and 
without mutations of the respective genes (p = 0.14, 0.86, 0.84, 0.36, 
respectively, Student’s t-test). The dotted line indicates threshold 
for outlier (> average + 3SD or < average−3SD). mut, mutation; N, 
number of cases. B Copy-number analysis by ddPCR for cases with 
gene overexpression. For cases with gene overexpression (defined 
as > average + 3SD), copy-number analysis was conducted. Gene 
copy number and gene expression were highly concordant in EGFR 
(r = 1), whereas moderate concordance was observed in MET, CDK4, 
and PDGFRA (r = 0.71, 0.81, and 0.79, respectively). No strong or 
moderate positive correlation was observed in FGFR1/2/3, MDM2 
and PDGFRB (r = -1, -0.73, 0.39, 0.26 and -0.76, respectively)
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microenvironment as it has a distinct pattern of genomic 
aberrations that could be neoantigens. A recent study 
reported that T cell dysfunction in the glioblastoma micro-
environment is mediated by myeloid cells [56]. Combining 
single-cell RNA sequencing of the immune compartment 
with spatially resolved transcriptomic sequencing in differ-
ent types of glioma will deepen our understanding of how 
GBM creates an immunosuppressive microenvironment.

This study had several limitations. First, DNA analy-
sis was not performed to comprehensively assess muta-
tional profiles. Although mutational analysis by RNA-seq 
may overlook mutations in low-expression genes, hotspot 
mutations in oncogenes such as IDH1/2 were successfully 
identified, and cases with IDH1/2 mutations were highly 
consistent with the pathological diagnosis. Second, the 
cause of the gene overexpression was not fully identified. 
Approximately half of the cases with high gene expres-
sion showed copy number amplification. The structural 
rearrangements that cause promoter or enhancer swapping 
may be involved in the other half. Thus, whole-genome 
sequencing may help elucidate the underlying causes of 
gene overexpression. Third, this study only evaluated 
fresh-frozen specimens, which is not common in the 
pathology department. In our previous study, we validated 
the capability of TOP-RNA for fusion detection using 38 
FFPE specimens of non-small cell lung cancer and sar-
coma, which were confirmed to harbor fusion genes in 
fresh-frozen samples. TOP-RNA detected the respective 
fusions in all 38 samples, including small biopsy speci-
mens [27]. Expression analysis was also conducted for 
seven tumors to compare the performance of the TOP 
RNA panel using FFPE specimens with that of poly(A)-
RNA-seq using frozen specimens. The mRNA expres-
sion values of the 109 genes in the TOP RNA Panel were 

highly concordant with those determined by poly(A)-RNA 
sequencing, even though the former data were obtained 
using FFPE specimens (r = 0.94–0.99). Fourth, we did not 
have information on the copy numbers of chr1p and 19q. 
A confirmatory study to evaluate the concordance between 
FISH and TOP-RNA remains to be conducted.

This study confirms that TOP2-RNA is a highly sensi-
tive assay for detecting fusion genes, exon skipping, and 
aberrant gene expression. We identified alterations in tar-
getable driver genes in more than 50% of GBM cases. 
Above, expression profiling has identified several candidate 
markers that could directly predict the prognosis of GBM. 
Expression analysis also suggested that TOP2-RNA could 
precisely differentiate oligodendroglioma from astrocytoma. 
In summary, molecular profiling by TOP2-RNA provides 
ample predictive, prognostic, and diagnostic biomarkers that 
may not be identified by conventional assays, and therefore, 
increases treatment options for patients with gliomas.
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