Skip to main content

Advertisement

Log in

Oncogene-induced senescence in meningiomas—an immunohistochemical study

  • Research
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Purpose

Meningiomas are tumours originating from meningothelial cells, the majority belonging to grade 1 according to the World Health Organization classification of the tumours of the Central Nervous System. Factors contributing to the progression to the higher grades (grades 2 and 3) have not been elucidated yet. Senescence has been proposed as a potential mechanism constraining the malignant transformation of tumours. Senescence-associated beta-galactosidase (SA-β-GAL) and inhibitors of cyclin-dependent kinases p16 and p21 have been suggested as senescence markers.

Methods

We analysed 318 meningiomas of total 343 (178 grade 1, 133 grade 2 and 7 grade 3). Tissue microarrays were constructed and stained immunohistochemically, using antibodies for SA-β-GAL, p16 and p21.

Results

The positive correlation of the tumour grade with the expression of p16 (p = 0.016) and SA-β-GAL (p = 0.002) was observed. The expression of p16 and SA-β-GAL was significantly higher in meningiomas grade 2 compared to meningiomas grade 1 (p = 0.006 and p = 0.004, respectively). SA-β-GAL positivity positively correlated with p16 and p21 in the whole cohort. In grade 2 meningiomas, a positive correlation was only between SA-β-GAL and p16. Correlations of senescence markers in meningiomas grade 2 were not present.

Conclusion

Our findings suggest the senescence activation in meningiomas grade 2 as a potential mechanism for the restraining of tumour growth and give hope for applying of promising senolytic therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Adekanmbi A, Youngblood MW, Karras CL, Oyetunji EA, Kalapurakal J, Horbinski CM, Najem H, Hill VB, Chandler JP, Heimberger AB, Magill ST, Lukas RV (2022) Clinical management of supratentorial non-skull base meningiomas. Cancers 14(23):5887. https://doi.org/10.3390/cancers14235887

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621. https://doi.org/10.1016/0014-4827(61)90192-6

    Article  PubMed  CAS  Google Scholar 

  3. Rodier F, Campisi J (2011) Four faces of cellular senescence. J Cell Biol 192(4):547–556. https://doi.org/10.1083/jcb.201009094

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Gorgoulis V, Adams PD, Alimonti A, Bennett DC, Bischof O, Bishop C, Campisi J, Collado M, Evangelou K, Ferbeyre G, Gil J, Hara E, Krizhanovsky V, Jurk D, Maier AB, Narita M, Niedernhofer L, Passos JF, Robbins PD, Schmitt CA, Sedivy J, Vougas K, von Zglinicki T, Zhou D, Serrano M, Demaria M (2019) Cellular senescence: defining a path forward. Cell 179(4):813–827. https://doi.org/10.1016/j.cell.2019.10.005

    Article  PubMed  CAS  Google Scholar 

  5. Bartkova J, Rezaei N, Liontos M, Karakaidos P, Kletsas D, Issaeva N, Vassiliou LV, Kolettas E, Niforou K, Zoumpourlis VC, Takaoka M, Nakagawa H, Tort F, Fugger K, Johansson F, Sehested M, Andersen CL, Dyrskjot L, Ørntoft T, Lukas J, Kittas C, Helleday T, Halazonetis TD, Bartek J, Gorgoulis VG (2006) Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 444(7119):633–637. https://doi.org/10.1038/nature05268

    Article  PubMed  CAS  Google Scholar 

  6. Alimirah F, Pulido T, Valdovinos A, Alptekin S, Chang E, Jones E, Diaz DA, Flores J, Velarde MC, Demaria M, Davalos AR, Wiley CD, Limbad C, Desprez PY, Campisi J (2020) Cellular senescence promotes skin carcinogenesis through p38MAPK and p44/42MAPK signaling. Cancer Res 80(17):3606–3619. https://doi.org/10.1158/0008-5472.CAN-20-0108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Sharpless NE, Sherr CJ (2015) Forging a signature of in vivo senescence. Nat Rev Cancer 15(7):397–408. https://doi.org/10.1038/nrc3960

    Article  PubMed  CAS  Google Scholar 

  8. Beauséjour CM, Krtolica A, Galimi F, Narita M, Lowe SW, Yaswen P, Campisi J (2003) Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J 22(16):4212–4222. https://doi.org/10.1093/emboj/cdg417

    Article  PubMed  PubMed Central  Google Scholar 

  9. Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith O (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A 92(20):9363–9367. https://doi.org/10.1073/pnas.92.20.9363

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Lee BY, Han JA, Im JS, Morrone A, Johung K, Goodwin EC, Kleijer WJ, DiMaio D, Hwang ES (2006) Senescence-associated beta-galactosidase is lysosomal beta-galactosidase. Aging Cell 5(2):187–195. https://doi.org/10.1111/j.1474-9726.2006.00199.x

    Article  PubMed  CAS  Google Scholar 

  11. Severino J, Allen RG, Balin S, Balin A, Cristofalo VJ (2000) Is beta-galactosidase staining a marker of senescence in vitro and in vivo? Exp Cell Res 257(1):162–171. https://doi.org/10.1006/excr.2000.4875

    Article  PubMed  CAS  Google Scholar 

  12. Gurkar AU, Gerencser AA, Mora AL, Nelson AC, Zhang AR, Lagnado AB et al (2023) Spatial mapping of cellular senescence: emerging challenges and opportunities. Nat Aging 3:776–790. https://doi.org/10.1038/s43587-023-00446-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Yamamoto M, Suzuki S, Togashi K, Sugai A, Okada M, Kitanaka C (2022) Gemcitabine cooperates with everolimus to inhibit the growth of and sensitize malignant meningioma cells to apoptosis induced by navitoclax, an inhibitor of anti-apoptotic BCL-2 family proteins. Cancers 14(7):1706. https://doi.org/10.3390/cancers14071706

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Robbins PD, Jurk D, Khosla S, Kirkland JL, LeBrasseur NK, Miller JD, Passos JF, Pignolo RJ, Tchkonia T, Niedernhofer LJ (2021) Senolytic drugs: reducing senescent cell viability to extend health span. Annu Rev Pharmacol Toxicol 61:779–803. https://doi.org/10.1146/annurev-pharmtox-050120-105018

    Article  PubMed  CAS  Google Scholar 

  15. WHO Classification of Tumours (2021) Central nervous system tumours, 5th edn. International agency for research on cancer, Lyon, France

  16. Buj R, Leon KE, Anguelov MA, Aird KM (2021) Suppression of p16 alleviates the senescence-associated secretory phenotype. Aging 13(3):3290–3312. https://doi.org/10.18632/aging.202640

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Tang V, Lu R, Mirchia K, Van Ziffle J, Devine P, Lee J, Phillips JJ, Perry A, Raleigh DR, Lucas CG, Solomon DA (2023) Loss of p16 expression is a sensitive marker of CDKN2A homozygous deletion in malignant meningiomas. Acta Neuropathol 145:497–500. https://doi.org/10.1007/s00401-023-02544-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Carreno G, Guiho R, Martinez-Barbera JP (2021) Cell senescence in neuropathology: a focus on neurodegeneration and tumours. Neuropathol Appl Neurobiol 47(3):359–378. https://doi.org/10.1111/nan.12689

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ho VKY, Anten MM, Garst A, Bos EM, Snijders TJ, Eekers DBP, Seute T (2023) Epidemiology of adult meningioma: report from the Dutch brain tumour registry (2000–2019). Eur J Neurol 30(10):3244–3255. https://doi.org/10.1111/ene.15979

    Article  PubMed  Google Scholar 

  20. Mijit M, Caracciolo V, Melillo A, Amicarelli F, Giordano A (2020) Role of p53 in the regulation of cellular senescence. Biomolecules 10(3):420. https://doi.org/10.3390/biom10030420

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Kim MS, Kim KH, Lee EH, Lee YM, Lee SH, Kim HD, Kim YZ (2014) Results of immunohistochemical staining for cell cycle regulators predict the recurrence of atypical meningiomas. J Neurosurg 121(5):1189–1200. https://doi.org/10.3171/2014.7.JNS132661

    Article  PubMed  Google Scholar 

  22. Korshunov A, Shishkina L, Golanov A (2003) Immunohistochemical analysis of p16INK4a, p14ARF, p18INK4c, p21CIP1, p27KIP1 and p73 expression in 271 meningiomas correlation with tumor grade and clinical outcome. Int J Cancer 104(6):728–734. https://doi.org/10.1002/ijc.11013

    Article  PubMed  CAS  Google Scholar 

  23. Kirkland JL, Tchkonia T (2020) Senolytic drugs: from discovery to translation. J Intern Med 288(5):518–536. https://doi.org/10.1111/joim.13141

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Schmitt CA, Wang B, Demaria M (2022) Senescence and cancer-role and therapeutic opportunities. Nat Rev Clin Oncol 19(10):619–636. https://doi.org/10.1038/s41571-022-00668-4

    Article  PubMed  PubMed Central  Google Scholar 

  25. Al-Rashed M, Foshay K, Abedalthagafi M (2020) Recent advances in meningioma immunogenetics. Front Oncol 9:1472. https://doi.org/10.3389/fonc.2019.01472

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hernandez-Segura A, de Jong TV, Melov S, Guryev V, Campisi J, Demaria M (2017) Unmasking transcriptional heterogeneity in senescent Cells. Curr Biol 27(17):2652-2660.e4. https://doi.org/10.1016/j.cub.2017.07.033

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Galanos P, Vougas K, Walter D, Polyzos A, Maya-Mendoza A, Haagensen EJ, Kokkalis A, Roumelioti FM, Gagos S, Tzetis M, Canovas B, Igea A, Ahuja AK, Zellweger R, Havaki S, Kanavakis E, Kletsas D, Roninson IB, Garbis SD, Lopes M, Nebreda A, Thanos D, Blow JJ, Townsend P, Sørensen CS, Bartek J, Gorgoulis VG (2016) Chronic p53-independent p21 expression causes genomic instability by deregulating replication licensing. Nat Cell Biol 18(7):777–789. https://doi.org/10.1038/ncb3378

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Milanovic M, Fan DNY, Belenki D, Däbritz JHM, Zhao Z, Yu Y, Dörr JR, Dimitrova L, Lenze D, Monteiro Barbosa IA, Mendoza-Parra MA, Kanashova T, Metzner M, Pardon K, Reimann M, Trumpp A, Dörken B, Zuber J, Gronemeyer H, Hummel M, Dittmar G, Lee S, Schmitt CA (2018) Senescence-associated reprogramming promotes cancer stemness. Nature 553(7686):96–100. https://doi.org/10.1038/nature25167

    Article  PubMed  CAS  Google Scholar 

  29. Patel PL, Suram A, Mirani N, Bischof O, Herbig U (2016) Derepression of hTERT gene expression promotes escape from oncogene-induced cellular senescence. Proc Natl Acad Sci USA 113(34):E5024–E5033. https://doi.org/10.1073/pnas.1602379113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Saleh T, Tyutyunyk-Massey L, Gewirtz DA (2019) Tumor cell escape from therapy-induced senescence as a model of disease recurrence after dormancy. Cancer Res 79(6):1044–1046. https://doi.org/10.1158/0008-5472.CAN-18-3437

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. VM: acquisition of paraffin blocks and clinical data, construction of tissue micro-array, analysis and interpretation of data, writing the first draft of the paper. MM: interpretation of data, critical review of the paper for important intellectual content. RI: acquisition of clinical data, interpretation of data. DR: diagnosing meningiomas, interpretation of data. DD: construction of tissue micro-array. SR: diagnosing meningiomas, interpretation of data. IS: statistical analysis, interpretation of data. SL: critical review of the paper for important intellectual content. EM: primary idea and composition of the study, construction of tissue micro-array, diagnosing meningiomas, interpretation of data, writing the final version of the paper.

Corresponding author

Correspondence to Emilija Manojlović-Gačić.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Ethics approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Ethics Committee of University Clinical Centre of Serbia, University of Belgrade (14.09.2023/No 341/7).

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (JPG 897 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mijajlović, V., Miler, M., Ilić, R. et al. Oncogene-induced senescence in meningiomas—an immunohistochemical study. J Neurooncol 166, 143–153 (2024). https://doi.org/10.1007/s11060-023-04532-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-023-04532-y

Keywords

Navigation