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Abstract
Purpose To date, immunotherapeutic approaches in glioblastoma (GBM) have had limited clinical efficacy as compared to 
other solid tumors. Here we explore autologous cell treatments that have the potential to circumvent treatment resistance to 
immunotherapy for GBM.
Methods We performed literature review and assessed clinical outcomes in phase 1 safety trials as well as phase 2 and 3 
autologously-derived vaccines for the treatment of newly-diagnosed GBM. In one recent review of over 3,000 neuro-oncology 
phase 2 and phase 3 clinical trials, most trials were nonblinded (92%), single group (65%), nonrandomized (51%) and almost 
half were GBM trials. Only 10% involved a biologic and only 2.2% involved a double-blind randomized trial design.
Results With this comparative literature review we conclude that our autologous cell product is uniquely antigen-inclusive 
and antigen-agnostic with a promising safety profile as well as unexpected clinical efficacy in our published phase 1b trial. 
We have since designed a rigorous double-blinded add-on placebo-controlled trial involving our implantable biologic drug 
device. We conclude that IGV-001 provides a novel immunotherapy platform for historically intransigent ndGBM in this 
ongoing phase 2b trial (NCT04485949).
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Immunotherapy and therapeutic cancer 
vaccines

Despite major treatment successes in specific types and 
stages of cancer, as well as steady incremental progress in 
treatment of an increasing number of cancers, a large pro-
portion of patients have limited effective treatment options, 
and there is still abundant room for improvement of cancer 
therapeutics [1, 2]. Although there is a half-century of evi-
dence supporting the principles of immunotherapy, only in 
the past decade has it had a clinical impact in terms of thera-
peutic benefit [3]. Advances range from monotherapies with 
chimeric antigen receptor (CAR)-T cells in specific hemato-
logical malignancies to broadly-acting checkpoint inhibition 
in metastatic melanoma and other previously untreatable 

cancers. Prior reviews have discussed the use of CAR-T 
cells, oncolytic viruses, or immune checkpoint inhibition 
for treatment of glioblastoma, although these therapies have 
limits in terms of generalizability and clinical implementa-
tion [4–6]. Often only a small subset of patients benefit from 
these treatments, which has limited their applicability and 
clinical adoption. In many cases it is unclear why only some 
patients exhibit a clinical response [3, 7], and the immuno-
logical understanding of the mechanisms by which clinically 
active immunotherapies work and which patients will benefit 
is only now beginning to emerge [8].

Along with greater understanding of the underlying 
immunology of the various immunotherapies has come 
increasing evidence of clinical benefit, including evidence 
of the benefit of cancer vaccines. Despite being one of the 
first immunotherapies to be attempted [9], therapeutic can-
cer vaccines including short and long peptides [10], DNA 
[11, 12], RNA [13], and autologous tumor-derived cells [14] 
are conspicuously absent from the therapeutic arsenal [3]. 
This is likely because, as opposed to successful prophylactic 
treatments [15], therapeutic cancer vaccines must induce an 

 * David W. Andrews 
 d.andrews@imvax.com

1 Department of Neurological Surgery, Thomas Jefferson 
University, Philadelphia, PA 19107, USA

2 Imvax, Inc., Philadelphia, PA 19602, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s11060-023-04491-4&domain=pdf
http://orcid.org/0000-0001-9688-4098
http://orcid.org/0000-0002-4139-2616
http://orcid.org/0000-0001-9313-3694
http://orcid.org/0000-0002-5088-1032
http://orcid.org/0000-0002-7939-7471


390 Journal of Neuro-Oncology (2023) 165:389–398

immune response to existing cancer cells that have survived 
prior therapies [16].

Unlike most other immunotherapies, cancer vaccines 
typically have minimal side effects, as they rely on the selec-
tion of highly immunogenic tumor antigens that are only 
expressed by cancer cells. Tumor antigens can be classi-
fied as tumor-associated antigens (TAAs) or tumor-specific 
antigens (TSAs) [10, 17]. TAAs are preferentially overex-
pressed on tumor cells but can be present in healthy cells, or 
they may be cancer/testis antigens that are only expressed by 
tumor cells and adult reproductive tissues. TSAs, conversely, 
are de novo epitopes expressed by oncoviruses and shared or 
individual-specific neoantigens encoded by somatic muta-
tions [17]. Compared to cancer vaccines that use TAAs or 
TSAs to induce tumor-reactive T cells, whole tumor-derived 
approaches have the benefit of being truly antigen-inclusive. 
They most often utilize sizable amounts of resected tumor 
material, rather than small biopsies, avoiding exclusion of 
relevant antigens due to tumor heterogeneity or sampling 
error. They do not require prediction of linear peptide anti-
gens and include post-translationally modified antigens, 
which can be important drivers of tumor growth but are 
not encoded in mutations and therefore are not covered by 
neoantigen-based approaches [14, 18–20]. Additionally, they 
can include innate immune stimuli, although these can be 
balanced by immunosuppressive tumor cell components if 
there is no limit to the release of tumor cell contents [21, 
22]. Several clinical trials reporting evidence of efficacy for 
autologous tumor-based cancer vaccines have recently been 
conducted [14, 23]. We used PubMed to search for the terms 
“glioblastoma,” “newly diagnosed,” “vaccine,” and “immu-
notherapy” to search for relevant articles reporting phase 2 
or 3 trials for review.

Clinical response to autologous cancer 
vaccines in the treatment of glioblastoma

Although immunotherapy has been revolutionary in treat-
ment of many solid tumors, it has had limited efficacy in 
the treatment of glioblastoma (GBM). Current standard of 
care (SOC) for GBM consists of maximal safe resection 
followed by radiotherapy (RT) and temozolomide (TMZ) 
[24, 25]. Despite therapy, prognosis is dismal, with median 
life expectancy of 14.6 months in the original Stupp trial 
[24]. The first randomized study of tumor treatment fields 
(2:1 TTF vs. RT/TMZ alone) improved median OS (mOS) 
to 20.9 months [26]. Although a clear improvement, TTF 
has not been widely adopted as SOC. Consequently, there is 
substantial room for improvement in treatment of GBM, and 
immunotherapy provides promise as a revolutionary thera-
peutic strategy [27]. To date, however, the results of vari-
ous approaches including vaccination, oncolytic virus, and 

immune checkpoint inhibition trials have been disappointing 
[4]. There are multiple potential roadblocks to the efficacy of 
immunotherapy in GBM, including the immune-privileged 
nature of the central nervous system, an immunosuppres-
sive milieu surrounding the tumor, the hypoxic and necrotic 
micro-environment, the immunosuppressive nature of radi-
ation and TMZ, routine corticosteroid administration, and 
the heterogeneous nature of genetic mutations both between 
patients with GBM and within a given tumor [5, 28].

Despite these challenges, development of several thera-
peutic cancer vaccines has been attempted in GBM. Three 
main approaches have been clinically tested. Some vac-
cines for GBM are derived from resected tumor cells in the 
generation of autologous tumor cell vaccines. Secondly, 
monocytes are harvested via leukapheresis and differenti-
ated ex vivo into monocyte-derived dendritic cells (DCs), 
which are loaded with antigens. Thirdly, tumor antigens are 
combined in adjuvant formulations [29].

The double-blinded randomized phase 2 trial of a mono-
cyte-derived DC vaccine ICT-107, involving autologous 
DCs pulsed with six synthetic peptides targeting appropri-
ate HLAs binding antigens given once weekly over 4 weeks, 
increased mOS of newly-diagnosed GBM (ndGBM) patients 
by 2 months compared to placebo control, although findings 
were not statistically significant [30]. Progression-free sur-
vival (PFS) in the intent to treat (ITT) population, however, 
was significantly increased in the ICT-107 cohort by 2.2 
months. Another phase 2 trial of patients with ndGBM who 
had undergone fluorescence-guided resection with 5-ami-
nolevulinic acid were treated simultaneously with RT/TMZ 
and tumor lysate-pulsed autologous DCs. T cell prolifera-
tion, IFN-g production, and number of IFN-g -producing 
cells were measured. There was no demonstrated benefit 
in terms of PFS, and PFS was not associated with assays 
of immune response [31]. AV-GBM-1 (Aivita Biomedical, 
Inc.), a vaccine formulated with autologous DCs pulsed 
with a lysate of irradiated autologous tumor-initiating cells 
and admixed with granulocyte‐macrophage colony‐stimu-
lating factor as adjuvant, was also tested in a phase 2 trial 
in ndGBM patients. AV-GBM-1 was administered after 
the completion of concurrent RT/TMZ. Results of the trial 
showed good treatment tolerability, and although median 
PFS (10.4 months) was longer than historical benchmarks, 
no mOS improvement was noted (16.0 months) [32].

The only phase 3 study of a cancer vaccine in GBM to date 
has been the DCVax®-L trial, which combined SOC with an 
autologous tumor lysate-pulsed monocyte-derived DC vac-
cine administered concomitantly with TMZ after completion 
of surgery and RT. Three hundred thirty-one patients were ran-
domized in a 2:1 fashion and data analysis was performed with 
an ITT model [33]. The trial’s design, methods, and report 
raise several issues, undermining the ability to derive mean-
ingful conclusions. Notably, multiple changes occurred years 
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after the trial ended, including use of external controls in the 
initial randomization of patients, modification of the primary 
endpoint (OS instead of PFS), addition of a new study popu-
lation (patients with recurrent GBM), addition of unplanned 
analyses, and other post-hoc changes [33, 34].

Human cytomegalovirus (CMV) proteins have been shown 
to be expressed in over 90% of GBMs, providing a potential 
target for immunotherapy [35]. CMV pp65-loaded DCs have 
been developed to target the CMV antigen pp65. Four weeks 
after undergoing surgical resection and concurrent RT/TMZ, 
patients received vaccination with the CMV pp65-loaded 
DCs on day 23 of the 28-day TMZ cycle. Vaccines were then 
administered monthly for 6 to 12 months in conjunction with 
maintenance TMZ. Eleven enrolled patients received three 
or more vaccinations and therefore met the criteria for inclu-
sion in analysis; compared to a historical control cohort of 
23 patients, PFS in vaccinated patients was 25.3 versus 8.0 
months [36].

Heat shock proteins (HSPs) are intracellular chaperones 
that deliver tumor proteins to cytotoxic T cells, causing cleav-
age and presentation of tumor antigens to activate immune 
responses [37]. Autologous HSPs have therefore been identi-
fied as a possible vaccination agent in GBM. In a phase 2 trial 
of  Prophage™, an autologous HSP peptide complex-96 vac-
cine was administered after surgical resection and completion 
of RT/TMZ, prior to initiation of maintenance TMZ, in 46 
patients. PFS was 18 months in experimental patients com-
pared to 7.3 and 6.2 months in the two placebo groups [28].

Additionally, BioNTech and Immatics tested personal-
ized TSA vaccines on 15 HLA-A*02:01– or HLA-A*24:02- 
restricted ndGBM patients with life expectancy greater 
than 6 months and containing up to 84 non-synonymous 
mutations and poly-ICLC and GM-CSF as adjuvants. Vac-
cination with this product induced sustained responses of 
central memory CD8 T cells and type 1 T helper CD4 T 
cell responses in 80% of treated patients. The mOS was 29 
months with PFS of 14.2 months; one patient had OS > 38.9 
months [38]. A similar study and results were published in 
an adjacent article [39]. In both studies, immune responses 
were best in patients who received no or minimal corticos-
teroids. In conclusion, a variety of approaches have dem-
onstrated safety and evidence for some clinical activity in a 
minority of patients, although which patients may respond 
could not be predicted.

IGV‑001 immunotherapy treatment: 
historical background of IGV‑001 
a biologic‑device combination product

IGV-001 is an autologous cancer cell-based immunothera-
peutic approach designed to deliver an antigenic payload 
in the context of immunostimulatory molecules to patients 

with GBM. IGV-001 consists of autologous GBM cells that 
are incubated with an antisense oligodeoxynucleotide (IMV-
001) targeting insulin-like growth factor 1 receptor (IGF-
1R), placed in proprietary biodiffusion chambers (BDCs) 
with an 0.1  μm pore size and charged with additional 
IMV-001, then sealed and irradiated. The BDCs are then 
implanted in patients’ abdominal wall between the rectus 
sheath and muscle inferolateral to the umbilicus (the lym-
phatic watershed below possible immunosuppressive GBM-
tolerized draining lymph nodes) for approximately 48 h [40]. 
As opposed to other autologous cancer vaccine modalities, 
which require multiple dosages over weeks and months [14, 
41], IGV-001 consists of only one treatment given within 
48 h of craniotomy within a standard of care hospitalization.

Regarding the IGF-1R antisense component IMV-001, 
previous preclinical research revealed that targeting IGF-1R, 
a surface receptor activated by its ligand IGF-1, initiates a 
cascade of downstream pathways that ultimately leads to 
anti-apoptotic signaling and maintenance of cell viability. 
Renato Baserga, among others, advanced the theory that 
upregulation and expression of IGF-1R in cancer is respon-
sible for maintenance of the malignant phenotype and down-
regulating IGF-1R renders the cell susceptible to apoptosis 
[42–44]. Data from the Baserga laboratory supported the use 
of an 18-mer antisense oligodeoxynucleotide to IGF-1R as 
a therapeutic agent in a rodent model. In studies with ovar-
ian or lung cancer cell lines, this drug class outperformed 
monoclonal antibodies or small molecule inhibitors when 
targeting IGF-1R [45].

In the C6 murine glioma model, C6 glioma cells were 
preincubated with IGF-1R antisense oligodendronucleotide, 
encapsulated in millipore diffusion chambers with a 0.1 μm 
Durapore® exclusion limit, and implanted in the flank of 
rats [44]. We adopted this approach in a phase 1a human 
trial under IND6776, in which viable autologous recurrent 
GBM cells gathered during tumor re-resection were encap-
sulated within millipore chambers of the same specification 
and implanted in the patient’s abdomen on the first postop-
erative day. The trial confirmed the safety of this paradigm 
with unexpected clinical responses [46].

Phase 1b trial evaluating IGV‑001 
in the treatment of ndGBM

With the later IND14379, the original phase 1a study was 
replicated and a phase 1b study was completed for ndGBM 
patients, which confirmed safety and demonstrated both 
unanticipated treatment response and efficacy endpoints. 
IGV-001 may be advantageous in that it includes an unse-
lected population of cancer cells, thereby including a broad 
antigenic signature of a patient’s tumor. In this trial, a typical 
phase 1 3 + 3 dose-escalation design [47] was not optimal, 
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as toxicity was not likely to be an issue in the same fash-
ion as a typical phase 1 study. Instead, dose escalation was 
based on four randomized cohorts assigned to receive differ-
ent numbers of BDCs (i.e., ten or twenty); the combination 
product was implanted in the abdominal wall for either 24 
or 48 h. Notably, the BDCs were dosed only once. Implan-
tation occurred within 24 h of surgery and was followed in 
6 weeks by RT/TMZ. Randomization was terminated early 
due to significant clinical and radiographic response in the 
highest dose exposure cohort; after patient 23, only the 
highest dose was administered. Thirty-three total patients 
were treated, with PFS of 9.8 months as compared to 6.5 
months in historical controls receiving SOC. In the sample, 
16 patients were MGMT-methylated (48.5%), as compared 
to 17 patients with unmethylated MGMT status (51.1%). 
Patients with the highest IGV-001 exposure and Stupp eligi-
bility (i.e. patients < 70 years of age with unilateral disease) 
had mPFS of 17.1 months and an mOS of 38.2 months [40]. 
Of note, only one patient in our cohort had IDH-1 muta-
tion. The results of the trial are summarized in Table 1 with 
comparison to the Stupp SOC findings.

Follow‑on phase 2b study: randomized 
placebo‑controlled double‑blinded 
evaluation of IGV‑001

The safety profile in all four dose cohorts in phase 1b was 
favorable and comparable. In contrast, the radiographic and 
clinical outcomes were better in the highest dose cohort (20 
chambers for 48 h), and 90% of patients were progression-
free at 6 months. This dose was therefore carried forward 
as the treatment dose for the phase 2b trial design with no 
intent of additional higher dose cohort arms. Also of inter-
est, the coefficient of determination in the uncensored paired 

events in the ITT yielded a regression curve of median PFS 
and OS with p = 0.91 and p < 0.001. Given the substantial 
impact of PFS on OS, we established PFS at a hazard ratio 
(HR) of 0.5 as the primary endpoint, with OS at a HR of 0.5 
as the key secondary endpoint.

In addition to determination of the treatment dose, the 
phase 1b trial led to production of a commercially-scalable 
and optimally-designed biologic drug device investiga-
tional product that met cGMP standards. The phase 2b trial 
opened for accrual in March 2023 for patients with ndGBM 
(NCT04485949, Fig. 1). As an antigen-inclusive and anti-
gen-agnostic platform with the latter two rigorous design 
clinical trial elements, IGV-001 provides a novel immuno-
therapy platform for historically intransigent solid tumors in 
the ongoing phase 2b ImmuneSense trial in ndGBM.

IGV‑001 rationale and mechanism of action

IGV-001 is the first product of the  Goldspire™ platform, 
which delivers a tumor-derived antigenic payload and 
immunostimulatory signals that together induce innate 
and adaptive immunity against residual malignant cells 
(Fig. 2). Tumors typically contain ten to five hundred pro-
tein-changing mutations, 98% of which are unique to each 
individual solid tumor. Castle et al. mined data from The 
Cancer Genome Atlas program to assess expressed tumor 
mutational burden grouped by cancer indication tumor type 
[48]. In all cases, this represents non-synonymous muta-
tions that change protein structure and are thus immuno-
genic. This includes peptides bearing the mutation, as well 
as downstream post-translational modifications of peptides, 
such as methylation or phosphorylation, adding to the immu-
nogenicity of the antigen payload [49].

Table 1  Summary of outcomes 
in the phase 1b trial compared 
to Stupp SOC. Stupp-eligible 
criteria exclude patients over 
70 years old and those with 
extensive intracranial disease, 
including bi-hemispheric 
disease (butterfly glioma) or 
multi-centric disease. Adapted 
from Andrews, D.W., et al. [40]

SOC values were derived by digitizing published Kaplan-Meier curves from published trials from the tech-
nique by Guyot et al. [64]
Note that these controls were not matched for patient-specific data.†† p < 0.0004; †p < 0.002; ∗∗ p< 0.003: ∗ 
p = 0.044; highest dose cohort ITT approached significance at p= 0.08 

Patients with newly-diagnosed glioblastoma

IGV-001 102 phase 1b study

Groups Total ITT Highest dose 
cohort ITT

Stupp-eligible highest 
dose cohort

Standard of 
care [65, 66, 
67]

N 33 15 10 1,059
MGMT-methylated 16 (48.5%) 7 (41.2%) 5 (50%) 251 (35.8%)*
mOS 17.3 mo 22.3 mo 38.2 mo* 16.2 mo
OS24 39% 50% 60% 30%
PFS6 86% 85% 90% 56%
mPFS 9.8 mo†† 17.3 mo† 17.1 mo** 6.5 mo
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Preclinical studies conducted to dissect the mechanism 
of action (MoA) of IGV-001 corroborated anti-tumor activ-
ity in the murine variant of this product, mIGV-001, in the 
GL261-luciferase (GL261-luc) GBM mouse model and 
detected mIGV-001-induced immune responses in the BDC-
draining lymph nodes [50]. The GL261 model is one of the 
major and most utilized in vivo, orthotopic, syngeneic glio-
blastoma models. Advantages and limitations of this model 
and others have been described in detail elsewhere [51]. We 
utilized this model, despite its constraints, because GL261 
cells can be implanted into immunocompetent C57/BL6 
mice without rejection due to their C57/BL6 background.

Furthermore, these studies suggested that the combina-
tion of IMV-001, irradiation [52, 53] of the biologic product 
in BDCs, tumor dissociation into single cells, lack of sup-
portive extracellular matrix scaffolding [54], and diminished 
nutrient availability within the BDCs contribute to cell death 
of autologous tumor cells inside the BDC. While cell death 
occurs physiologically mainly in an immunosilent manner 

[54], it can elicit innate and adaptive immune responses [55]. 
The latter type of regulated cell death is also referred to as 
“immunogenic cell death” (ICD). ICD can be triggered by 
various stimuli [56]. As described above, the  Goldspire™ 
approach to inducing ICD relies on multifactorial stimuli to 
generate a tumor antigen payload through ICD of autologous 
cancer cells to elicit a potent innate and adaptive anti-tumor 
immune response [50].

Imvax nonclinical studies [50] using the murine GL261 
GBM model and human GBM cell lines in the IGV-001 
product have confirmed the release of danger/damage-
associated molecular pattern (DAMP) immune stimulators, 
including adenosine triphosphate (ATP) and high mobility 
group box 1 (HMGB1) [50, 55, 57, 58], as well as cellular 
debris/antigenic payload (< 0.1 μm in size) from dead and 
dying cells within the BDCs (Fig. 3). ATP elicits a “find-
me” signal that attracts and activates DCs, whereas HMGB1 
promotes DC antigen presentation [59]. Phenotypic evalua-
tion of immune cells in the GBM model showed an increased 

Fig. 1  Phase 2B Clinical Trial Design: Patients ages 18–70 with 
ndGBM are screened and randomized to IGV-001 or placebo prior 
to surgery. During surgery, glioblastoma is confirmed on frozen sec-
tion. Superficial abdominal incision is made at the time of surgery 
to allow for later implantation of biodiffusion chambers. Autologous 

tumor sample is then used to prepare IGV-001, and either IGV-001 or 
placebo chambers are implanted postoperative day 1. Chambers are 
removed on day 3, and patients then proceed with SOC treatment and 
are monitored from months 10 to 36

Fig. 2  Advantages of The  Goldspire™ Platform: unique advantages of the  Goldspire™ platform highlight the benefits of autologous tumor-
derived therapy for glioblastoma
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percentage of DCs as well as effector and effector memory 
T cells in the draining lymph nodes proximal to BDCs [50].

Furthermore, T cells from mice receiving the murine 
version of IGV-001 produced IFNg in response to known 
tumor antigens from murine GL261 GBM cells [50]. 
Similar evidence of immunologic activity was seen in 
other mouse cancer models, including ovarian and urothe-
lial cancers and hepatocellular carcinoma [50, 60, 61]. 
Together, these data strongly suggest that the use of this 
biologic-drug device product is a suitable approach to 
generate, contain, and release subcellular antigenic and 
immunogenic cargo to stimulate the immune system. DC 
primed with tumor antigens and aided by DAMPs provide 
co-stimulatory signals that are critical for the generation 
of cytotoxic anti-tumor-specific T cells [50, 56, 62]. In 
summary, ICD-associated pathways are believed to be 
responsible for the immune responses elicited by IGV-
001 immunotherapy.

Beyond IGV‑001

Studies conducted in syngeneic murine models support the 
use of the  Goldspire™ immunotherapy platform to treat a 
number of solid cancers beyond GBM. In the ID-8 murine 
ovarian carcinoma model (intraperitoneal, “metastatic-
like”) [60, 61], the Hepa1-6 murine hepatocellular carci-
noma model (orthotopic) [50, 62], and the MBT-2 murine 
bladder cancer model (orthotopic) [61], mice receiving a 
BDC prepared with the respective tumor cell line experi-
enced significant prolongation of their mOS compared to 
mice implanted with saline-containing BDCs. These studies 
also demonstrated that the efficacy of this biologic-device 
combination product is associated with a systemic and dura-
ble immunological response, resulting in generation of Th1 
antitumor cytotoxic T cells (unpublished data). Additional 
testing conducted in subcutaneous murine models of renal 
cell carcinoma (RENCA), and colorectal cancer (CT26) also 
showed a beneficial decreased and/or delayed tumor burden 

Fig. 3  The  Goldspire™ Platform Proposed Mechanism of Action: (1) 
After manufacturing process, combination drug product (IMV-001-
treated autologous tumor cells + IMV-001) is placed in biodiffusion 
chambers (BDCs), which are then irradiated and sent to the clinical 
site for implantation into the abdomen of the patient; (2) due to the 
irradiation, isolated IMV-001 treatment, low-nutrient environment, 
and inability to adhere inside the BDC, tumor cells are exposed to 
cellular stresses that ultimately result in cell death; (3) high mobil-
ity group box  1 (HMGB1), and damage-associated molecular pat-

terns (DAMPs) produced during immunogenic cell death (ICD), are 
released from stressed/dying cells inside the BDCs and from the sur-
rounding damaged tissue at the implantation site; (4) also released 
from the BDCs is a tumor antigen payload (< 0.1 μm in size); (5) den-
dritic cells (DCs) are recruited by DAMPs adjuvanticity and mature 
upon tumor antigen uptake; (6) DC-primed T cells undergo clonal 
expansion and tumor-antigen specific T cells kill tumor cells. (This 
figure was created with BioRender.com and then further modified.)
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in mice treated with this immunotherapy approach compared 
to control animals (unpublished data).

Conclusions

Immunotherapy for treatment of solid tumors is a promis-
ing concept, particularly in the treatment of GBM, a disease 
with a poor prognosis despite SOC therapy. Therapeutic 
cancer vaccines aim to circumvent the substantial chal-
lenges to immunotherapy when treating GBM, including the 
heterogeneity of tumors within and between patients, the 
immune-privileged nature of the central nervous system, and 
the immunosuppressive environment created by the tumor, 
as well as the radiation, chemotherapy, and corticosteroids 
that comprise standard treatment. Beyond the 2005-pub-
lished Stupp trial [24], phase 2 clinical trials for GBM typi-
cally have been single-arm trials that have failed to meet 
primary clinical endpoints. In a broader and recent analysis 
of 3038 neuro-oncology clinical trials, most trials were non-
blinded (92%), single group (65%), nonrandomized (51%) 
and almost half were GBM trials [63]. Only 10% involved a 
biologic and only 2.2% involved a double-blind randomized 
trial design. Breakdown of these data, including nearly 300 
blinded trials and 60 double blind randomized trials, shows 
that only six were cancer vaccine-like approaches. Further 
phase 2 and 3 trials with rigorous study design are needed 
to continue to advance cancer vaccine approaches to GBM.
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