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Abstract
Purpose In the randomized CeTeG/NOA-09 trial, lomustine/temozolomide (CCNU/TMZ) was superior to TMZ therapy 
regarding overall survival (OS) in MGMT promotor-methylated glioblastoma. Progression-free survival (PFS) and pseu-
doprogression rates (about 10%) were similar in both arms. Further evaluating this discrepancy, we analyzed patterns of 
postprogression survival (PPS) and MRI features at first progression according to modified RANO criteria (mRANO).
Methods We classified the patients of the CeTeG/NOA-09 trial according to long vs. short PPS employing a cut-off of 
18 months and compared baseline characteristics and survival times. In patients with available MRIs and confirmed pro-
gression, the increase in  T1-enhancing, FLAIR hyperintense lesion volume and the change in ADC mean value of contrast-
enhancing tumor upon progression were determined.
Results Patients with long PPS in the CCNU/TMZ arm had a particularly short PFS (5.6 months). PFS in this subgroup was 
shorter than in the long PPS subgroup of the TMZ arm (11.1 months, p = 0.01). At mRANO-defined progression, patients 
of the CCNU/TMZ long PPS subgroup had a significantly higher increase of mean ADC values (p = 0.015) and a tendency 
to a stronger volumetric increase in  T1-enhancement (p = 0.22) as compared to long PPS patients of the TMZ arm.
Conclusion The combination of survival and MRI analyses identified a subgroup of CCNU/TMZ-treated patients with fea-
tures that sets them apart from other patients in the trial: short first PFS despite long PPS and significant increase in mean 
ADC values upon mRANO-defined progression. The observed pattern is compatible with the features commonly observed 
in pseudoprogression suggesting mRANO-undetected pseudoprogressions in the CCNU/TMZ arm of CeTeG/NOA-09.
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Introduction

Pseudoprogression is a well-known and frequently occur-
ring phenomenon in glioblastoma patients and has consider-
able clinical relevance [1–3]. It is defined as MRI changes 
that mimic tumor progression and eventually resolve or 
remain stable without change of therapy or can be histo-
logically confirmed as reactive changes without evidence 
of proliferating tumor. Despite its clinical relevance, it is an 

insufficiently understood phenomenon and is under further 
investigation [4, 5].

The exact frequency of pseudoprogression is not clear, 
current literature describes incidences of 10–30% [6, 7]; 
transiently increased contrast uptake after radiation even 
develops in up to 50% [2]. Some authors also describe 
pseudoprogression as a potential surrogate marker of treat-
ment efficacy, especially in patients with MGMT promotor 
methylation, although this is still controversial [8–10]. MRI 
perfusion imaging and amino acid positron-emission-tomog-
raphy (PET) imaging are used in routine clinical practice to 
detect pseudoprogression [11]. Furthermore, novel imaging 
approaches, such as amide proton transfer (APT)-weighted 
MRI showed promising results in the differentiation of 
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therapy-related changes and tumor progression [12–15]. The 
apparent diffusion coefficient (ADC) can be derived from 
diffusion-weighted imaging (DWI) and has been shown to 
aid distinguishing between true progression and pseudopro-
gression as higher ADC values in  T1-enhancement tissue 
might indicate the latter one [16–19].

In the randomized CeTeG/NOA-09 trial [20], combined 
lomustine (CCNU)/TMZ was superior to TMZ therapy 
regarding OS in newly diagnosed patients with MGMT-
methylated glioblastoma. Despite the OS benefit, PFS and 
pseudoprogression rates did not differ significantly between 
treatments. For progression assessment, (modified) RANO 
criteria were used in this study similar to most clinical tri-
als investigating glioma therapy [21]. Beyond the limit of 
12 weeks after the end of radiotherapy, mRANO criteria 
allow to assume pseudoprogression only if the suspected 
contrast-enhancing lesion remains stable or decreases in a 
follow-up MRI within 8 weeks. However, late and prolonged 
pseudoprogression [22–24] that does not show stabilization 
on the first control MRI may thus go undetected.

In this study, we investigated the hypothesis that unde-
tected pseudoprogressions might be accountable for at least 
some of the discrepancy for the lack of a PFS-prolonging 
effect in the CeTeG/NOA-09 trial despite OS prolonga-
tion. Hypothesizing that the probability of an undetected 
pseudoprogression increases in patients who have a par-
ticularly short first PFS and a very long postprogression 
survival (PPS), we analysed patterns of PPS and MRI 

features including tumor volumetry and ADC analysis at 
the mRANO-defined progression time point.

Methods

Study design

The prospective, randomized, controlled CeTeG/NOA-09 
trial (EudraCT-2009–011252-22, Herrlinger et al. [20]) 
included 129 patients in the intention-to-treat cohort. 
Patients were randomized (1:1) to either CCNU/TMZ 
combination therapy or TMZ standard therapy (Fig. 1). 
Contrast-enhanced cranial MRI were performed every 
12 weeks. We included all patients with disease progres-
sion according to mRANO. For patients with a censored 
PPS below 18 months, subgroup allocation to long vs. 
short PPS was impossible and these patients were excluded 
from the analysis. Patients of this trial entered the cur-
rent MRI-based analyses, if their MRIs were evaluable for 
 T1-enhancement and FLAIR volumetry at the time point 
of progression and, for comparison, at the last MRI prior 
to progression. Analyses were performed by an independ-
ent neuroradiologist. For determination of progression, the 
modified RANO criteria [20] were used: up to 12 weeks 
after completion of radiotherapy, disease progression was 
considered only for new enhancing lesions outside the 
radiation field (beyond the 80% isodose) or unequivocal 

Fig. 1  Flowchart of patient identification. Flowchart shows patient 
selection and identification evaluating patients from the modified 
intention-to-treat population of the CeTeG/NOA-09 trial. First, sub-
division was made by TMZ vs CCNU/TMZ therapy, second sub-
division was made by post progression survival with a cut-off of 

18 months (defined as survival after progression diagnosis according 
to mRANO criteria). In this step, patients with unknown PPS (cen-
sored PFS and/or censored OS, respectively) were excluded and did 
not enter any of the following analyses
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histological demonstration of proliferating tumor. Accord-
ing to previous experience with late pseudoprogression, 
disease progression 12 to 24 weeks after completion of 
radiotherapy could only be diagnosed if another MRI 
showing further progression confirmed it 4–6 weeks after-
wards. Figure 1 shows the patient selection process for 
this analysis in a flowchart. In both arms, patients were 
further subdivided into those with short PPS (defined 
as ≤ 18 months) and long PPS (> 18 months). A PPS/PFS 
ratio was calculated for each patient.

MRI evaluation

Tumor volume assessment

Manual evaluation of contrast-enhancing and FLAIR hyper-
intensity volume was performed by using the Medical Imag-
ing Interaction Toolkit software (MITK, Workbench and 
Toolkit 2016.11, provided by the German Cancer Research 
Center (DKFZ)). MRI data were performed in 1.5 or 3 T 
scanners. In this multicenter study cohort, MRIs were 
conducted in the scanners of the respective centers. The 
tumor volume was outlined on Gadolinium-enhanced  T1 
MRI data. Measurement of  T1-enhancement volume (solid 
tumor) and FLAIR volume (solid tumor and edema) were 
performed separately for each patient and time point for 
volumetric assessment. For the  T1-enhancing volume, the 
inner necrotic zone has been subtracted (solid tumor vol-
ume =  T1-enhancement volume – volume of necrosis zone). 
In supplementary Fig. 1A, a3D reconstruction example of 
tumor segmentation is shown. The tumor volume, that is 
defined as “region of interest” (ROI) is shown in red.

ADC analysis

All imaging data were co-registered performed using the 
“multimodal.rigid.default” registration algorithm in the 
Medical Imaging Interaction Toolkit [25]. Subsequently, the 
combined ROI of FLAIR and  T1-enhancement volume was 
used to determine the mean ADC value from both baseline 
and progression time point in the tumor region (Supplemen-
tary Fig. 1B). For comparison between treatment groups, 
the absolute change of Mean ADC-value from baseline to 
progression time point was compared between patients with 
short PPS and long PPS.

Statistical analysis

Statistical analyses have been performed using SPSS (IBM 
software, Version 27). Analyses of OS, PFS and PPS have 
been performed according to Kaplan–Meier with a two-sided 
log-rank test for significance. In contrast to the primary 

planned confirmatory analysis of CeTeG/NOA-09 trial, 
which required a log-rank test with stratification by center 
and recursive partitioning analysis (RPA) class, the analyses 
in the current report were performed without stratification 
due to the relatively low number of patients in the subgroups 
making stratified analyses unapplicable. Median OS, PFS 
and PPS are reported with a 95% confidence interval (CI).

For comparing PPS/PFS ratios between subgroups 
we performed a rank sum test (Mann–Whitney-test).
Mann–Whitney-test was also performed analyzing tumor/
edema volumetry and ADC mean values. Kruskal-Walis-test 
was performed for comparing median ages and median Kar-
nofsky score between all subgroups. For comparing achieved 
gross total resections (GTR %) and frequency of second line 
therapies we used a  chi2-test.

For all statistical analyses, p-values of < 0.05 were 
regarded statistically significant. In the figures, significant 
results are marked as * =  < 0.05, ** =  < 0.005. In selected 
cases, the p-values are shown within the figure; otherwise, 
they can be found in the figure legend or the manuscript text.

Results

For analysis of post progression survival the modified inten-
tion to treat population was used after exclusion of patients 
that had unknown PPS (n = 90/129 patients). In the TMZ 
arm, 29 evaluable patients had short PPS and 17 had long 
PPS (≥ 18 months), in the CCNU/TMZ arm 26 evaluable 
patients had short PPS and 18 had long PPS (Fig. 1). The 
median age, rate of gross total resections and the median 
KPS were similar in the four subgroups (Table 1). Also, 
there were no significant differences in the use of further line 
therapies between the long PPS CCNU/TMZ and the long 
PPS TMZ group (Supplementary Fig. 2).

PFS in the long PPS group of the CCNU/TMZ arm was 
remarkably shorter as compared to the long PPS group of 
the TMZ arm (median 5.6 months vs 11.1 months, p = 0.01, 
Fig. 2A). Going in line with this, the mean PPS/PFS ratio 
tended to be higher in the long PPS group of the CCNU/
TMZ as opposed to the long PPS group of the TMZ arm (7.7 
vs. 4.5, p = 0.08, Fig. 2C). The PPS/PFS ratio was similarly 
low in the short PPS subgroups of TMZ and CCNU/TMZ 
arms with short PPS (1 vs. 1.1, p = 0.632).

The combination of particularly low PFS with very long 
OS is prominently seen in the long PPS subgroup of the 
CCNU/TMZ arm. This raises the question whether at the 
time point of fulfilling the mRANO progression criteria, 
the underlying biology (e.g. contribution of pseudoprogres-
sion) in this subgroup may be different from the long PPS 
subgroup of the TMZ arm. We further investigated if these 
differences are also mirrored in MRI at mRANO-defined 
progression.
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Seventy patients (about 80% of the patients that were 
included in the survival analysis in this study) were evalu-
able for imaging analysis and constituted the cohort on which 
all following MRI analyses are based on. Patients with long 
PPS in the CCNU/TMZ arm showed a tendency to a stronger 
increase in  T1-enhancement volume (mean delta 4.600,1  mm3 
vs. 1.747,9  mm3, p = 0.219, Fig. 3A) but not in FLAIR vol-
ume (mean delta 19.749,9  mm3 vs 13.690,8  mm3, p = 0.682, 
Fig. 3B) at progression as compared to long PPS patients 
of the TMZ arm. Overall, in the TMZ monotherapy arm, 
patients with short PPS could be well distinguished from 
patients with long PPS by their strongly increasing volumes 
of contrast-enhancement (mean delta 8.055,7  mm3 vs 1.747,9 
 mm3, p = 0.005) and FLAIR hyperintense lesions (mean delta 
31.689,9  mm3 vs 13.690,9  mm3, p = 0.03). In contrast, patients 
with CCNU/TMZ combination therapy showed no differ-
ence in  T1-enhancement increase (mean delta 7.227,5  mm3 
vs 4.600,1  mm3, p = 0.567) or FLAIR increase (mean delta 
25.356,7  mm3 vs. 19.7489,9  mm3, p = 0.914) in short-PPS 
vs. long-PPS patients. In summary, in the TMZ monotherapy 
arm, the increase of the contrast-enhancing lesion and FLAIR 
lesion at mRANO-defined progression was inversely related 
to OS, whereas in the CCNU/TMZ arm, no such relation was 
observed. Thus, these parameters do not allow to distinguish 
patients with long PPS from patients with short PPS in the 
CCNU/TMZ group at mRANO-defined progression time 
point.

Analysis of ADC maps revealed no statistical difference 
of mean ADC values between treatment groups as a whole 
at baseline time point (Fig. 4A). However, long PPS patients 
of the CCNU/TMZ group showed a higher absolute increase 
in ADC value from baseline (last prior to progression) to 
mRANO progression time point than long PPS patients of 
the TMZ group (Fig. 4B, p = 0.017). These data suggest that 
CCNU/TMZ therapy might lead to changes in tumor structure 
that can be identified in ADC imaging and may be different 

from the radiological changes seen in patients after TMZ 
monotherapy.

Discussion

In the present study based on data from the prospective 
CeTeG/NOA-09 trial, we are able to identify a subgroup of 
CCNU/TMZ-treated patients that have a particularly short 
first PFS despite long PPS and OS. These patients show 
MRI features (significant increase in mean ADC values; 
tendency to a stronger increase in contrast enhancement at 
time point of mRANO-defined progression) that sets them 
apart from their counterparts with long PPS in the TMZ 
monotherapy arm.

This observation is remarkable since it is contradictory 
to the current literature describing a reliable correlation 
between PFS and OS in glioblastoma and other malignan-
cies [26, 27]. As the PFS is decreased compared to the 
long PPS group of TMZ, we assumed that tumor changes 
in MRI of these patient groups might differ biologically 
from each other. A possible explanation for this difference 
may be undetected pseudoprogressions that evade correct 
diagnosis by mRANO criteria and are falsely diagnosed 
as progressive disease. As we already know, standard 
MRI and clinical assessment cannot reliably differentiate 
pseudoprogression and progressive disease. Even histol-
ogy can be difficult to interpret, as there are no defined 
criteria for diagnosing progression, pseudoprogression or 
mixed forms [28]. So far, we are not able to finally proof 
the hypothesis of undetected pseudoprogressions but we 
can rule out some alternative hypotheses such as that an 
imbalanced distribution of further line therapies or other 
known prognostic factors (Herrlinger et al., 2019 and, for 
subgroup comparisons see Table 1 and Supplemantary 
Fig. 2) that may be responsible for the survival differences.

Table 1  Median Karnofsky 
score, age and percentage of 
gross total resection (GTR) in 
subgroups

For each group median Karonfsky score (KPS), median age and extend of resection as percentage of gross 
total resections (GTR) is given. For analysis of KPS and age rangsum-test (Kruskal-Walis) was performed. 
GTR (%) was compared by  X2 test

Therapy TMZ CCNU/TMZ p-value

PPS  < 18 months  > 18 months  < 18 months  > 18 months

Number of patients 29 17 26 18 –
Median KPS [%] (range) 90 (70–100) 100 (70–100) 100 (70–100) 90 (80–100) 0.79
Median age [years] (range) 57 46–71) 58 (31–70) 54 (41–69) 56 (28–69) 0.08
GTR [%] 72.4 47.1 61.5 61.1 0.38
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Fig. 2  Decreased progression-
free survival and higher PPS/
PFS ratio in long PPS CCNU/
TMZ patients. Kaplan–Meier 
plots of patients followed 
TMZ or CCNU/TMZ therapy. 
Progression free survival (A) is 
given in patients from the modi-
fied intention to treat cohort of 
CeTeG/NOA-09 trial that had 
known PPS. Subdivision was 
made in short post progression 
survival (< 18 months) and 
long post progression survival 
(> 18 months) groups. Median 
PFS is remarkably low in 
CCNU/TMZ long PPS group 
compared to TMZ long PPS 
group (B), p = 0.01 (log-rank 
test). (C) Graph shows Mean 
PPF/PFS ratio of each subgroup
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Fig. 3  T1-enhancement and 
FLAIR volume increase at 
mRANO defined progression. 
For each patient in each group 
 T1-enhancement (A) and FLAIR 
(B) volume increase from 
baseline time point to mRANO 
defined progression time point 
is given  (mm3).  T1-enhancement 
and FLAIR volume increase 
patients in TMZ group dif-
fered significantly (p = 0.007 
and p = 0.03, respectively) 
but not in CCNU/TMZ group 
(p = 0.567 and 0.914, respec-
tively). Comparing long PPS 
groups, CCNU/TMZ tended to 
a stronger volumetric increase 
in  T1 enhancement (p = 0.22). 
Error bars show 95% confidence 
interval of Means. Statistical 
analysis was performed using 
Mann–Whitney-test. p < 0.05 
was considered significant 
and marked as * =  < 0.05, 
** =  < 0.005
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Fig. 4  ADC analysis of  T1-enhancement region of interest (ROI). 
For each patient in each group Mean ADC value of  T1-enhancing 
tumor ROI was calculated. In (A) the Mean ADC value of baseline 
tumor (last prior to progression) is shown. There is no significant 
difference between long PPS TMZ arm and long PPS CCNU/TMZ 
arm (p = 0.94, Mann–Whitney test). In (B) the absolute change in 

Mean ADC value of  T1-enhancement ROI from baseline to progres-
sion time point is shown. The change is significantly higher in long 
PPS CCNU/TMZ arm, comparing to long PPS TMZ arm (p = 0.017, 
Mann–Whitney test). Error bars show 95% confidence interval of 
Means. Statistical analysis was performed using Mann–Whitney-test. 
p < 0.05 was considered significant and marked as * =  < 0.05
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Our image analyses show that the MRI at time of 
mRANO-defined progression in the long PPS CCNU/TMZ 
group is particularly characterized by an increase in ADC 
values, while ADC value of contrast enhancing tumor 
is stable in TMZ patients. Current literature describes a 
higher ADC value as compatible with pseudoprogression 
rather than progression [16–19]. Thus, our finding might 
support the hypothesis that pseudoprogressive changes 
appear to be more frequent and more distinct after CCNU/
TMZ therapy. Increase in ADC values could possibly be 
explained by a variety of biological / histopathological 
factors, including disintegration of cellular membranes, 
reduction in cell density and as a result an increase in 
extracellular space. This pattern is rather observed in pseu-
doprogression than true progession [29].

The limitations of our analyses are set by the post hoc 
approach (despite the prospective collection of data in 
the trial) with MRI data evaluable for volumetric analysis 
lacking in some of the patients. Further limitations are the 
small number of patients making detection of small group 
differences difficult and radiomics approaches impossible, 
and the lack of histological data. Future imaging analysis 
in prospective cohorts should also include analysis of MRI 
perfusion imaging, amino acid positron-emission-tomog-
raphy (PET) and novel imaging approaches, such as amide 
proton transfer (APT)-weighted MRI that showed promise 
results in the differentiation of therapy-related changes and 
tumor progression [12–15].

Overall, we conclude that the modified RANO criteria 
might not be entirely suitable for patients with MGMT-
methylated glioblastoma receiving CCNU/TMZ treatment. 
This is in line with reports that pseudoprogression may be 
substantially prolonged [30, 31] and thus go undetected 
by strictly applied mRANO criteria. In the context of 
CCNU/TMZ therapy, we would therefore rather suggest 
to perform repeat follow-up examinations (ideally comple-
mented by additional imaging techniques such as MRI per-
fusion imaging or amino acid PET) instead of prematurely 
stopping an effective treatment or advancing to further 
lines of therapy.
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