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Abstract

Purpose Multimodal therapies have significantly improved prognosis in glioma. However, in particular radiotherapy may
induce long-term neurotoxicity compromising patients’ neurocognition and quality of life. The present prospective mul-
ticenter study aimed to evaluate associations of multimodal treatment with neurocognition with a particular focus on hip-
pocampal irradiation.

Methods Seventy-one glioma patients (WHO grade 1-4) were serially evaluated with neurocognitive testing and quality of
life questionnaires. Prior to (baseline) and following further treatment (median 7.1 years [range 4.6—11.0] after baseline) a
standardized computerized neurocognitive test battery (NeuroCog FX) was applied to gauge psychomotor speed and inhibi-
tion, verbal short-term memory, working memory, verbal and non-verbal memory as well as verbal fluency. Mean ipsilateral
hippocampal radiation dose was determined in a subgroup of 27 patients who received radiotherapy according to radiotherapy
plans to evaluate its association with neurocognition.

Results Between baseline and follow-up mean performance in none of the cognitive domains significantly declined in any
treatment modality (radiotherapy, chemotherapy, combined radio-chemotherapy, watchful-waiting), except for selective
attention in patients receiving chemotherapy alone. Apart from one subtest (inhibition), mean ipsilateral hippocampal radia-
tion dose > 50 Gy (Dmean) as compared to < 10 Gy showed no associations with long-term cognitive functioning. However,
patients with Dmean < 10 Gy showed stable or improved performance in all cognitive domains, while patients with > 50 Gy
numerically deteriorated in 4/8 domains.

Conclusions Multimodal glioma therapy seems to affect neurocognition less than generally assumed. Even patients with
unilateral hippocampal irradiation with > 50 Gy showed no profound cognitive decline in this series.

Keywords Glioma - Neurocognition - Quality of life - Radiotherapy - Multimodal tumor-directed treatment

Introduction

Multimodal tumor-specific therapies have significantly
improved prognosis of glioma. Nevertheless, apart from the
tumor itself therapy-induced long-term neurotoxicity may
affect patients’ quality of life (QoL). Surgery, radiotherapy
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(RT) and chemotherapy (ChT) may negatively impact
patients’ cognitive functioning. While the literature on ChT
alone is sparse, as many glioma patients receive combined
radio-chemotherapy (RChT) [1-3], many investigations
focused on the association of RT with cognitive function-
ing [4-7]. The brain region considered to be particularly
vulnerable to RT is the hippocampus, due to the presence
of neuronal progenitor cells (NPC) [8—13]. This has trans-
lated into therapeutic efforts of hippocampal sparing in brain
tumor treatment, mostly in concepts on RT of brain metasta-
ses e.g., [14—16], but also in some studies in glioma patients
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[17, 18]. Data suggest a potential benefit of NPC sparing
on neurocognition in glioblastoma [17, 18] but with risk of
treatment failure [19].

In a prospective observational study on patients with
low grade glioma treated with fractionated stereotactic RT
hippocampal dosage was correlated with verbal memory at
18 months follow-up [20]. Biologically equivalent doses of
2 Gy (EQD,) fractions (assuming a/f =2 Gy) to 40% of the
bilateral hippocampus greater than 7.3 Gy were associated
with an increased risk of delayed memory impairment [20].
However, in another study on low grade glioma patients
treated with proton RT neither a dose-response relationship
for the hippocampus nor an overall neurocognitive decline
was found at a median of 36 months after treatment [21]. A
ground-breaking cross-sectional study on low grade glioma
patients who had been irradiated in the 80ies and 90ies
of the last century [22, 23] demonstrated that treatment-
related cognitive dysfunction is infrequent at a mean of 6
years after diagnosis [22], but affected increasingly more
cognitive domains on long-term follow-up (12 years) [23].
The follow-up [23] suggested that around 50% of surviving
patients having received RT as primary treatment developed
cognitive difficulties even if treated with fractions <2 Gy. In
line with relative stable cognition in the long-term in other
studies [6, 24-26], a most recent paper on this population
demonstrated that no further cognitive decline was detect-
able within the next 14 years of follow-up [27].

Most glioma studies with long-term follow-ups were
not prospective [22, 23, 27] and prospective studies on
hippocampal RT dose [20] did not exceed follow-up test-
ing beyond 18 months. Since our group had not found rel-
evant changes of cognitive performance after multimodal
treatment of patients with WHO grade 1-4 gliomas after a
median of 16.8 months between post-surgery baseline neu-
ropsychological assessment and follow-up assessment [28],
we now present an extended follow-up to assess whether
neurocognitive sequelae may occur in the long-term. Neu-
ropsychological and QoL data was prospectively captured in
a large multicenter trial (German Glioma Network, GGN)
with a follow-up of up to 11 years and with particular focus
on the influence of hippocampal RT dosage on long-term
neurotoxicity.

Materials and methods

Patients

The GGN was funded by the German Cancer Aid (Refer-
ence No.: 107940/109459 and 110586) from 2004 to 2012
to establish an interdisciplinary research network of brain

tumor treatment in Germany including university hospi-
tals specialized in Neuro-Oncology and reference centers

@ Springer

for neuroradiology, neuropathology, molecular diagnostics
and biometry. On 01/01/2004 the GGN was initiated and
on April 2004 assessment with NeuroCog FX started in
participating centers. Overall, 4198 patients were included
and treated within the GGN, of whom 280 participated in
this project on serial assessment of neurocognitive function
between 2005 and 2011. Exclusion criteria for adult glioma
patients were presence of aphasia, psychosis or dementia
prior to glioma diagnosis and MMSE scores < 20 prior to
first neuropsychological assessment (NPA). As patients
were recruited 2011 at the latest, tumors had been classi-
fied according to the WHO classification of tumors of the
central nervous system (CNS) in its versions of 2000 [29]
and 2007 [30]. After surgical resection or biopsy, patients
had been treated with either conventional external RT, ChT,
RChT or watchful-waiting. Participating centers were uni-
versity hospitals Dresden, Munich (LMU), Bonn, Hamburg,
Diisseldorf, Heidelberg and Bochum, Germany. The study
was approved by the local ethics committees and the ethics
committee of the leading institution (Tiibingen, Germany,
Registration No.: 353/2003 V) and performed in accordance
with the 1964 Declaration of Helsinki and its later amend-
ments. All patients gave written informed consent.

Neurocognition

NeuroCog FX was used to evaluate various neurocog-
nitive domains whose assessment is recommended for
neuro-oncological trials [31, 32]. This computerized test
battery compromises eight subtests to gauge domains
assumed to be vulnerable [33, 34] to detrimental effects
on particular domains of cognition by the tumor itself and
by tumor directed therapy, i.e., psychomotor speed and
response inhibition (simple, Go-NoGo [selective atten-
tion] and interference [response inhibition/flexibility]
reaction time; in the following the latter is termed “inhi-
bition”), verbal short-term memory (digit span), working
memory (2-back), verbal fluency, verbal and non-verbal
(visuospatial) memory. Raw test scores were converted
to age-adjusted z-scores (mean of 0 and standard devia-
tion, SD of 1) for each subtest. The NPA conducted after
surgery (largely within one week [median 7 days, range
4-28]) prior to start of further therapy was considered
baseline. Follow-up NPA was intended regularly during
clinical follow-up every six months. Since data on every
six months was obtainable only in a fraction of patients
but long-time follow-up in all, the present long-term fol-
low-up analyzed baseline NPA (timepoint 1, T1) and the
latest NPA after baseline assessment (timepoint 2, T2; at
maximum 11 years). Cognitive test results of patients with
confirmed tumor progression within three months after
this NPA were excluded and NPA test results prior to this
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testing were considered for analyses as time point T2. The
effects of any treatment type on any cognitive domain were
investigated.

Quality of life

All patients in this study were scheduled for prospective
follow-up with the EORTC-QLQ C30 and BN20 modules
every 6 months, but again data were incomplete for some.
Therefore, the baseline QoL scores (T1) and the latest QoL
assessment at maximum 9 years after baseline assessment
(T2) with corresponding neurocognitive data were consid-
ered for this study. Since the BN20 module largely repre-
sents neurologic dysfunction caused by the tumor itself and
to a lesser extent by tumor-specific therapy and since it did
not substantially add to the information of the C30 module
when focusing on treatment-associated impairment, we only
evaluated the functional scales (physical, role, emotional,
cognitive and social functioning) and the global score of
the C30 module. Scale scores range from 0 (worst level of
functioning) to 100 (best level of functioning).

Radiation and radiation therapy planning

Focal photon RT was applied according to standard of
care after CT-planning with 3D conformal RT or intensity
modulated RT (IMRT). Delineation of gross tumor volume
(GTV), clinical target volume (CTV) and planning target
volume (PTV) was performed according to national/inter-
national standards for the respective tumor type at that time
including fusion of postoperative MRI sequences. Hip-
pocampal sparing was not carried out. The hippocampus
was contoured according to recommendations of the RTOG
0933 trial [35]. For the current analysis the hippocampus
was delineated post-hoc on available digital treatment plans
by an experienced Neuro-Oncologist (C.S.). Hippocampal
dosimetry and calculation of mean radiation dose to the
ipsilateral hippocampus (Dmean) and near maximum dose
to the ipsilateral hippocampus (D1%) was performed. In
patients without digital radiation plans Dmean to the ipsi-
lateral hippocampus was extrapolated from isodose lines
of paper plans after consensus of C.S. and an experienced
medical physicist (M.K.). Further, the volumes of CTVs and
PTVs and volume of brain receiving >30 Gy (V30 Gy) in
cc were determined if available from digital plans. V30 Gy
was used as a threshold for brain volumes at higher risk
for radiation-induced damage [36] as the volume of brain
receiving more than 30 Gy is frequently applied to describe
normal brain radiation dose exposure, €.g., as one parameter
in the EORTC 22033-26033 trial [37] and in other analyses
concerning high grade glioma [38, 39].

Statistical analyses

Concerning clinical and sociodemographic data, ¢-tests for
independent samples, one-way analyses of variance (ANO-
VAs), Fisher’s Exact test and )(Z—test were used. To evaluate
changes of cognitive functioning and QoL within any treat-
ment modality (RT, ChT, RChT, watchful-waiting) #-tests
for dependent samples or repeated-measures ANOVAs were
calculated for NeuroCog FX z-scores and EORTC-QLQ C30
scores with time of assessment (T1 vs. T2) as within-subject
factor and treatment (RT vs. ChT vs. RChT vs. watchful-
waiting) as between-subject factor. To control for usage of
antiepileptic medication (AED) additional analyses were
carried out. For the core analysis concerning radiation dose
patients were dichotomized in two groups, those receiving
less than Dmean 10 Gy to the ipsilateral hippocampus and
those who received a Dmean of more than 50 Gy. Repeated-
measures ANOVAs for NeuroCog FX z-scores and EORTC-
QLQ C30 scores were calculated with time of assessment
(T1 vs. T2) as within-subject factor and dose (<10 Gy
vs.> 50 Gy) as between-subject factor. Since group level
analyses might obscure individual cognitive deterioration
or improvement, the number of patients with a z-score > 1.5
below normative mean as a common criteria of clinical rel-
evance (see International Cancer and Cognition Task Force
[40]) for each NeuroCog FX subtest was calculated. Never-
theless, this represents an arbitrary definition and while the
terminus “clinical relevant” in the manuscript follows this
definition it does not imply that the reported changes are not
subjectively “meaningful” for individual patients. A differ-
ence z-score (T2-T1) was calculated for each NeuroCog FX
subtest (i.e., each patient served as own control) and was
correlated with radiation data using Pearson correlations.
Analyses were performed with SPSS statistics (Version 25)
with a level of significance of 0.05.

Results
Clinical and sociodemographic characteristics

Of the 280 patients initially included in this GGN pro-
ject, 209 patients were excluded from analyses because of
missing data in more than two subtests at T1 or T2 (n=9),
tumor recurrence before T2 (n=139), an interval > 30 days
between surgery and T1 (n=13) or because patients were
lost to follow-up (n=22) or refused to participate (n=26).
Seventy-one patients with histopathologically proven glioma
were prospectively followed in the long-term (Fig. 1 and
Table 1).

The median follow-up was 85.2 months (range
55.3-131.6) after baseline assessment for neurocognition
and 55.0 months (range 17.0-108.0) for QoL. Patients
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N=280 enrolled and assessed
(NeuroCog FX and Qol) after diagnosis/surgery
prior to adjuvant treatment (T1)

neuropsychological testing
and assessment of QoL

(EORTC-QLQ C30 and BN 20)
scheduled for every 6 months

A

N=209 excluded:
139 glioma recurrence
| 22 lost to follow-up
| 26 refused to further participate
13 > 30 days between surgery and T1
9 incomplete data in more than 2 subtests
| Excluded:

| 2 incomplete QoL data

A 4

N=71 cognitive functioning analyzed,
median interval T1/T2 7.1 years,
range 4.6 - 11.00

median interval T1/T2 4.6 years,

N=69 QoL analyzed,

range 1.4 -9.0

Y
N=27 analyzed for RT
dosage to
hippocampus
according to RT plans

l“_l

17 with digital RT plans

10 with paper RT plans

Fig. 1 Flow chart of patients included in the present series

having received RT were treated with fraction doses of
1.8-2.0 Gy with a median total dose of 59.4 Gy (range
39.6-60.0). More patients with WHO grade 3 and 4 glio-
mas were treated with RChT and more patients with WHO
grade 1 and 2 gliomas received watchful-waiting (p =0.001).
Patients who have been treated with RChT harbored more
often left-sided tumors, whereas patients who received ChT
or watchful-waiting harbored more often right-sided tumors
(p=0.038). No further differences between treatment groups
concerning clinical and sociodemographic characteristics
were noted (Online Resource Table S1).

Of the 71 included, 27 had RT plans available (Table 1).
The median follow-up of these was 88.4 months (range
57.8-129.6) after baseline assessment for neurocognition and
61.0 months (range 24.0—107.0) after baseline assessment for
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QoL. The median total dose was 59.4 Gy (range 50.4-60.0),
fraction doses were 1.8-2.0 Gy. In 6 of these patients (22.2%)
treatment concept and total dose included a local boost RT
(median total boost dose 14.4 Gy [range 7.2-20.0]) in frac-
tions of 1.8-2.0 Gy. Two patients were irradiated with IMRT,
the remaining patients were irradiated with 3D conformal
RT. The median PTV was 230.0 cc (range 101.0-566.0),
median CTV was 79 cc (range 36.0-214.0). Dmean to the
ipsilateral hippocampus was 43.7 Gy (range 2.2-59.6) for
patients with digital RT plans (=6 <10 Gy; n=8>50 Gy;
n=2 10-50 Gy; n=1 not estimated since hippocampus was
fully resected before RT). For the remaining Dmean to the
ipsilateral hippocampus was dichotomized into < 10 Gy
(n=2) and > 50 Gy (n=4) extrapolated from paper plans. In
4 with paper plans Dmean hippocampus was between 10 and



Journal of Neuro-Oncology (2023) 164:353-366

357

Table 1 Clinical and sociodemographic characteristics of patients, separated for treatment groups and RT dosimetry groups

Whole sample (n=71)

Sample with RT plans available (n=27)"

Radiotherapy® Combined Chemotherapy® ~ Watchful-waiting  Whole sample’ ~ Dmean ipsilat- ~ Dmean ipsilat-
(RT) Radio-Chemo-  (ChT) eral Hippocam-  eral Hippocam-
therapy® (RChT) pus<10 Gy pus>50 Gy
n="7(9.9%) n=29 (40.8%) n=11(15.5%) n=24(33.8%) n=27 n=28 (29.6%) n=12 (44.4%)
Median age in 39 (30-58) 36 (21-53) 42 (27-52) 34 (17-50) 37.0 (21-58) 35.0 (21-44) 35.5 (25-47)

years (range) at
surgery
Sex, n, female : 3:4 (43%:57%)

male

Education in years

Mean (SD) 12.1 (1.9)
Surgery, n
Gross total resec- 3
tion ¢
Subtotal resec- 0
tion ¢

Partial resection © 1

Biopsy (open vs. 3 (stereotactic)

stereotactic)

13:16 (45%:55%) 9:2 (82%:18%)

11.8 (1.6) 12.1 (1.6)
8 4
6 2
11 1
4 (1vs.3) 4 (1 vs. 3)

Tumor histology, according to the WHO classification 2000 and 2007, n

Astrocytoma 1

Anaplastic astro- 4
cytoma

Oligodendro- -
glioma

Anaplastic oligo- -
dendroglioma

Oligoastrocytoma 1

Anaplastic oli- -

goastrocytoma
Glioblastoma -
Other 1 (gangli-
oglioma)

9 2
9 2
1 _
1 2
4 2
5 _

WHO grade, according to the WHO classification 2000 and 2007, n

Grade 1 1
Grade 2 2
Grade 3 4
Grade 4 -
Lateralization of tumor, n
Left 5
Right 2
Bilateral -

Crossing midline ~ —
Localization of tumor, n

Frontal 2
Temporal 4
Parietal -

10 5
14 6
5 _
18

10

1 _
9 9
7 _
1 2

13:11 (54%:46%)

11.6 (1.4)

17

1

1 (stereotactic)

9 (7 pilocytic
astrocytoma,
1 subepend-
ymoma, 1
ganglioglioma)

14:13 (52%:48%)

11.8(1.7)

7
6 (1vs.5)

10
14

11

5:3 (63%:37%)

12.3 (1.5)

3(1vs.2)

- B~ W

6:6 (50%:50%)

11.9 (2.0)

4

3 (stereotactic)
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Table 1 (continued)

Whole sample (n=71) Sample with RT plans available (n=27)"
Radiotherapy® Combined Chemotherapy® ~ Watchful-waiting  Whole sample® Dmean ipsilat- Dmean ipsilat-
(RT) Radio-Chemo-  (ChT) eral Hippocam-  eral Hippocam-
therapy® (RChT) pus <10 Gy pus>50 Gy

n="7(9.9%) n=29 (40.8%) n=11(15.5%) n=24 (33.8%) n=27 n=28 (29.6%) n=12 (44.4%)

Fronto-temporal ~ — 6 - 1 2 1 1

Temporo-parietal —— 2 - 1 - - -

Other 1 4 - 9 - - -

AED at Tl, n 2 20 7 10 15 5 5

AED at T2, n 3 10 5 8 7 1 3

Time interval NPA T1 — T2 in mo

Mean (SD) 79.7 (16.8) 93.3(19.3) 85.8 (24.0) 85.5(20.1) 94.2 (20.4) 92.7 (16.2) 88.6 (21.3)

Median (range) 78.3(57.8-109.0) 88.4(61.6-129.6) 83.9 (61.2-131.6) 82.6 (55.3-128.7) 88.4 (57.8-129.6) 88.6 (72.3-114.4) 84.4(57.8-127.2)
Time interval QoL T1 — T2 in mo

Mean (SD) 45.4 (28.9) 61.5(20.1) 50.5 (21.1) 54.9 (26.6) 61.2 (22.7) 63.4 (20.2) 55.3 (21.6)
Median (range) 33.0(24.0-107.0) 68.0 (25.0-97.0) 47.0(25.0-82.9) 55.5(17.0-108.0) 61.0 (24.0-107.0) 73.0 (29.0-88.0) 52.5 (24.0-87.9)
Time interval surgery — NPA T1ind

Mean (SD) 8.7 (4.6) 9.2(5.0) 9.8 (9.0 7.4 (1.4) 10.3 (5.5) 10.4 (5.9) 7.0 (1.6)
Median (range) 7 (5-16) 7 (4-20) 7 (5-28) 8 (4-10) 8 (4-20) 11 (4-19) 7(5-9)
Time interval surgery — QoL T1 in d

Mean (SD) 9.0 (4.7) 10.0 (9.6) 8.0(5.1) 31.0(37.5) 11.3 (11.1) 10.2 (5.8) 6.7 (.6)
Median (range) 7 (5-19) 7(4-42) 7 (4-18) 7(4-97) 7 (4-42) 10 (4-19) 7 (6-7)
Time interval NPA T1 — adjuvant therapy onset in d

Mean (SD) 243 (11.2) 31.7 (14.0) 23.2(25.9) - 31.3(15.8) 342 (16.4) 33.5(13.6)
Median (range) 18 (6-34) 34 (5-51) 15 (5-73) - 40 (5-48) 40 (5-44) 33 (20-48)
Time interval QoL T1 — adjuvant therapy onset in d

Mean (SD) 33.8(19.3) 32.3(15.9) 22.1(22.3) - 31.3(17.7) 34.2 (15.8) 37.0 (15.7)
Median (range) 35 (6-49) 37 (6-57) 17.5 (5-73) - 40 (6-57) 40 (6-43) 44 (19-48)

SD standard deviation, mo months, d days, AED anti-epileptic drug, 7/ baseline assessment, 72 follow-up assessment; NPA neuropsychological
assessment, QoL Quality of life

2All patients received external focal RT
bAdjuvant: 20.7% temozolomide; concomitant: 37.9% temozolomide; 41.4% PCV or nitrosourea
¢Adjuvant: 63.6% temozolomide, 36.4% PCV or nitrosourea

4Six (22.2%) patients received external focal RT alone and 21 (77.8%) were treated with radio-chemotherapy (adjuvant: 23.8% temozolomide;
concomitant: 28.6% temozolomide; 47.6% PCV or nitrosourea)

“Extent of resection was defined according to magnetic resonance (MR) or computer tomography (CT) imaging within 21 days post-surgery.
Post-surgical residual tumor volume was compared to tumor volume prior to surgery. Gross total resection was defined as no visible residual
tumor, subtotal resection as 50-99% excision of tumor volume and partial resection as < 50% excision of tumor volume

“For n=6 patients hippocampal dosage was between 10 and 50 Gy; for n=1 patient estimation of hippocampal dosage was not possible; data of
these patients were not included in one of predefined dichotomized groups

50 Gy. It is of note that patients with Dmean between 10 and  a statistically significant group difference in tumor laterali-
50 Gy were not included in the core analysis of dichotomized zation (p =0.013) and in localization, i.e., frontal vs. non-
groups. From inspection of planning imaging in 7 patients  frontal tumors (p =0.001) no differences between groups
hippocampal structures had been resected before RT (6 par-  concerning clinical and sociodemographic characteristics
tial resection, 1 complete resection). With the exception of  were noted (Online Resource Table S1).
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Long-term follow-up of neurocognition and QoL
in the whole cohort

Mean performance of all treatment groups at T1 and T2 indi-
cated no clinically relevant impairment (i.e., performance
was within the range of 1.5 SD around normative mean;
Fig. 2).

RChT and watchful-waiting patients showed numerical
and sometimes even statistically significant improvements in
all cognitive domains (Fig. 2 and Online Resource Table S2).
For RT patients no statistically significant changes (yet
numerical improvements or deteriorations) were seen in the
long-term. ChT patients significantly improved in short-term
memory (p=0.046) and fluency (p =0.001). Although ChT
patients significantly deteriorated in one single domain
(selective attention, p=0.017), performance was still within
normative range. ANOVAs revealed differences with respect
to the extent of change in neurocognitive performance
between treatment groups (interaction effects) in short-term
memory, inhibition and figural memory, due to differences
between watchful-waiting and RT patients (Online Resource
Table S2). The number of individual patients in different
treatment groups with a clinically relevant impairment of
cognitive performance (> 1.5 SD below normative mean) is
shown in Online Resource Table S3.

As AED may affect cognitive performance and their
omission may substantially improve neurocognition, explor-
atory analyses were conducted to control for an effect of
AED discontinuation between T1 and T2 on cognitive per-
formance. Seven patients received anticonvulsants at T1 but
not at T2. Individual analyses showed that a confounding
effect of these 7 on the extent of neurocognitive improve-
ment at T2 in the whole cohort is highly unlikely (Online
Resource Table S4).

Patients who received RChT showed a statistically sig-
nificant improvement in the EORTC-QLQ C30 scale social
functioning (p =0.049) and Global Health Status (p =0.025)
in the long-term. Patients undergoing watchful-waiting pre-
sented an improvement in Global Health Status (p =0.044).
No further significant changes occurred concerning other
C30 functional scales or Global Health Score in these treat-
ment groups. Concerning the other treatment groups (ChT
and RT) no significant changes on QoL occurred (Online
Resource Figure S5).

Association of hippocampal RT dose
with neurocognition and QoL

Change in cognitive performance according to Dmean ipsi-
lateral hippocampus on an individual patient level is pre-
sented in Fig. 3a.

Repeated-measures ANOVAs revealed a significant
interaction for inhibition (p =0.020) only, i.e., a difference
in long-term cognitive change between groups: patients
with mean ipsilateral hippocampal dose < 10 Gy improved
(z-score -1.09 at T1; z-score 0.14 at T2), whereas patients
with mean ipsilateral hippocampal dose > 50 Gy deterio-
rated (z-score -0.10 at T1; z-score -0.73 at T2) (Fig. 3b
and Online Resource Table S6). The number of individual
patients with a clinically relevant impairment of cognitive
performance > 1.5 SD below normative mean at T1 and T2
is shown in Online Resource Table S3. Group mean scores,
irrespective of radiation dose on ipsilateral hippocampus,
indicate no clinically relevant cognitive impairment (no
z-score was > 1.5 SD below normative mean) in any subtest
at T2 (Fig. 3b).

Repeated-measures ANOVAs revealed no significant
interaction effects between timepoint and group for C30
functional scales and Global Health Status in the long-term,
i.e., no significant association of hippocampal RT and QoL
(Online Resource Fig. S7 and Table S8).

The changes in z-scores between T1 and T2 were not cor-
related with PTV, CTV, V30 Gy, Dmean or D1% in any cog-
nitive domain (all ps > 0.054; Table 2 and Online Resource
Fig. S9).

As verbal memory is associated with left hippocam-
pal integrity and figural memory with right hippocampal
function, we additionally separately calculated correlations
between change in verbal/figural memory and irradiation of
left/right hippocampus. Only for verbal memory, changes in
z-score between T1 and T2 were correlated with irradiation
of right hippocampus (Table 2).

Discussion

Long-term neurocognitive and psychosocial sequalae of
multimodal tumor-directed treatment are increasingly
important in glioma patients. It appears pivotal to prospec-
tively assess the genuine neurotoxicity of tumor-directed
treatment.

In our series we did not find profound changes in neu-
rocognitive functioning or QoL on long-term in any of the
treatment groups. Although cognitive performance in several
patients was numerically below baseline, the mean neuro-
cognitive scores showed no clinically relevant impairment
[40] in all treatment modalities. Furthermore, in the current
patient sample no profound QoL decreases were present,
instead in most cases QoL was increased in the follow-up.
Hence, tentatively speaking tumor control might be associ-
ated with improved QoL in the patients irrespective of the
therapy chosen. However, we cannot exclude the possibility

@ Springer



360 Journal of Neuro-Oncology (2023) 164:353-366

a) Watchful-waiting

@ Springer

4
HEF et Abaseline mfollow-up
g3
%)
' o % % *
2 H i
e 1- I l
; ]
Q
3 0 PN T
$ < $ $ $ ZS
©
[
Epd—] 1 | I | .
s short-term working simple selective inhibition verbal figural fluency
memory memory reaction attention memory memory
time
b) Chemotherapy
39 Abaseline mfollow-up
o 2- * * *%
0 T
R
o I }\ .
§ 0
- ¢ f Vi
g 11
3 t 1 .
£ -2 -
e short-term working simple selective inhibition verbal figural fluency
memory memory reaction attention memory memory
time
c) Radiotherapy
3 4
Abaseline mfollow-up
g 21 I
%)
14 &
g 0 T 1 T /1\ T . "
?
5
(7]
g, ! I I [
i short-term working simple selective inhibition verbal figural fluency
memory memory reaction attention memory memory
time
d) Combined radio-chemotherapy
L2
3 Abaseline mfollow-up
o 2- * *k
2 T
=" . T i
Eo 1
2 A A [ A
g -1 A
g !
g 2 [ 1
e short-term working simple selective inhibition verbal figural fluency
memory memory reaction attention memory memory
time



Journal of Neuro-Oncology (2023) 164:353-366

361

«Fig.2 Mean cognitive performance (in z-scores) and standard devia-
tions (error bars) in NeuroCog FX subtests at baseline and follow-up
(median 7.1 years [range 4.6—11.0] after baseline), separated for treat-
ment groups. a Watchful-waiting (n=24), b Chemotherapy (n=11),
¢ Radiotherapy (n=7), d Combined radio-chemotherapy (n=29).
Statistically significant changes in cognitive performance between
baseline and follow-up are indicated by asterisks (*p <.05, **p < .01,
*H%p <.001)

of subjectively meaningful impairments of individual
patients. Nevertheless, in accordance with findings in the
literature [6, 24-26, 41] patients generally retained their
cognitive functioning after treatment. As expected, patients
receiving a mean radiation dose of < 10 Gy to the ipsilat-
eral hippocampus showed stable or improved performance
in all cognitive domains on group level, while patients
with > 50 Gy numerically deteriorated in 4/8 domains. How-
ever, no profound impairment was present even in patients
treated with > 50 Gy. The stable neurocognitive performance
in the long-term might be due to a biphasic pattern of cog-
nitive functioning following RT, as shown in a pioneering
study on cognitive decline early after RT with a slope of
improvement 2 and 3 years after [42]. Furthermore, we did
not find an association of neurocognition and unilateral hip-
pocampal RT dosage across all patients in this series. Only
in right-hemispheric patients PTV and D1% of ipsilateral
hippocampus were associated with verbal memory which is
unexpected since theoretical models suggest an association
of left-hemispheric RT with verbal memory. Although the
sample size of patients whose radiation plans were available
is small and may not be representative the present results
suggest that RT to ipsilateral hippocampus in the popula-
tion analyzed here is only modestly neurotoxic. At least, a
group of patients may tolerate therapy in long-term good
health, preserved QoL [43] and without gross neurocogni-
tive impairment.

When descriptively evaluated a positive potential effect
on neurocognition might be present in the watchful-waiting
and RChT groups. Although these marginal effects must be
interpreted with caution, one might assume that in terms
of tumor control combination RChT is superior to either
modality administered alone [44]. Therefore, a positive
effect on neurocognition after combined therapy may reflect
more efficient tumor control in the RChT group. In the
watchful-waiting group we analyzed neurocognition during
a long course without detectable tumor progression in this
subgroup (median: 85.2 months; range 55.3—131.6). Hence,
these results might possibly reflect the avoidance of potential
neurotoxic treatment in a positive selection of patients with
an exceptionally benign clinical course.

Our results must be interpreted with caution. NeuroCog
FX is possibly not sensitive enough to detect subtle neuro-
cognitive impairment. Nevertheless, it reportedly was sensi-
tive in other brain tumor trials [45, 46] and was compared to

established neuropsychological testing [34]. As patients with
radiation plans were recruited predominantly in one center,
we further cannot exclude the possibility of a confounding
effect of study site. However, data collection of the whole
cohort was nearly equally distributed across centers and did
not reveal significant impairments due to multimodal tumor-
directed treatment. Of the 280 patients initially included,
we prospectively followed only 71 patients (Fig. 1). Hence,
we cannot exclude the possibility that we report on a posi-
tive selection. Patients who refuse to participate may be in
a clinically worse (neurocognitive) condition. Neverthe-
less, only 9.3% of our sample refused to participate and this
limitation might be inherent for prospective studies span-
ning multiple years. Additionally, due to limited number of
patients with RT plans available, we were unable to perform
subgroup analyses on different tumor histology, presurgi-
cal tumor volume, tumor locations/hemispheres, varying
radiation volumes and exact RT doses to the hippocampus.
Furthermore in contrast to other research [47], besides for-
mal cognitive test results the present study did not assess
patients’ performance status over time, nor their professional
and social activities such as resuming employment or hob-
bies, taking part in further education, maintaining social
relationships, living independently or suffering from psy-
chiatric illness, all aspects that define the human condition
beyond formal cognitive tests. Finally, O®-methylguanine
DNA methyltransferase (MGMT) promoter methylation was
not uniformly assessed and isocitrate dehydrogenase (IDH)
mutation status remains unknown for most patients, given
the diagnostic classification based on WHO classification
of 2000 [29] and 2007 [30]. This is attributable to the time
period in which the study was conducted, and it is unlikely
that having access to this information would provide further
insight into the observations reported here, given that tumor
genotype is not commonly associated with neurocognitive
outcomes.

Besides these limitations the present study represents
the first to serially follow a large number of adult glioma
patients for up to 11 years by serial neuropsychological
testing, QoL assessment and analyses of hippocampal RT
dosage in association with neurocognition in a subgroup of
patients with RT plans available. Although we might present
the results of a positive selection of patients, gross impair-
ment of neurocognition or QoL appears unlikely in adult
glioma patients undergoing unilateral hippocampal RT in
this very cohort. Although understanding of mechanisms
of how RT + ChT may or may not result in neurocognitive
dysfunction in the long-term remains a matter of further
investigation, the present study provides a hint that at least
some patients tolerate these therapies without gross neuro-
cognitive and QoL decline.
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Fig.3 Cognitive performance in relation to hippocampal dosimetry.
a Change in cognitive performance according to mean radiation dose
on ipsilateral hippocampus on individual patient level. Z-scores>0
indicate an improvement of cognitive performance, z-scores<0
indicate a deterioration of cognitive performance. Individual data
only refer to digital RT plans with exact hippocampal dosage in Gy
available for patient groups with Dmean at ipsilateral Hippocam-
pus< 10 Gy vs.>50 Gy b Change of cognitive functioning in the
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long-term on group level. Graphs indicate mean cognitive perfor-
mance (z-scores) with standard deviations represented by error bars
in NeuroCog FX subtests at baseline (i.e., after surgery) and at fol-
low-up (median 7.1 years [range 4.6—11.0] after baseline), separated
for patients with Dmean at ipsilateral Hippocampus <10 Gy (n=38)
and patients with Dmean at ipsilateral Hippocampus > 50 Gy (n=12).
The asterisk indicates a statistically significant interaction effect of
timepoint and group (¥*p <.05)
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Table 2 Pearson correlation
coefficients of correlation
between planning target volume,
clinical target volume, V30

Gy, mean dose in ipsilateral
hippocampus (Dmean), near
maximum dose in ipsilateral
hippocampus (D) and

change in z-scores (T2-T1) in
NeuroCog FX subtests

363
Planning tar- Clinical tar- V30 Gy  Dmean ipsilateral D,y ipsilat-
get volume get volume hippocampus eral hip-
pocampus

Short-term memory

Pearson’s r —.132 - 314 —.040 —.342 —.381

p-value 519 295 .879 195 .146

N 26 13 17 16 16
Working memory

Pearson’s r —.060 —.236 .013 —-.329 - 314

p-value 776 438 962 232 255

N 25 13 16 15 15
Simple reaction time

Pearson’s r -.077 353 357 —-.075 .020

p-value .709 236 159 784 .940

N 26 13 17 16 16
Selective attention

Pearson’s r —.158 —.075 —.101 —.168 —.140

p-value 440 .807 700 534 .606

N 26 13 17 16 16
Inhibition

Pearson’s r —.199 .055 .035 — 491 — 455

p-value .329 .858 .894 .054 .077

N 26 13 17 16 16
Verbal memory

Pearson’s r —.080 —.210 —.064 —.166 —.100

p-value .698 491 .808 .539 712

N 26 13 17 16 16
Left tumor lateralization

Pearson’s r .028 - .210 013 — 498 —,407

p-value 914 587 975 .209 316

N 17 9 9 8 8
Right tumor lateralization

Pearson’s r —.694 —.430 —.678 —.701 -.772

p-value .038%* 570 .065 .053 .025%*

N 9 4 8 8 8
Figural memory

Pearson’s r 117 —.281 —.005 158 107

p-value .569 352 985 .558 .694

N 26 13 17 16 16
Left tumor lateralization

Pearson’s r 374 —.325 .089 193 297

p-value 139 .394 .819 .647 475

N 17 9 9 8 8
Right tumor lateralization

Pearson’s r —.614 — 470 - .516 —.252 — 414

p-value .079 .530 .190 .548 .308

N 9 4 8 8 8
Fluency

Pearson’s r .106 .047 —.026 —.429 —.294

p-value .607 .879 920 .097 .269

N 26 13 17 16 16

r correlation coefficient, N number of patients, Gy gray
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