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Abstract
Purpose Multimodal therapies have significantly improved prognosis in glioma. However, in particular radiotherapy may 
induce long-term neurotoxicity compromising patients’ neurocognition and quality of life. The present prospective mul-
ticenter study aimed to evaluate associations of multimodal treatment with neurocognition with a particular focus on hip-
pocampal irradiation.
Methods Seventy-one glioma patients (WHO grade 1–4) were serially evaluated with neurocognitive testing and quality of 
life questionnaires. Prior to (baseline) and following further treatment (median 7.1 years [range 4.6–11.0] after baseline) a 
standardized computerized neurocognitive test battery (NeuroCog FX) was applied to gauge psychomotor speed and inhibi-
tion, verbal short-term memory, working memory, verbal and non-verbal memory as well as verbal fluency. Mean ipsilateral 
hippocampal radiation dose was determined in a subgroup of 27 patients who received radiotherapy according to radiotherapy 
plans to evaluate its association with neurocognition.
Results Between baseline and follow-up mean performance in none of the cognitive domains significantly declined in any 
treatment modality (radiotherapy, chemotherapy, combined radio-chemotherapy, watchful-waiting), except for selective 
attention in patients receiving chemotherapy alone. Apart from one subtest (inhibition), mean ipsilateral hippocampal radia-
tion dose > 50 Gy (Dmean) as compared to < 10 Gy showed no associations with long-term cognitive functioning. However, 
patients with Dmean < 10 Gy showed stable or improved performance in all cognitive domains, while patients with > 50 Gy 
numerically deteriorated in 4/8 domains.
Conclusions Multimodal glioma therapy seems to affect neurocognition less than generally assumed. Even patients with 
unilateral hippocampal irradiation with > 50 Gy showed no profound cognitive decline in this series.
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Introduction

Multimodal tumor-specific therapies have significantly 
improved prognosis of glioma. Nevertheless, apart from the 
tumor itself therapy-induced long-term neurotoxicity may 
affect patients’ quality of life (QoL). Surgery, radiotherapy 

(RT) and chemotherapy (ChT) may negatively impact 
patients’ cognitive functioning. While the literature on ChT 
alone is sparse, as many glioma patients receive combined 
radio-chemotherapy (RChT) [1–3], many investigations 
focused on the association of RT with cognitive function-
ing [4–7]. The brain region considered to be particularly 
vulnerable to RT is the hippocampus, due to the presence 
of neuronal progenitor cells (NPC) [8–13]. This has trans-
lated into therapeutic efforts of hippocampal sparing in brain 
tumor treatment, mostly in concepts on RT of brain metasta-
ses e.g., [14–16], but also in some studies in glioma patients 
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[17, 18]. Data suggest a potential benefit of NPC sparing 
on neurocognition in glioblastoma [17, 18] but with risk of 
treatment failure [19].

In a prospective observational study on patients with 
low grade glioma treated with fractionated stereotactic RT 
hippocampal dosage was correlated with verbal memory at 
18 months follow-up [20]. Biologically equivalent doses of 
2 Gy  (EQD2) fractions (assuming α/β = 2 Gy) to 40% of the 
bilateral hippocampus greater than 7.3 Gy were associated 
with an increased risk of delayed memory impairment [20]. 
However, in another study on low grade glioma patients 
treated with proton RT neither a dose–response relationship 
for the hippocampus nor an overall neurocognitive decline 
was found at a median of 36 months after treatment [21]. A 
ground-breaking cross-sectional study on low grade glioma 
patients who had been irradiated in the 80ies and 90ies 
of the last century [22, 23] demonstrated that treatment-
related cognitive dysfunction is infrequent at a mean of 6 
years after diagnosis [22], but affected increasingly more 
cognitive domains on long-term follow-up (12 years) [23]. 
The follow-up [23] suggested that around 50% of surviving 
patients having received RT as primary treatment developed 
cognitive difficulties even if treated with fractions < 2 Gy. In 
line with relative stable cognition in the long-term in other 
studies [6, 24–26], a most recent paper on this population 
demonstrated that no further cognitive decline was detect-
able within the next 14 years of follow-up [27].

Most glioma studies with long-term follow-ups were 
not prospective [22, 23, 27] and prospective studies on 
hippocampal RT dose [20] did not exceed follow-up test-
ing beyond 18 months. Since our group had not found rel-
evant changes of cognitive performance after multimodal 
treatment of patients with WHO grade 1–4 gliomas after a 
median of 16.8 months between post-surgery baseline neu-
ropsychological assessment and follow-up assessment [28], 
we now present an extended follow-up to assess whether 
neurocognitive sequelae may occur in the long-term. Neu-
ropsychological and QoL data was prospectively captured in 
a large multicenter trial (German Glioma Network, GGN) 
with a follow-up of up to 11 years and with particular focus 
on the influence of hippocampal RT dosage on long-term 
neurotoxicity.

Materials and methods

Patients

The GGN was funded by the German Cancer Aid (Refer-
ence No.: 107940/109459 and 110586) from 2004 to 2012 
to establish an interdisciplinary research network of brain 
tumor treatment in Germany including university hospi-
tals specialized in Neuro-Oncology and reference centers 

for neuroradiology, neuropathology, molecular diagnostics 
and biometry. On 01/01/2004 the GGN was initiated and 
on April 2004 assessment with NeuroCog FX started in 
participating centers. Overall, 4198 patients were included 
and treated within the GGN, of whom 280 participated in 
this project on serial assessment of neurocognitive function 
between 2005 and 2011. Exclusion criteria for adult glioma 
patients were presence of aphasia, psychosis or dementia 
prior to glioma diagnosis and MMSE scores < 20 prior to 
first neuropsychological assessment (NPA). As patients 
were recruited 2011 at the latest, tumors had been classi-
fied according to the WHO classification of tumors of the 
central nervous system (CNS) in its versions of 2000 [29] 
and 2007 [30]. After surgical resection or biopsy, patients 
had been treated with either conventional external RT, ChT, 
RChT or watchful-waiting. Participating centers were uni-
versity hospitals Dresden, Munich (LMU), Bonn, Hamburg, 
Düsseldorf, Heidelberg and Bochum, Germany. The study 
was approved by the local ethics committees and the ethics 
committee of the leading institution (Tübingen, Germany, 
Registration No.: 353/2003 V) and performed in accordance 
with the 1964 Declaration of Helsinki and its later amend-
ments. All patients gave written informed consent.

Neurocognition

NeuroCog FX was used to evaluate various neurocog-
nitive domains whose assessment is recommended for 
neuro-oncological trials [31, 32]. This computerized test 
battery compromises eight subtests to gauge domains 
assumed to be vulnerable [33, 34] to detrimental effects 
on particular domains of cognition by the tumor itself and 
by tumor directed therapy, i.e., psychomotor speed and 
response inhibition (simple, Go-NoGo [selective atten-
tion] and interference [response inhibition/flexibility] 
reaction time; in the following the latter is termed “inhi-
bition”), verbal short-term memory (digit span), working 
memory (2-back), verbal fluency, verbal and non-verbal 
(visuospatial) memory. Raw test scores were converted 
to age-adjusted z-scores (mean of 0 and standard devia-
tion, SD of 1) for each subtest. The NPA conducted after 
surgery (largely within one week [median 7 days, range 
4–28]) prior to start of further therapy was considered 
baseline. Follow-up NPA was intended regularly during 
clinical follow-up every six months. Since data on every 
six months was obtainable only in a fraction of patients 
but long-time follow-up in all, the present long-term fol-
low-up analyzed baseline NPA (timepoint 1, T1) and the 
latest NPA after baseline assessment (timepoint 2, T2; at 
maximum 11 years). Cognitive test results of patients with 
confirmed tumor progression within three months after 
this NPA were excluded and NPA test results prior to this 
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testing were considered for analyses as time point T2. The 
effects of any treatment type on any cognitive domain were 
investigated.

Quality of life

All patients in this study were scheduled for prospective 
follow-up with the EORTC-QLQ C30 and BN20 modules 
every 6 months, but again data were incomplete for some. 
Therefore, the baseline QoL scores (T1) and the latest QoL 
assessment at maximum 9 years after baseline assessment 
(T2) with corresponding neurocognitive data were consid-
ered for this study. Since the BN20 module largely repre-
sents neurologic dysfunction caused by the tumor itself and 
to a lesser extent by tumor-specific therapy and since it did 
not substantially add to the information of the C30 module 
when focusing on treatment-associated impairment, we only 
evaluated the functional scales (physical, role, emotional, 
cognitive and social functioning) and the global score of 
the C30 module. Scale scores range from 0 (worst level of 
functioning) to 100 (best level of functioning).

Radiation and radiation therapy planning

Focal photon RT was applied according to standard of 
care after CT-planning with 3D conformal RT or intensity 
modulated RT (IMRT). Delineation of gross tumor volume 
(GTV), clinical target volume (CTV) and planning target 
volume (PTV) was performed according to national/inter-
national standards for the respective tumor type at that time 
including fusion of postoperative MRI sequences. Hip-
pocampal sparing was not carried out. The hippocampus 
was contoured according to recommendations of the RTOG 
0933 trial [35]. For the current analysis the hippocampus 
was delineated post-hoc on available digital treatment plans 
by an experienced Neuro-Oncologist (C.S.). Hippocampal 
dosimetry and calculation of mean radiation dose to the 
ipsilateral hippocampus (Dmean) and near maximum dose 
to the ipsilateral hippocampus (D1%) was performed. In 
patients without digital radiation plans Dmean to the ipsi-
lateral hippocampus was extrapolated from isodose lines 
of paper plans after consensus of C.S. and an experienced 
medical physicist (M.K.). Further, the volumes of CTVs and 
PTVs and volume of brain receiving > 30 Gy (V30 Gy) in 
cc were determined if available from digital plans. V30 Gy 
was used as a threshold for brain volumes at higher risk 
for radiation-induced damage [36] as the volume of brain 
receiving more than 30 Gy is frequently applied to describe 
normal brain radiation dose exposure, e.g., as one parameter 
in the EORTC 22033-26033 trial [37] and in other analyses 
concerning high grade glioma [38, 39].

Statistical analyses

Concerning clinical and sociodemographic data, t-tests for 
independent samples, one-way analyses of variance (ANO-
VAs), Fisher’s Exact test and χ2-test were used. To evaluate 
changes of cognitive functioning and QoL within any treat-
ment modality (RT, ChT, RChT, watchful-waiting) t-tests 
for dependent samples or repeated-measures ANOVAs were 
calculated for NeuroCog FX z-scores and EORTC-QLQ C30 
scores with time of assessment (T1 vs. T2) as within-subject 
factor and treatment (RT vs. ChT vs. RChT vs. watchful-
waiting) as between-subject factor. To control for usage of 
antiepileptic medication (AED) additional analyses were 
carried out. For the core analysis concerning radiation dose 
patients were dichotomized in two groups, those receiving 
less than Dmean 10 Gy to the ipsilateral hippocampus and 
those who received a Dmean of more than 50 Gy. Repeated-
measures ANOVAs for NeuroCog FX z-scores and EORTC-
QLQ C30 scores were calculated with time of assessment 
(T1 vs. T2) as within-subject factor and dose (< 10 Gy 
vs. > 50 Gy) as between-subject factor. Since group level 
analyses might obscure individual cognitive deterioration 
or improvement, the number of patients with a z-score ≥ 1.5 
below normative mean as a common criteria of clinical rel-
evance (see International Cancer and Cognition Task Force 
[40]) for each NeuroCog FX subtest was calculated. Never-
theless, this represents an arbitrary definition and while the 
terminus “clinical relevant” in the manuscript follows this 
definition it does not imply that the reported changes are not 
subjectively “meaningful” for individual patients. A differ-
ence z-score (T2-T1) was calculated for each NeuroCog FX 
subtest (i.e., each patient served as own control) and was 
correlated with radiation data using Pearson correlations. 
Analyses were performed with SPSS statistics (Version 25) 
with a level of significance of 0.05.

Results

Clinical and sociodemographic characteristics

Of the 280 patients initially included in this GGN pro-
ject, 209 patients were excluded from analyses because of 
missing data in more than two subtests at T1 or T2 (n = 9), 
tumor recurrence before T2 (n = 139), an interval > 30 days 
between surgery and T1 (n = 13) or because patients were 
lost to follow-up (n = 22) or refused to participate (n = 26). 
Seventy-one patients with histopathologically proven glioma 
were prospectively followed in the long-term (Fig. 1 and 
Table 1).

The median follow-up was 85.2  months (range 
55.3–131.6) after baseline assessment for neurocognition 
and 55.0  months (range 17.0–108.0) for QoL. Patients 
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having received RT were treated with fraction doses of 
1.8–2.0 Gy with a median total dose of 59.4 Gy (range 
39.6–60.0). More patients with WHO grade 3 and 4 glio-
mas were treated with RChT and more patients with WHO 
grade 1 and 2 gliomas received watchful-waiting (p = 0.001). 
Patients who have been treated with RChT harbored more 
often left-sided tumors, whereas patients who received ChT 
or watchful-waiting harbored more often right-sided tumors 
(p = 0.038). No further differences between treatment groups 
concerning clinical and sociodemographic characteristics 
were noted (Online Resource Table S1).

Of the 71 included, 27 had RT plans available (Table 1). 
The median follow-up of these was 88.4 months (range 
57.8–129.6) after baseline assessment for neurocognition and 
61.0 months (range 24.0–107.0) after baseline assessment for 

QoL. The median total dose was 59.4 Gy (range 50.4–60.0), 
fraction doses were 1.8–2.0 Gy. In 6 of these patients (22.2%) 
treatment concept and total dose included a local boost RT 
(median total boost dose 14.4 Gy [range 7.2–20.0]) in frac-
tions of 1.8–2.0 Gy. Two patients were irradiated with IMRT, 
the remaining patients were irradiated with 3D conformal 
RT. The median PTV was 230.0 cc (range 101.0–566.0), 
median CTV was 79 cc (range 36.0–214.0). Dmean to the 
ipsilateral hippocampus was 43.7 Gy (range 2.2–59.6) for 
patients with digital RT plans (n = 6 < 10 Gy; n = 8 > 50 Gy; 
n = 2 10–50 Gy; n = 1 not estimated since hippocampus was 
fully resected before RT). For the remaining Dmean to the 
ipsilateral hippocampus was dichotomized into < 10 Gy 
(n = 2) and > 50 Gy (n = 4) extrapolated from paper plans. In 
4 with paper plans Dmean hippocampus was between 10 and 

Fig. 1  Flow chart of patients included in the present series
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Table 1  Clinical and sociodemographic characteristics of patients, separated for treatment groups and RT dosimetry groups

Whole sample (n = 71) Sample with RT plans available (n = 27)*

Radiotherapya 
(RT)

Combined 
Radio-Chemo-
therapyb (RChT)

Chemotherapyc 
(ChT)

Watchful-waiting Whole  sampled Dmean ipsilat-
eral Hippocam-
pus < 10 Gy

Dmean ipsilat-
eral Hippocam-
pus > 50 Gy

n = 7 (9.9%) n = 29 (40.8%) n = 11 (15.5%) n = 24 (33.8%) n = 27 n = 8 (29.6%) n = 12 (44.4%)

Median age in 
years (range) at 
surgery

39 (30–58) 36 (21–53) 42 (27–52) 34 (17–50) 37.0 (21–58) 35.0 (21–44) 35.5 (25–47)

Sex, n, female : 
male

3:4 (43%:57%) 13:16 (45%:55%) 9:2 (82%:18%) 13:11 (54%:46%) 14:13 (52%:48%) 5:3 (63%:37%) 6:6 (50%:50%)

Education in years
Mean (SD) 12.1 (1.9) 11.8 (1.6) 12.1 (1.6) 11.6 (1.4) 11.8 (1.7) 12.3 (1.5) 11.9 (2.0)
Surgery, n
Gross total resec-

tion e
3 8 4 17 9 2 4

Subtotal resec-
tion e

0 6 2 5 5 3 1

Partial resection e 1 11 1 1 7 – 4
Biopsy (open vs. 

stereotactic)
3 (stereotactic) 4 (1 vs. 3) 4 (1 vs. 3) 1 (stereotactic) 6 (1 vs. 5) 3 (1 vs. 2) 3 (stereotactic)

Tumor histology, according to the WHO classification 2000 and 2007, n
Astrocytoma 1 9 2 6 8 2 4
Anaplastic astro-

cytoma
4 9 2 2 12 3 5

Oligodendro-
glioma

– 1 – 1 1 1 –

Anaplastic oligo-
dendroglioma

– 1 2 – 1 – 1

Oligoastrocytoma 1 – 3 5 1 – –
Anaplastic oli-

goastrocytoma
– 4 2 1 1 1 –

Glioblastoma – 5 – – 3 1 2
Other 1 (gangli-

oglioma)
– – 9 (7 pilocytic 

astrocytoma, 
1 subepend-
ymoma, 1 
ganglioglioma)

– – –

WHO grade, according to the WHO classification 2000 and 2007, n
Grade 1 1 – – 8 – – –
Grade 2 2 10 5 13 10 3 4
Grade 3 4 14 6 3 14 4 6
Grade 4 – 5 – – 3 1 2
Lateralization of tumor, n
Left 5 18 2 9 18 3 11
Right 2 10 9 14 9 5 1
Bilateral – 1 – – – – –
Crossing midline – – – 1 – – –
Localization of tumor, n
Frontal 2 9 9 9 9 7 1
Temporal 4 7 – 3 11 – 8
Parietal – 1 2 1 5 – 2
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50 Gy. It is of note that patients with Dmean between 10 and 
50 Gy were not included in the core analysis of dichotomized 
groups. From inspection of planning imaging in 7 patients 
hippocampal structures had been resected before RT (6 par-
tial resection, 1 complete resection). With the exception of 

a statistically significant group difference in tumor laterali-
zation (p = 0.013) and in localization, i.e., frontal vs. non-
frontal tumors (p = 0.001) no differences between groups 
concerning clinical and sociodemographic characteristics 
were noted (Online Resource Table S1).

Table 1  (continued)

Whole sample (n = 71) Sample with RT plans available (n = 27)*

Radiotherapya 
(RT)

Combined 
Radio-Chemo-
therapyb (RChT)

Chemotherapyc 
(ChT)

Watchful-waiting Whole  sampled Dmean ipsilat-
eral Hippocam-
pus < 10 Gy

Dmean ipsilat-
eral Hippocam-
pus > 50 Gy

n = 7 (9.9%) n = 29 (40.8%) n = 11 (15.5%) n = 24 (33.8%) n = 27 n = 8 (29.6%) n = 12 (44.4%)

Fronto-temporal – 6 – 1 2 1 1
Temporo-parietal – 2 – 1 – – –
Other 1 4 – 9 – – –
AED at T1, n 2 20 7 10 15 5 5
AED at T2, n 3 10 5 8 7 1 3
Time interval NPA T1 – T2 in mo
Mean (SD) 79.7 (16.8) 93.3 (19.3) 85.8 (24.0) 85.5 (20.1) 94.2 (20.4) 92.7 (16.2) 88.6 (21.3)
Median (range) 78.3 (57.8–109.0) 88.4 (61.6–129.6) 83.9 (61.2–131.6) 82.6 (55.3–128.7) 88.4 (57.8–129.6) 88.6 (72.3–114.4) 84.4 (57.8–127.2)
Time interval QoL T1 – T2 in mo
Mean (SD) 45.4 (28.9) 61.5 (20.1) 50.5 (21.1) 54.9 (26.6) 61.2 (22.7) 63.4 (20.2) 55.3 (21.6)
Median (range) 33.0 (24.0–107.0) 68.0 (25.0–97.0) 47.0 (25.0–82.9) 55.5 (17.0–108.0) 61.0 (24.0–107.0) 73.0 (29.0–88.0) 52.5 (24.0–87.9)
Time interval surgery – NPA T1 in d
Mean (SD) 8.7 (4.6) 9.2 (5.0) 9.8 (9.0) 7.4 (1.4) 10.3 (5.5) 10.4 (5.9) 7.0 (1.6)
Median (range) 7 (5–16) 7 (4–20) 7 (5–28) 8 (4–10) 8 (4–20) 11 (4–19) 7 (5–9)
Time interval surgery – QoL T1 in d
Mean (SD) 9.0 (4.7) 10.0 (9.6) 8.0 (5.1) 31.0 (37.5) 11.3 (11.1) 10.2 (5.8) 6.7 (.6)
Median (range) 7 (5–19) 7 (4–42) 7 (4–18) 7 (4–97) 7 (4–42) 10 (4–19) 7 (6–7)
Time interval NPA T1 – adjuvant therapy onset in d
Mean (SD) 24.3 (11.2) 31.7 (14.0) 23.2 (25.9) – 31.3 (15.8) 34.2 (16.4) 33.5 (13.6)
Median (range) 18 (6–34) 34 (5–51) 15 (5–73) – 40 (5–48) 40 (5–44) 33 (20–48)
Time interval QoL T1 – adjuvant therapy onset in d
Mean (SD) 33.8 (19.3) 32.3 (15.9) 22.1 (22.3) – 31.3 (17.7) 34.2 (15.8) 37.0 (15.7)
Median (range) 35 (6–49) 37 (6–57) 17.5 (5–73) – 40 (6–57) 40 (6–43) 44 (19–48)

SD standard deviation, mo months, d days, AED anti-epileptic drug, T1 baseline assessment, T2 follow-up assessment; NPA neuropsychological 
assessment, QoL Quality of life
a All patients received external focal RT
b Adjuvant: 20.7% temozolomide; concomitant: 37.9% temozolomide; 41.4% PCV or nitrosourea
c Adjuvant: 63.6% temozolomide, 36.4% PCV or nitrosourea
d Six (22.2%) patients received external focal RT alone and 21 (77.8%) were treated with radio-chemotherapy (adjuvant: 23.8% temozolomide; 
concomitant: 28.6% temozolomide; 47.6% PCV or nitrosourea)
e Extent of resection was defined according to magnetic resonance (MR) or computer tomography (CT) imaging within 21 days post-surgery. 
Post-surgical residual tumor volume was compared to tumor volume prior to surgery. Gross total resection was defined as no visible residual 
tumor, subtotal resection as 50–99% excision of tumor volume and partial resection as < 50% excision of tumor volume
* For n = 6 patients hippocampal dosage was between 10 and 50 Gy; for n = 1 patient estimation of hippocampal dosage was not possible; data of 
these patients were not included in one of predefined dichotomized groups
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Long‑term follow‑up of neurocognition and QoL 
in the whole cohort

Mean performance of all treatment groups at T1 and T2 indi-
cated no clinically relevant impairment (i.e., performance 
was within the range of 1.5 SD around normative mean; 
Fig. 2).

RChT and watchful-waiting patients showed numerical 
and sometimes even statistically significant improvements in 
all cognitive domains (Fig. 2 and Online Resource Table S2). 
For RT patients no statistically significant changes (yet 
numerical improvements or deteriorations) were seen in the 
long-term. ChT patients significantly improved in short-term 
memory (p = 0.046) and fluency (p = 0.001). Although ChT 
patients significantly deteriorated in one single domain 
(selective attention, p = 0.017), performance was still within 
normative range. ANOVAs revealed differences with respect 
to the extent of change in neurocognitive performance 
between treatment groups (interaction effects) in short-term 
memory, inhibition and figural memory, due to differences 
between watchful-waiting and RT patients (Online Resource 
Table S2). The number of individual patients in different 
treatment groups with a clinically relevant impairment of 
cognitive performance (≥ 1.5 SD below normative mean) is 
shown in Online Resource Table S3.

As AED may affect cognitive performance and their 
omission may substantially improve neurocognition, explor-
atory analyses were conducted to control for an effect of 
AED discontinuation between T1 and T2 on cognitive per-
formance. Seven patients received anticonvulsants at T1 but 
not at T2. Individual analyses showed that a confounding 
effect of these 7 on the extent of neurocognitive improve-
ment at T2 in the whole cohort is highly unlikely (Online 
Resource Table S4).

Patients who received RChT showed a statistically sig-
nificant improvement in the EORTC-QLQ C30 scale social 
functioning (p = 0.049) and Global Health Status (p = 0.025) 
in the long-term. Patients undergoing watchful-waiting pre-
sented an improvement in Global Health Status (p = 0.044). 
No further significant changes occurred concerning other 
C30 functional scales or Global Health Score in these treat-
ment groups. Concerning the other treatment groups (ChT 
and RT) no significant changes on QoL occurred (Online 
Resource Figure S5).

Association of hippocampal RT dose 
with neurocognition and QoL

Change in cognitive performance according to Dmean ipsi-
lateral hippocampus on an individual patient level is pre-
sented in Fig. 3a.

Repeated-measures ANOVAs revealed a significant 
interaction for inhibition (p = 0.020) only, i.e., a difference 
in long-term cognitive change between groups: patients 
with mean ipsilateral hippocampal dose < 10 Gy improved 
(z-score -1.09 at T1; z-score 0.14 at T2), whereas patients 
with mean ipsilateral hippocampal dose > 50 Gy deterio-
rated (z-score -0.10 at T1; z-score -0.73 at T2) (Fig. 3b 
and Online Resource Table S6). The number of individual 
patients with a clinically relevant impairment of cognitive 
performance ≥ 1.5 SD below normative mean at T1 and T2 
is shown in Online Resource Table S3. Group mean scores, 
irrespective of radiation dose on ipsilateral hippocampus, 
indicate no clinically relevant cognitive impairment (no 
z-score was ≥ 1.5 SD below normative mean) in any subtest 
at T2 (Fig. 3b).

Repeated-measures ANOVAs revealed no significant 
interaction effects between timepoint and group for C30 
functional scales and Global Health Status in the long-term, 
i.e., no significant association of hippocampal RT and QoL 
(Online Resource Fig. S7 and Table S8).

The changes in z-scores between T1 and T2 were not cor-
related with PTV, CTV, V30 Gy, Dmean or D1% in any cog-
nitive domain (all ps > 0.054; Table 2 and Online Resource 
Fig. S9).

As verbal memory is associated with left hippocam-
pal integrity and figural memory with right hippocampal 
function, we additionally separately calculated correlations 
between change in verbal/figural memory and irradiation of 
left/right hippocampus. Only for verbal memory, changes in 
z-score between T1 and T2 were correlated with irradiation 
of right hippocampus (Table 2).

Discussion

Long-term neurocognitive and psychosocial sequalae of 
multimodal tumor-directed treatment are increasingly 
important in glioma patients. It appears pivotal to prospec-
tively assess the genuine neurotoxicity of tumor-directed 
treatment.

In our series we did not find profound changes in neu-
rocognitive functioning or QoL on long-term in any of the 
treatment groups. Although cognitive performance in several 
patients was numerically below baseline, the mean neuro-
cognitive scores showed no clinically relevant impairment 
[40] in all treatment modalities. Furthermore, in the current 
patient sample no profound QoL decreases were present, 
instead in most cases QoL was increased in the follow-up. 
Hence, tentatively speaking tumor control might be associ-
ated with improved QoL in the patients irrespective of the 
therapy chosen. However, we cannot exclude the possibility 
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of subjectively meaningful impairments of individual 
patients. Nevertheless, in accordance with findings in the 
literature [6, 24–26, 41] patients generally retained their 
cognitive functioning after treatment. As expected, patients 
receiving a mean radiation dose of < 10 Gy to the ipsilat-
eral hippocampus showed stable or improved performance 
in all cognitive domains on group level, while patients 
with > 50 Gy numerically deteriorated in 4/8 domains. How-
ever, no profound impairment was present even in patients 
treated with > 50 Gy. The stable neurocognitive performance 
in the long-term might be due to a biphasic pattern of cog-
nitive functioning following RT, as shown in a pioneering 
study on cognitive decline early after RT with a slope of 
improvement 2 and 3 years after [42]. Furthermore, we did 
not find an association of neurocognition and unilateral hip-
pocampal RT dosage across all patients in this series. Only 
in right-hemispheric patients PTV and D1% of ipsilateral 
hippocampus were associated with verbal memory which is 
unexpected since theoretical models suggest an association 
of left-hemispheric RT with verbal memory. Although the 
sample size of patients whose radiation plans were available 
is small and may not be representative the present results 
suggest that RT to ipsilateral hippocampus in the popula-
tion analyzed here is only modestly neurotoxic. At least, a 
group of patients may tolerate therapy in long-term good 
health, preserved QoL [43] and without gross neurocogni-
tive impairment.

When descriptively evaluated a positive potential effect 
on neurocognition might be present in the watchful-waiting 
and RChT groups. Although these marginal effects must be 
interpreted with caution, one might assume that in terms 
of tumor control combination RChT is superior to either 
modality administered alone [44]. Therefore, a positive 
effect on neurocognition after combined therapy may reflect 
more efficient tumor control in the RChT group. In the 
watchful-waiting group we analyzed neurocognition during 
a long course without detectable tumor progression in this 
subgroup (median: 85.2 months; range 55.3–131.6). Hence, 
these results might possibly reflect the avoidance of potential 
neurotoxic treatment in a positive selection of patients with 
an exceptionally benign clinical course.

Our results must be interpreted with caution. NeuroCog 
FX is possibly not sensitive enough to detect subtle neuro-
cognitive impairment. Nevertheless, it reportedly was sensi-
tive in other brain tumor trials [45, 46] and was compared to 

established neuropsychological testing [34]. As patients with 
radiation plans were recruited predominantly in one center, 
we further cannot exclude the possibility of a confounding 
effect of study site. However, data collection of the whole 
cohort was nearly equally distributed across centers and did 
not reveal significant impairments due to multimodal tumor-
directed treatment. Of the 280 patients initially included, 
we prospectively followed only 71 patients (Fig. 1). Hence, 
we cannot exclude the possibility that we report on a posi-
tive selection. Patients who refuse to participate may be in 
a clinically worse (neurocognitive) condition. Neverthe-
less, only 9.3% of our sample refused to participate and this 
limitation might be inherent for prospective studies span-
ning multiple years. Additionally, due to limited number of 
patients with RT plans available, we were unable to perform 
subgroup analyses on different tumor histology, presurgi-
cal tumor volume, tumor locations/hemispheres, varying 
radiation volumes and exact RT doses to the hippocampus. 
Furthermore in contrast to other research [47], besides for-
mal cognitive test results the present study did not assess 
patients’ performance status over time, nor their professional 
and social activities such as resuming employment or hob-
bies, taking part in further education, maintaining social 
relationships, living independently or suffering from psy-
chiatric illness, all aspects that define the human condition 
beyond formal cognitive tests. Finally,  O6-methylguanine 
DNA methyltransferase (MGMT) promoter methylation was 
not uniformly assessed and isocitrate dehydrogenase (IDH) 
mutation status remains unknown for most patients, given 
the diagnostic classification based on WHO classification 
of 2000 [29] and 2007 [30]. This is attributable to the time 
period in which the study was conducted, and it is unlikely 
that having access to this information would provide further 
insight into the observations reported here, given that tumor 
genotype is not commonly associated with neurocognitive 
outcomes.

Besides these limitations the present study represents 
the first to serially follow a large number of adult glioma 
patients for up to 11 years by serial neuropsychological 
testing, QoL assessment and analyses of hippocampal RT 
dosage in association with neurocognition in a subgroup of 
patients with RT plans available. Although we might present 
the results of a positive selection of patients, gross impair-
ment of neurocognition or QoL appears unlikely in adult 
glioma patients undergoing unilateral hippocampal RT in 
this very cohort. Although understanding of mechanisms 
of how RT ± ChT may or may not result in neurocognitive 
dysfunction in the long-term remains a matter of further 
investigation, the present study provides a hint that at least 
some patients tolerate these therapies without gross neuro-
cognitive and QoL decline.

Fig. 2  Mean cognitive performance (in z-scores) and standard devia-
tions (error bars) in NeuroCog FX subtests at baseline and follow-up 
(median 7.1 years [range 4.6–11.0] after baseline), separated for treat-
ment groups. a Watchful-waiting (n = 24), b Chemotherapy (n = 11), 
c Radiotherapy (n = 7), d Combined radio-chemotherapy (n = 29). 
Statistically significant changes in cognitive performance between 
baseline and follow-up are indicated by asterisks (*p < .05, **p < .01, 
***p < .001)

◂
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Fig. 3  Cognitive performance in relation to hippocampal dosimetry. 
a Change in cognitive performance according to mean radiation dose 
on ipsilateral hippocampus on individual patient level. Z-scores > 0 
indicate an improvement of cognitive performance, z-scores < 0 
indicate a deterioration of cognitive performance. Individual data 
only refer to digital RT plans with exact hippocampal dosage in Gy 
available for patient groups with Dmean at ipsilateral Hippocam-
pus < 10  Gy vs. > 50  Gy b Change of cognitive functioning in the 

long-term on group level. Graphs indicate mean cognitive perfor-
mance (z-scores) with standard deviations represented by error bars 
in NeuroCog FX subtests at baseline (i.e., after surgery) and at fol-
low-up (median 7.1 years [range 4.6–11.0] after baseline), separated 
for patients with Dmean at ipsilateral Hippocampus < 10  Gy (n = 8) 
and patients with Dmean at ipsilateral Hippocampus > 50 Gy (n = 12). 
The asterisk indicates a statistically significant interaction effect of 
timepoint and group (*p < .05)
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Table 2  Pearson correlation 
coefficients of correlation 
between planning target volume, 
clinical target volume, V30 
Gy, mean dose in ipsilateral 
hippocampus (Dmean), near 
maximum dose in ipsilateral 
hippocampus  (D1%) and 
change in z-scores (T2–T1) in 
NeuroCog FX subtests

r correlation coefficient, N number of patients, Gy gray

Planning tar-
get volume

Clinical tar-
get volume

V30 Gy Dmean ipsilateral 
hippocampus

D1% ipsilat-
eral hip-
pocampus

Short-term memory
 Pearson’s r − .132 − .314 − .040 − .342 − .381
 p-value .519 .295 .879 .195 .146
 N 26 13 17 16 16

Working memory
 Pearson’s r − .060 − .236 .013 − .329 − .314
 p-value .776 .438 .962 .232 .255
 N 25 13 16 15 15

Simple reaction time
 Pearson’s r − .077 .353 .357 − .075 .020
 p-value .709 .236 .159 .784 .940
 N 26 13 17 16 16

Selective attention
 Pearson’s r − .158 − .075 − .101 − .168 − .140
 p-value .440 .807 .700 .534 .606
 N 26 13 17 16 16

Inhibition
 Pearson’s r − .199 .055 .035 − .491 − .455
 p-value .329 .858 .894 .054 .077
 N 26 13 17 16 16

Verbal memory
 Pearson’s r − .080 − .210 − .064 − .166 − .100
 p-value .698 .491 .808 .539 .712
 N 26 13 17 16 16

Left tumor lateralization
 Pearson’s r .028 − .210 .013 − .498 − ,407
 p-value .914 .587 .975 .209 .316
 N 17 9 9 8 8

Right tumor lateralization
 Pearson’s r − .694 − .430 − .678 − .701 − .772
 p-value .038* .570 .065 .053 .025*
 N 9 4 8 8 8

Figural memory
 Pearson’s r .117 − .281 − .005 .158 .107
 p-value .569 .352 .985 .558 .694
 N 26 13 17 16 16

Left tumor lateralization
 Pearson’s r .374 − .325 .089 .193 .297
 p-value .139 .394 .819 .647 .475
 N 17 9 9 8 8

Right tumor lateralization
 Pearson’s r − .614 − .470 − .516 − .252 − .414
 p-value .079 .530 .190 .548 .308
 N 9 4 8 8 8

Fluency
 Pearson’s r .106 .047 − .026 − .429 − .294
 p-value .607 .879 .920 .097 .269
 N 26 13 17 16 16
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