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chemotherapy, radiotherapy, and tumor-treating fields. 
However, the therapeutic outcomes and survival rates 
remain unsatisfactory [2]. Tumour heterogeneity and the 
tumour microenvironment (TME) play a critical role in 
the development and progression of glioma [3]. Tumour 
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Abstract
Background Glioma is the most malignant primary brain tumor with a poor survival time. The tumour microenvironment, 
especially glioma-associated microglia/macrophages (GAMs), plays an important role in the pathogenesis of glioma. Cur-
rently, microglia (CD11b+/CD45Low) and macrophages (CD11b+/CD45High) are distinguished as distinct cell types due to 
their different origins. Moreover, signal-transducing adaptor protein 1 (STAP1) plays a role in tumourigenesis and immune 
responses. However, to date, no studies have been reported on STAP1 in GAMs.
Methods The Cancer Genome Atlas and Chinese Glioma Genome Atlas databases were used to investigate the association 
between STAP1 mRNA levels and clinical parameters (grades, mutations in isocitrate dehydrogenase, and overall survival). 
RNA-sequencing, qRT-PCR, Western blotting, immunohistochemistry and immunofluorescence analyses were performed to 
detect the expression level of STAP1 and related proteins. BV-2 cells were used to construct a STAP1-overexpressing cell 
line. Phagocytosis of BV-2 cells was assessed by flow cytometry and fluorescence microscopy. C57BL/6 mice were used to 
establish orthotopic and subcutaneous glioma mouse models. Glioma growth was monitored by bioluminescence imaging.
Results STAP1 expression in glioma-associated microglia is positively correlated with the degree of malignancy and poor 
prognosis of glioma. Moreover, STAP1 may promote M2-like polarisation by increasing ARG1 expression and inhibiting 
microglial phagocytosis of microglia. Increased ARG1 may be associated with the IL-6/STAT3 pathway. Impaired phagocy-
tosis may be associated with decreased cofilin and filopodia.
Conclusion STAP1 is positively associated with the degree of glioma malignancy and may represent a potential novel thera-
peutic target for glioma.
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heterogeneity is the main reason for the failure of targeted 
therapies, and the TME reprograms tumour cells [4]. There-
fore, many researchers have focused on the TME, mainly 
including immune cells, cytokines, and the extracellular 
matrix [5]. Tumour-associated microglia and macrophages 
(TAMs), the most abundant immune cells in many cancers, 
are critical factors in tumour-associated immune responses 
[6]. Glioma-associated microglia/macrophages(GAMs), 
which comprise up to 30% of the tumour mass, facilitate 
immunosuppression and pathological angiogenesis in GBM 
[7]. Moreover, resident microglia, rather than peripheral 
macrophages, represent a major proportion of the early 
stage of glioma, whereas macrophages infiltrate in the late 
stage [8, 9]. In different microenvironments, microglia 
would be reprogramed towards different phenotypes, which 
can be simply divided into an M1-like phenotype (activa-
tion state) and an M2-like phenotype (alternative activation 
state) [10]. The M1-like phenotype promotes an inflamma-
tory response, whereas the M2-like phenotype inhibits the 
inflammatory response and promotes tumour progression 
[11]. Blocking certain targets and restoring normal functions 
of the microglia, to some extent, may reduce glioma expan-
sion and prolong overall survival (OS) [12]. Therefore, it is 
important to investigate the effects of GAMs and their role 
as therapeutic targets to develop new targeted drugs with 
better clinical efficacy.

Owing to the similar biological functions of microg-
lia and immature research techniques, only a few studies 
focused on differentiating macrophages and microglia. 
Macrophages originate from the bone marrow and express 
high levels of CD45, whereas microglia originate from 
the yolk sac and express low levels of CD45 [13]. A study 
based on single-cell RNA sequencing has revealed differ-
ences between microglia and macrophages in gene expres-
sion [14]. Multi-omics studies have shown that microglia 
are always present in normal brain tissues and glioma tis-
sues, whereas macrophages infiltrate gliomas only when the 
blood-brain barrier is disrupted [15–17]. Therefore, microg-
lia may play a more important role in the occurrence and 
progression of gliomas.

The signal-transducing adaptor protein (STAP) family, 
which includes STAP1 and STAP2, regulates various intra-
cellular signalling pathways involved in tumourigenesis and 
immune responses. Based on the Brain Cancer Immunol-
ogy Atlas (BCIA) at Huashan Hospital, Fudan University, 
we found that STAP1 is differentially expressed in differ-
ent grades of glioma. STAP1 was first named B cell antigen 
receptor downstream signalling 1 based on a yeast two-
hybrid screening [18]. STAP1 and STAP2 inhibit apoptosis 
of leukaemic stem cells in chronic myeloid leukaemia by 
binding to BCR-ABL fusion oncoprotein and signal trans-
ducer and activator of transcription 5a (STAT5a) [19, 20]. 

Moreover, STAP2 promotes breast cancer cell growth by 
interacting with STAT3, which is closely associated with 
tumours [21]. However, compared to STAP2, there have 
been few studies on STAP1, and to date, no studies on 
STAP1 in GAMs and glioma have been reported.

The aim of the present study was to investigate the rela-
tionship between STAP1 expression levels and the degree 
of glioma malignancy. We also investigated the molecular 
mechanisms that promote glioma progression.

Materials and methods

Patient samples

All samples were obtained continuously from the Depart-
ment of Neurosurgery, Huashan Hospital, Fudan Univer-
sity. The use of these samples was approved by the Medical 
Ethical Committee of the Huashan Hospital. GAMs used for 
transcriptome sequencing were obtained between 2016 and 
2019. Glioma samples used for immunohistochemistry and 
their GAMs used for Western blotting and real-time quanti-
tative reverse transcription PCR (qRT-PCR) were continu-
ously obtained between 2020 and 2021 (Ethics Number: 
KY2020-009) (Table. S1). The tissue microarray (TMA) 
section was obtained as described in our previous study 
[22].

GAMs isolation

As shown in the flowchart (Fig. S1a), glioma tissues were 
minced with scissors, digested with acctuase (SCR005, 
Sigma), and filtered into a single-cell suspension in a 40-µm 
cell strainer (352,340, Falcon). After removal of red blood 
cells using red blood cell lysis buffer (B541001, Sangon 
Biotech), cell suspension was diluted in magnetic affinity 
cell sorting (MACS) buffer (130-091-221, Miltenyi Biotec) 
and incubated with CD11b microbeads (130-093-634, Milt-
enyi Biotec) for 15 min at 4 ℃. The cell suspension was 
applied to the MS column (130-042-201, Miltenyi Biotec). 
CD11b-positive cells were then labelled by a washing col-
umn. After pressing the plunger firmly into the column, pos-
itive cells were eluted and collected [23]. Flow cytometry 
was used to verify the cell purity (Fig. S1 b, c).

Cell culture and transfection

GL261 glioma cells transfected with firefly lucifer-
ase expression vector, GL261-luc cells, were kindly 
donated by Sichuan University. BV-2 microglia cells were 
donated by Sun Yat-sen University. To stably express 
STAP1, BV-2 cells were transfected with lentivirus with 
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pHBLV-EF1-STAP1-Flag-CMV-puro vector (Hanheng 
Biotechnology), designated BV-2-STAP1 and cells trans-
fected with empty vectors were designated BV-2-CON 
(Fig. S5a, b). After 48 h of transfection, BV-2-STAP1 and 
BV-2-CON cells were treated with puromycin (5 µg/mL; 
Ant-pr, Invivogen) for 5 d and resistant cells are selected. 
Cells were grown in Dulbecco’s modified Eagle’s medium 
(SH30243.01, Hyclone) supplemented with 10% fetal calf 
serum (10,099,141 C, Gibco), penicillin, and streptomycin 
(15140-122, Gibco). Cells were cultured in a 37 ℃ incuba-
tor with a 5% CO2 atmosphere.

Orthotopic and subcutaneous glioma mice models

Adult female C57BL/6 mice (6 weeks old, 18–22 g) were 
purchased from the Jiesijie Experimental Animal Com-
pany (Shanghai, China). For orthotopic glioma models, 
mice were anaesthetised with 1.25% avertin (150µL/10 g; 
M2920, Nanjing AIBI Bio-Technology) and placed on a 
stereotaxic apparatus (Ruiwode Shenzhen). To develop the 
orthotopic glioma model, 5 × 104 GL261-luc cells mixed 
with 1.25 × 104 BV-2-CON cells or BV-2-STAP1 cells were 
injected into the right striatum. For subcutaneous glioma 
models, 1 × 106 GL261-luc cells mixed with 2.5 × 105 BV-
2-CON cells or BV-2-STAP1 cells were injected into the 
right dorsum subcutaneously of the mice. Animal experi-
ments were approved by the Department of Laboratory 
Animal Science of Fudan University (Ethics Number: 
201906007s).

Public data access

RNA-sequencing data, clinical information and molecu-
lar data were obtained from The Cancer Genome Atlas 
(TCGA) (https://tcga-data.nci.nih.gov/tcga/) and Chinese 
Glioma Genome Atlas (CGGA) (http://www.cgga.org.cn). 
The inclusion criteria and exclusion criteria are shown in 
Fig. S3.

Statistical analysis

Data were obtained from at least three independent experi-
ments. Data with a normal distribution were analyzed by 
T-test. Otherwise, Mann-Whitney U-test was used. Survival 
curves are plotted by the Kaplan-Meier method and com-
pared by log-rank tests. The significance levels are as fol-
lows: NS (no significance); * (P < 0.05); ** (P < 0.01); *** 
(P < 0 0.001); **** (P < 0 0.0001).

.

Results

STAP1 is a prognostic factor that is associated with 
the degree of malignancy of glioma

Based on isolated GAMs (Fig. S1), we performed transcrip-
tome sequencing of GAMs and found that STAP1 mRNA 
levels were higher in GAMs of grade 4 glioma than in grade 
2–3 glioma (Fig. S2). Furthermore, we used the TCGA and 
CGGA public datasets and then divided patients with glioma 
into a low-STAP1 group and a high-STAP1 group accord-
ing to the median mRNA levels of STAP1. The inclusion 
criteria and exclusion criteria were listed in Fig. S3. Kaplan-
Meier survival analysis showed that patients in low-STAP1 
group had a higher overall survival (OS) than those in the 
high-STAP1 group (Fig. S4a). Similarly, low expression 
level of STAP1 prolonged the OS of patients with grade 2–3 
glioma (Fig. S4b). Although difference was not statistically 
significant, the similar trend could also be seen in patients 
with grade 4 glioma (Fig. S4c). These fundings indicate that 
STAP1 may be associated with the degree and poor progno-
sis of malignancy of glioma.

To validate this result, we assessed the transcript levels of 
STAP1 in glioma samples from the TCGA and CGGA data-
sets. The inclusion and exclusion criteria were listed in Fig. 
S3. Compared to grade 2–3 gliomas, the mRNA levels of 
STAP1 were higher in grade 4 gliomas (Fig. 1a). Moreover, 
isocitrate dehydrogenase (IDH) wild type glioma, a subtype 
associated with poor outcomes, showed higher expression 
levels of STAP1 than IDH mutant glioma (Fig. 1b). We then 
collected 26 glioma tissue samples for immunohistochem-
istry (Table S1) and the protein level of STAP1 was signifi-
cantly higher in patients with grade 4 glioma than those with 
grade 2–3 glioma (Fig. 1c). These data indicate that STAP1 
may be associated with the degree of malignancy of glioma.

Given the important role of GAMs in the TME, we 
collected 30 GAMs for qRT-PCR and western blotting to 
determine the distribution of STAP1 in GAMs and microg-
lia (Table S1). qRT-PCR showed that STAP1 mRNA lev-
els were higher in grade 4 GAMs than in grade 2–3 GAMs 
(Fig. 1d). At the protein level, western blot analysis showed 
that STAP1 was also higher in grade 4 GAMs than in grade 
2–3 GAMs (Fig. 1e). Recent studies on GAMs have dis-
tinguished between microglia and macrophages separately 
[24]. Therefore, we investigated STAP1 protein expression 
profiles in microglia. Immunofluorescence staining showed 
a higher expression level of STAP1 in the microglia of grade 
4 gliomas than those of grade 2–3 gliomas (Fig. 1f). These 
data suggest that STAP1 expression in the microglia may 
play a key role in promoting the malignant progression of 
glioma.
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Fig. 1 STAP1 expression level is associated with the degree of malig-
nancy and prognosis of glioma. a mRNA levels of STAP1 in patients 
with different grades of glioma in TCGA datasets and CGGA datasets. 
U-test. b mRNA levels of STAP1 were higher in IDH wild type glio-
mas than in IDH mutant type gliomas in TCGA datasets and CGGA 
datasets. U-test. c Histochemistry score of STAP1 was higher in grade 
4 glioma than grade 2–3 glioma. Scale bars, 20 μm. T-test. d qRT-
PCR analysis found the relative mRNA levels of STAP1 in grade 4 

GAMs was higher than those in grade 2–3 GAMs. T-test. e Western 
blot analysis found the relative protein levels of STAP1 were higher 
in grade 4 GAMs than in grade 2–3 GAMs. T-test. f Immunofluores-
cence analysis found the protein expression level of STAP1 in grade 4 
glioma-associated microglia was higher than grade 2–3 glioma asso-
ciated microglia. Scale bars, 50 μm. U-test. *P < 0.05, **P < 0.01, 
***P < 0.001, ****P < 0.0001
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reverse the STAP1-induced increase in ARG1 expression 
after IL-6 stimulation (Fig. 3c, d, S9). These results indicate 
that STAP1 promotes ARG1 expression via the IL-6/STAT3 
pathway.

STAP1 promotes microglia M2-like polarization by 
suppressing phagocytosis

Decreased phagocytosis is a characteristic of M2-like polar-
isation [29]; therefore targeting phagocytic checkpoints and 
restoring macrophage function may play a critical role in 
cancer immunotherapy [30]. In the present study, cells were 
incubated with PE-latex beads for 3 h to detect the phago-
cytic function of BV2 cells. As shown in the flow cytometry 
plots, STAP1 suppressed phagocytic function of BV-2 cells 
(Fig. 4a, b), and similar results were obtained by direct visu-
alisation by fluorescence microscopy (Fig. 4c, d).

A previous study has shown that cofilin knockdown 
inhibits microglial phagocytosis [31]. Moreover, filamen-
tous actin (F-actin), a downstream protein of cofilin, can 
form filopodia, which is correlated with increased phagocy-
tosis [32]. Therefore, we determined the expression level of 
cofilin and found that it was decreased in BV2-STAP1 cells 
(Fig. 4e). In addition, compared to the other groups, BV-
2-STAP1 cells did not form filopodia obviously (Fig. 4f). 
These data indicate that STAP1 may reduce the expression 
level of cofilin and further impair the phagocytic function 
of BV-2 cells, which also indicates an M2-like phenotype.

STAP1 in the TME of gliomas is a poor prognostic 
factor in vivo

We have demonstrated that STAP1 promotes microglial 
M2-like polarisation and is associated with the degree of 
glioma malignancy. However, it remains unclear whether 
these results hold under in vivo conditions. Therefore, we 
mixed GL261 and BV-2-STAP1 cells and injected them 
into the murine right striatum to establish an orthotopic 
glioma model, in which the TME highly expresses STAP1 
(Fig. 5a). Immunofluorescence analysis showed that STAP1 
also induced microglial M2-like polarisation without exoge-
neous IL-6 stimulation, resulting in higher ARG1 expression 
levels in vivo (Fig. 5b, c). Glioma growth was monitored by 
bioluminescence imaging on given days (Fig. 5d); the high 
STAP1 group showed faster glioma growth, especially on 
days 14 and 17 (Fig. 5e). Similar results were observed in 
subcutaneous glioma mouse models. The volume of subcu-
taneous glioma was larger in the high-STAP1 group, espe-
cially on day 25 (Fig. S10). Furthermore, the Kaplan-Meier 
survival curves indicated that the OS of the control group 
was longer than that of the high-STAP1 group in orthotopic 
glioma models (Fig. 5f). These results indicate that, in vivo, 

STAP1 promotes microglia M2-like polariation by 
increasing ARG1 expression

To explore the biological functions of STAP1 in microg-
lia, we established BV-2-STAP1 cells to stably overexpress 
STAP1 and BV-2-CON (cells transfected with empty vec-
tors) as a control group (Fig. S5). The volcano plot of the 
transcriptome sequencing showed that the expression of the 
key marker of M2-like polarisation, Arg1, increased by 3.7-
fold in BV-2-STAP1 cells compared to that in BV-2-CON 
cells (Fig. 2a). Similarly, qRT-PCR showed that Arg1 
expression was significantly increased in BV-2-STAP1 cells 
compared to that in BV2-CON cells (Fig. 2b). However, 
Western blot analysis showed that ARG1 was slightly up-
regulated at the protein level, with no statistical significance 
(Fig. S6).

A previous study has shown that, interleukin-6 (IL-
6), a tumour-promoting cytokine in the TME, can induce 
microglia M2-like polarisation by increasing ARG1 expres-
sion [25]. Therefore, we determined ARG1 expression after 
stimulating the cells with IL-6 and found that, after expo-
sure to IL-6, both the transcriptional and translational levels 
of Arg1 were significantly increased in BV-2-STAP1 com-
pared to those in BV-2-WT and BV-2-CON (Fig. 2c, d). We 
further confirmed these results using immunofluorescence 
staining (Fig. 2e, f). These results suggest that, in response 
to IL-6 stimulation, STAP1 promotes ARG1 expression, 
which indicates an M2-like phenotype.

STAP1 promotes ARG1 expression via the IL-6/STAT3 
pathway

As a downstream target of IL-6, STAT3 is activated fol-
lowing IL-6 stimulation. To further confirm the pathway 
by which STAP1 promotes ARG1 expression, we measured 
STAT3 phosphorylation levels at different time points after 
IL-6 stimulation. STAP1 overexpression increased STAT3 
phosphorylation, and the STAT3 phosphorylation level was 
most pronounced 4 h after stimulation with IL-6 (Fig. 3a). To 
further confirm this finding, we exposed the cells to the IL-6 
inhibitor (LMT-28) and STAT3 inhibitor (Stattic) to reverse 
the effect of IL-6/STAT3 pathway. As expected, LMT-28 
inhibited STAT3 phosphorylation and reversed the STAP1-
induced high STAT3 phosphorylation levels (Fig. 3b). We 
also confirmed Stattic could inhibit STAT3 phosphorylation 
as previously reported [26] (Fig. S7).

IL-6 has long been known to promote ARG1 expression 
via the STAT3 pathway [25, 27]. In addition, phosphory-
lated STAT3 could bind with ARG1-promoter has been con-
firmed by CHIP-PCR [25, 28]. Same result was confirmed 
in this study (Fig. S8). Therefore, rescue experiment was 
conducted to validate whether LMT-28 or Stattic could 
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Discussion

To date, there have been few studies on STAP1. STAP1, a 
downstream adaptor molecule of the B cell antigen recep-
tor, may mediate plasma cell barrier reconstruction after 
intestinal transplantation [33]. However, no further study 

STAP1 in the glioma microenvironment may promotes 
microglial M2-like polarisation and result in poor outcomes.

Fig. 2 STAP1 Overexpression Promotes Microglia M2-like Polari-
sation by Increasing ARG1 Expression. a Volcano plot showing the 
changes of gene expression in BV-2-STAP1 cells compared to BV-
2-CON cells. Transcriptomic sequencing revealed that the relative 
mRNA level of Arg1 was higher in BV-2-STAP1 than BV-2-CON 
cells. T-test. b qRT-PCR analysis revealed that the relative mRNA 

level of Arg1 was higher in BV-2-STAP1 cells. T-test. c After IL-6 
(25ng/mL) stimulation, mRNA level of Arg1 was obviously increased 
in BV-2-STAP1 cells. T-test. d-f Western blot and immunofluorescence 
analyses showed that, after IL-6 stimulation, STAP1 protein level was 
obviously increased. Scale bars, 100 μm. T-test. *P < 0.05, **P < 0.01
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Fig. 3 STAP1 overexpression promotes ARG1 expression via the IL-6/
STAT3 pathway. a Phosphorylation levels of STAT3 at different time 
points (0 h, 2 h, 4 and 8 h) after stimulation with IL-6 (25ng/mL). 
Western blot analysis revealed higher phosphorylated STAT3 in BV-
2-STAP1, which was most pronounced at 4 h. T-test. b Western blot 

analysis revealed high level of phosphorylated STAT3 in BV-2-STAP1 
was decreased with LMT-28 (50 µM) treated. T-test. c, d Western 
blot analysis revealed high ARG1 protein level in BV-2-STAP1 was 
decreased with LMT-28 or Stattic (10 µM) treated. T-test. *P < 0.05, 
**P < 0.01
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Fig. 4 STAP1 overexpression promotes microglia M2-like polarisation 
by impairing the phagocytic function. a, b Flow cytometric analysis of 
the phagocytic function of BV2 cells. Less beads were engulfed in BV-
2-STAP1 compared to the other cells. T-test. c, d Fluorescence analysis 
of the phagocytic function of BV2 cells. Less beads were engulfed in 

BV-2-STAP1 compared to the other cells. Scale bars, 100 μm. T-test. e 
Decreased protein level of cofilin was detected by Western blot. T-test. 
f Formation of filopodia was decreased in BV-2-STAP1 as detected by 
immunofluorescence. Scale bars, 10 μm. T-test. *P < 0.05, **P < 0.01
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Fig. 5 STAP1 in the glioma microenvironment is associated with poor 
prognosis. a Establishment of murine orthotopic glioma models that 
express high levels of STAP1 protein in TME. b, c Microglia express 
higher levels of ARG1 in the high STAP1 group. Scale bars, 50 μm. 

T-test. d, e Total photon flux was increased in the high STAP1 group 
especially on day 14 and 17. T-test. f Kaplan-Meier curves revealed 
the high STAP1 group have a shorter OS with significant difference in 
orthotopic glioma models. *P < 0.05, **P < 0.01
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immunosuppressive role in GAMs [45]. These previous 
studies support the findings of the present study reveal-
ing that STAP1 promotes ARG1 expression, in response 
to IL-6 stimulation, indicating an M2-like phenotype, via 
the IL-6/STAT3 pathway. Although co-immunoprecipi-
tation of STAP1 did not find STAP1 could combine with 
STAT3 directly (Fig. S12). A previous study demonstrated 
STAP1 could combine with SH-2 domain of STAT5a and 
maintain its phosphorylation, suggesting that STAP1 may 
affect the STAT protein family because they share the same 
SH-2 domain [19]. However, as a kind of adaptor protein, 
STAP1 lack enzymatic activity and direct effector function 
[46]. Thus, we speculate that STAP1 may affect IL-6/STAT3 
pathway in an indirect manner and the further study will be 
conducted in the future.

Phagocytosis is another characteristic of microglia and 
macrophages [47]. M1-like polarisation promotes phagocy-
tosis, whereas M2-like polarisation impairs it. A previous 
study has shown that alternatively activated macrophages 
(M2-like phenotype) impaired the phagocytic function of 
S.aureus in chronic rhinosinusitis [48]. Moreover, mes-
enchymal stem/stromal cells promote phagocytosis and 
M1-like polarisation of macrophages [49]. Glioma cells 
express high levels of CD47, which binds signal regula-
tory protein alpha of microglia, to release a “do not eat me” 
signal and suppress phagocytosis of microglia [50]. There-
fore, targeting STAP1 to enhance phagocytosis and reverse 
the M2-like polarisation of microglia is a promising anti-
tumour strategy for glioma treatment.

In conclusion, we found that STAP1 expression in gli-
oma-associated microglia is positively correlated with the 
degree of malignancy and poor prognosis of glioma. More-
over, STAP1 may promote M2-like polarisation by increas-
ing ARG1 expression and inhibiting microglial phagocytosis 
of microglia. Mechanistically, STAP1 enhances the phos-
phorylation of STAT3 under IL-6 stimulation. This study 
suggests STAP1 as a potential therapeutic target for glioma 
in the future.

Supplementary Information The online version contains 
supplementary material available at https://doi.org/10.1007/s11060-
023-04390-8.
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has substantiated these findings. Mutations in STAP1 have 
been reported to be associated with autosomal dominant 
hypercholesterolaemia [34]. Moreover, a previous study 
has revealed that STAP1 promotes haematological tumour 
progression [19]. Similarly, our findings also indicated 
that STAP1 may promote glioma progression. A previous 
study has shown that STAP1 may be associated with the 
activation of proinflammatory microglia and that the mRNA 
expression level of STAP1 is increased in proinflammatory 
cell models, stimulated by lipopolysaccharides [35]. Nev-
ertheless, this study failed to prove that STAP1 regulate 
microglia toward an M1-like phenotype. Therefore, the 
evidence that STAP1 is a marker of the M1-like phenotype 
[36] is insufficient. The increased STAP1 expression in the 
previous study may be because STAP1 can attenuate proin-
flammatory responses to form negative feedback regulation. 
This notion is supported by our findings that STAP1 pro-
motes microglial M2-like polarisation.

TAMs are generally have an M2-like phenotype for their 
tumour-promoting function [37]. The immunosuppressive 
M2-like phenotype is believed to be positive for ARG1 
[38], a key regulator of arginine metabolism that transforms 
L-arginine to urea and L-ornithine, which are required for 
normal cell proliferation, collagen synthesis, tissue repair, 
and neuronal development [39]. ARG1 promotes tumour 
cell proliferation by enhancing the production of L-ornithine 
and putrescine. Moreover, ARG1 overexpression of impairs 
T-cell functions by downregulating the expression of the 
T-cell receptor (TCR) CD3zeta chain, a critical component 
of TCR signalling pathway [40]. In dendritic cells (DCs), 
phosphorylation of indoleamine 2,3-dioxygenase 1 (IDO1) 
and activation of the IDO downstream signalling pathway, 
which transforms DCs into an immunosuppressive pheno-
type, strictly depend on ARG1 and polyamines produced by 
ARG1 [41]. In the present study, we found STAP increased 
ARG1 expression level, which is a poor prognostic factor 
in tumours.

Generally, IL-4 can induce alternative macrophage acti-
vation by facilitating the phosphorylation of the transcrip-
tion factor STAT6 [42]. However, in our study, no obvious 
increase in phosphorylated STAT6 and ARG1 levels was 
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