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Abstract
Background The expression level of the programmed cell death ligand 1 (PD-L1) appears to be a predictor for response to 
immunotherapy using checkpoint inhibitors in patients with non-small cell lung cancer (NSCLC). As differences in terms 
of PD-L1 expression levels in the extracranial primary tumor and the brain metastases may occur, a reliable method for the 
non-invasive assessment of the intracranial PD-L1 expression is, therefore of clinical value. Here, we evaluated the potential 
of radiomics for a non-invasive prediction of PD-L1 expression in patients with brain metastases secondary to NSCLC.
Patients and methods Fifty-three  NSCLC patients with brain metastases from two academic neuro-oncological centers 
(group 1, n = 36 patients; group 2, n = 17 patients) underwent tumor resection with a subsequent immunohistochemical evalu-
ation of the PD-L1 expression. Brain metastases were manually segmented on preoperative T1-weighted contrast-enhanced 
MRI. Group 1 was used for model training and validation, group 2 for model testing. After image pre-processing and radiom-
ics feature extraction, a test-retest analysis was performed to identify robust features prior to feature selection. The radiom-
ics model was trained and validated using random stratified cross-validation. Finally, the best-performing radiomics model 
was applied to the test data. Diagnostic performance was evaluated using receiver operating characteristic (ROC) analyses.
Results An intracranial PD-L1 expression (i.e., staining of at least 1% or more of tumor cells) was present in 18 of 36 patients 
(50%) in group 1, and 7 of 17 patients (41%) in group 2. Univariate analysis identified the contrast-enhancing tumor volume 
as a significant predictor for PD-L1 expression (area under the ROC curve (AUC), 0.77). A random forest classifier using a 
four-parameter radiomics signature, including tumor volume, yielded an AUC of 0.83 ± 0.18 in the training data (group 1), 
and an AUC of 0.84 in the external test data (group 2).
Conclusion The developed radiomics classifiers allows for a non-invasive assessment of the intracranial PD-L1 expression 
in patients with brain metastases secondary to NSCLC with high accuracy.
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Introduction

Lung cancer accounts for up to 40–60% of brain metasta-
ses [1] and about 40–70% of patients with non-small cell 
lung cancer (NSCLC) develop brain metastases during the 
course of the disease [2, 3]. The advent of targeted thera-
pies and immunotherapy using immune checkpoint blockade 
yielded considerable intracranial response rates and signifi-
cantly improved the survival of patients [1]. An elevated 

level of the immune checkpoint protein programmed death 
ligand 1 (PD-L1) on tumor and immune cells may lead to 
increased immune evasion and tumor progression [4]. Since 
the expression level of PD-L1 is an important predictor 
for response to immunotherapy using checkpoint inhibi-
tors. Pembrolizumab, a humanized monoclonal antibody 
against programmed death 1 (PD-1), is suggested as first-
line therapy in NSCLC patients lacking a targetable driver 
gene mutation and a PD-L1 expression rate of 50% or more 
[1, 5, 6] because it prevents PD-1 from engaging PD-L1, 
which is an important predictor for response to immuno-
therapy using checkpoint inhibitors [7, 8]. In addition, an Extended author information available on the last page of the article
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improved response rate of immunotherapy with checkpoint 
inhibitors was shown for patients with PD-L1 levels rang-
ing from 1–49% [9, 10] and also for patients lacking any 
significant PD-L1 expression [11, 12]. Nevertheless, recent 
studies indicated heterogeneity in terms of PD-L1 expres-
sion levels in the extracranial NSCLC and brain metastases, 
resulting in a potentially inaccurate stratification of patients 
to checkpoint inhibitor immunotherapy [13, 14, 15, 16]. 
Therefore, a priori assessment of PD-L1 expression levels 
is recommended [1, 17].

Since a considerable number of NSCLC patients with 
brain metastases are predominantly treated by radiosurgery, 
tissue samples obtained from tumor resection or biopsy are 
generally not available. Thus, methods for a reliable non-
invasive prediction of the intracranial PD-L1 expression are 
of high clinical relevance.

Radiomics, a method from the field of artificial intelli-
gence, aims to extract additional information from routinely 
acquired imaging, usually not accessible by conventional 
image analysis [18, 19]. Radiomics has already demon-
strated its potential in a variety of neuro-oncology studies 
including the histomolecular characterization of lung cancer 
brain metastases [20, 21, 22, 23]. Here, we evaluated the 
potential of anatomical MRI radiomics for a non-invasive 
prediction of PD-L1 expression in patients with brain metas-
tases secondary to NSCLC.

Patients and methods

Ethics statement

The present study was conducted according to the guidelines 
of the Declaration of Helsinki, and the retrospective analy-
sis of data was approved by the Ethics Committees of the 
University Hospital Cologne, Germany (approval number 
19-1686) and the University Hospital Regensburg, Germany 
(approval number 19-1546-101).

Patients

From 2014–2020, we retrospectively identified patients with 
non-small cell lung cancer brain metastases from the neuro-
oncologic centers of the University Hospitals Cologne and 
Regensburg, Germany, who (i) had no previous local treat-
ment, (ii) underwent preoperative contrast-enhanced MRI, 
(iii) had intrametastatic PD-L1 expression based on the 
immunohistochemical result of tissue samples after surgi-
cal brain metastasis resection.

Clinical data were obtained from electronic databases 
and patient files. We recorded gender, age, systemic medical 

therapy, time from first diagnosis to the development of 
brain metastases, number, size and localization of brain 
metastases, clinical symptoms, preoperative karnofsky per-
formance status (KPS), histological subtype and the pres-
ence or absence of PD-L1 expression of the extracranial 
tumor and the brain metastases.

Immunohistochemical analysis of PD‑L1 expression

All samples sent for routine pathological analyses were 
evaluated for PD-L1 expression at the time of diagnosis. 
Formalin-fixed paraffin-embedded tissue samples were 
stained using primary antibody E1L3N11 (Cell Signaling 
Technology, Cambridge, UK) on an automated staining sys-
tem with a polymer-based detection kit and DAB-chromogen 
(Leica Bond Polymer Refine; Leica Biosystems, Wetzlar, 
Germany). PD-L1 expression on tumor cells was quantified 
applying the Cologne score as described previously [24]. In 
this study, the presence of PD-L1 expression was defined 
by staining of 1% or more of tumor cells (Cologne Score 
of at least 1).

MRI imaging

Standard preoperative structural MR imaging procedures 
at both University Hospitals included T1-weighted con-
trast-enhanced sequences for further analysis. Images were 
acquired during clinical routine with different scanners and 
imaging parameters.

Image preprocessing and definition of tumor mask

Image preprocessing was performed as described previ-
ously [25]. In brief, after brain extraction, inhomogeneities 
in the MR images were corrected with a bias field correction 
followed by standardization of the image intensity values. 
Reference values for standardization were calculated from 
the whole brain, with tumor volumes discarded. Manual 
segmentations of the contrast-enhancing tumor volume 
were performed by an experienced neurosurgeon using 
ITK-SNAP and subsequently checked independently by 
two raters.

Radiomics feature extraction

Radiomics feature extraction was performed using the open-
source package PyRadiomics (version 3.0.1) in Python [26]. 
Prior to feature extraction, images were resampled to 1  mm3 
voxel size and discretized to a bin width of 0.15. Three 
basic groups of radiomics features were extracted from 
the segmented contrast-enhancing tumor volume, includ-
ing 16 shape, 19 first order and 75 second order features 
derived from the underlying gray level matrices, i.e., gray 
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level co-occurrence matrix (GLCM), gray level dependence 
matrix (GLDM), gray level run length matrix (GLRLM), 
gray level size zone matrix (GLSZM), and neighboring gray 
tone difference matrix (NGTDM). Features were calculated 
on the original image and after applying wavelet and Lapla-
cian of Gaussian (LoG) filters, resulting in a total of 1316 
radiomics features.

Test‑retest analysis and feature selection

To avoid the usage of non-robust radiomics features, we fol-
lowed the conceptual framework proposed by Zwanenburg 
and colleagues [27], using the image perturbation method 
chain that included translation, noise and volume adaption 
to produce an augmented version of the original image. In 
a test-retest approach, radiomics features were calculated 
and compared for both images. Repeatability between fea-
tures was evaluated by the intraclass correlation coefficient 
(ICC). Features were considered repeatable if the lower and 
upper limits of the ICC 95% confidence interval were in 
the range of 0.91–1.00. The ICC analysis was implemented 
in Python (Pingouin, version 0.3.9) [28]. Following this 
analysis, feature correlation was assessed by the Pearson 
correlation coefficient. Features were considered uncorre-
lated if the Pearson correlation coefficient was below 0.9 
otherwise only a single representative feature was used for 
further analysis. In total, 100 repeatable and uncorrelated 
features were identified.

Model development

The development of different classification models was per-
formed on the training data only (group 1, University Hos-
pital Cologne). All radiomics features were standardized by 
subtracting the mean and dividing by the standard deviation 
of the training data.

The training data was divided into five randomly stratified 
training and validation sets, each using 70% of the data for 
training and 30% for validation. Each dataset maintained a 
similar distribution of patients across PD-L1 subtypes as 
the original training set. The best hyperparameters for the 
classifiers identified in each training set were evaluated in 
each corresponding validation set. Then, a feature selection 
was conducted by averaging the feature importance rankings 
across all five splits.

The process of random stratified cross-validation was 
repeated using only highly important features and contin-
ued until no further improvement in the average validation 
metric. Afterwards, the model with the best-performing fea-
tures and hyperparameters was retrained on the complete 
training data.

Model testing

Following model generation, the best-performing model was 
applied to the external test data (group 2, University Hos-
pital Regensburg). Importantly, the final model testing was 
performed blinded to the PD-L1 expression rate. Afterwards, 
the classification results were transferred to the University 
Hospital Regensburg and the diagnostic performance of the 
classifier was assessed fully independent of the researchers 
involved in model generation. The radiomics workflow is 
presented in Fig. 1.

The prediction of the PD-L1 expression rate in patients 
with NSCLC brain metastases was derived from three 
individual models. Model 1 was a binary classifier with a 
discrimination threshold evaluated by a receiver operating 
characteristic (ROC) curve based on the contrast-enhanc-
ing tumor volume. Model 2 was trained on radiomics fea-
tures only, while Model 3 was trained on a combination of 
the contrast-enhancing MRI tumor volume and radiomics 
features. Both models utilized a random forest classifier 
that showed the highest performance compared to logistic 

Fig. 1  Radiomics workflow
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regression and support vector machines. All processing steps 
were implemented in Python (sklearn, version 0.24.1).

Feature map extraction

To create feature maps, voxel-based feature extraction was 
performed using the default settings of PyRadiomics yield-
ing local feature expression for 3 × 3 × 3 kernels. Represent-
ative images were chosen based on the maximum tumor 
diameter in transversal direction.

Statistical analysis

Descriptive statistics are provided as mean and standard 
deviation or median and range. The diagnostic performance 
of each classifier was evaluated by ROC analysis and accu-
racy (ACC). To avoid experimental bias, the statistical anal-
ysis of the external test data (group 2, University Hospital 
Regensburg) was performed by an independent researcher 
not involved in model generation. Statistical differences in 
feature values between the presence and absence of PD-L1 
expression were assessed by the two-tailed Mann–Whitney-
U-test. P values of 0.05 or less were considered statistically 
significant. Statistical analyses were implemented in Python 
(Pingouin, version 0.3.9) [28].

Results

Patient and clinical characteristics

Fifty-three patients from two University Hospitals were ret-
rospectively identified, thereof 36 patients from the Depart-
ment of General Neurosurgery of the University Hospital 
of Cologne, Germany (mean age 62 ± 8 years; age range 
47–87 years; 22 females, 14 males). Presence or absence of 
PD-L1 expression was equally distributed (n = 18 patients 
with PD-L1 expression and n = 18 patients without PD-L1 
expression). Five patients (14%) showed a discrepancy of 
the PD-L1 expression between the extracranial NSCLC and 
the surgically treated brain metastasis.

Seventeen patients with surgically resected NSCLC brain 
metastases were identified at the Department for Neurosur-
gery of the University Hospital Regensburg, Germany (mean 
age 59 ± 12 years; age range 26–75 years; 6 females, 11 
males). Seven of 17 patients (41%) had intracranial PD-L1 
expression. Discordance of extra- and intracranial PD-L1 
expression was present in 3 patients (18%).

The contrast-enhancing tumor volume on T1-weighted 
MRI was identified as a prognostic clinical parameter 
for PD-L1 expression in the univariate analysis. Contrast 
enhancement of brain metastases without PD-L1 expres-
sion was significantly larger than in brain metastases with 

PD-L1 expression in both datasets (group 1: 31.5 ± 26.7 
mL vs. 17.8 ± 30.6 mL; p < 0.01; group 2: 20.2 ± 24.1 mL 
vs. 3.1 ± 3.2 mL; p < 0.01). No statistically significant dif-
ferences were found in the patient’s sex, age, and KPS (all 
p > 0.05). Patient characteristics are summarized in Table 1.

Classification results

We compared three models in their ability to predict the 
PD-L1 expression in patients with brain metastases second-
ary to NSCLC. A binary classifier based on the contrast-
enhancing tumor volume on MRI predicted patients below 
20.2 mL to have PD-L1 expression with an area under the 
ROC (AUC) of 0.77 in the training set, and an AUC of 0.64 
in the test set (Fig. 2).

In contrast, the random forest model based on a radiom-
ics signature of three most important features calculated on 
T1-weighted contrast-enhanced MRI showed a mean AUC 
of 0.86 ± 0.15 in the training set (Fig 2, Table 2) and an AUC 
of 0.76 in the test set (Fig 2, Table 2). The best diagnostic 
performance was achieved by combining the radiomics fea-
tures and the contrast-enhancing MRI tumor volume, with 
an AUC of 0.83 ± 0.18 (ACC of 85%) in the training set. 
This performance could be confirmed in the external test 
dataset with an AUC of 0.84 and an accuracy of 82% (Fig 2, 
Table 2). The hyperparameters of the best random forest 
model were as follows: number of trees, 500; function to 
measure the quality of a split, “gini”; maximum depth of 
the tree, 3; minimum number of samples required to split 
an internal node, 2; weights associated with classes, “bal-
anced”; all other parameters were set to default.

Feature importance

The most relevant features of the radiomics model (Fig. 3) 
comprised one histogram and two textural features and were 
used to define the radiomics signature. Besides the tumor 
volume, the three detected features showed significant or 
nearly significant differences in brain metastases with pre-
sent or absent PD-L1 expression in both the training and the 
independent test set (Fig. 3). Representative local feature 
expression differences between presence and absence of 
PD-L1 expression in brain metastases are shown in Fig. 4.

Discussion

The main finding of the present study suggest that a machine 
learning model based on radiomics features from routinely 
acquired structural MRI in combination with clinical 
parameters predicts the intracranial PD-L1 expression rate 
in NSCLC brain metastases with considerably high diag-
nostic accuracy. Of note, the diagnostic performance of the 
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developed model could be confirmed in a small but inde-
pendent test data set from another neurooncological center. 
Especially the external blinded validation, based on inde-
pendent data using different scanners and imaging param-
eters, indicates the validity and robustness of the developed 
radiomics model suggesting that the model provides reliable 
results regardless of the imaging setup which increases its 
potential for a clinical translation.

Another main finding of our study is that we observed 
three particulars important radiomics features besides the 
contrast-enhancing tumor volume correlating with the 

PD-L1 expression in brain metastases secondary to NSCLC. 
The parameter coarseness extracted from the NGTDM, is 
a measure of the average intensity difference between the 
center voxel and its neighborhood, is an indicator of the spa-
tial rate of change. A higher value indicates a lower spatial 
change rate and a locally more uniform texture. We observed 
higher coarseness in brain metastases expressing PD-L1, 
indicating a more uniform texture. In contrast, the param-
eter maximum correlation coefficient from the GLCM, as 
well as the histogram feature energy, showed higher values 
in brain metastases without PD-L1 expression reflecting a 

Table 1  Patient characteristics

Training set—Cologne (n = 36) Test set—Regensburg (n = 17)

Total Presence of 
PD-L1 expres-
sion

Absence of 
PD-L1 expres-
sion

Total Presence of 
PD-L1 expres-
sion

Absence 
of PD-L1 
expression

Number of patients 36 18 18 17 7 10
Sex (female/male) 22/14 7/11 15/3 6/11 3/4 3/7
Age in years at surgery (mean ± SD) 62 ± 8 62 ± 8 62 ± 8 59 ± 12 59 ± 12 59 ± 12
Number of patients with
singular 18 10 8 6 3 3
2–3 14 8 6 9 4 5
more than 3 metastases 4 0 4 2 0 2
Median preoperative Karnofsky performance 

score (range)
80
(40–100)

80
(40–100)

80
(40–100)

80
(40–100)

80
(70–100)

80
(40–90)

T1-CE volume in mL (mean ± sd) 24.6 ± 29.1 17.8 ± 30.6 31.5 ± 26.7 13.1 ± 20.1 3.1 ± 3.2 20.2 ± 24.1
Time in months to detection of brain metastases 

(mean ± SD)
8 ± 14 8 ± 14 8 ± 14 10.6 ± 9.9 10.6 ± 9.9 10.6 ± 9.9

Histological subtype
Adenocarcinoma 32 18 14 17 9 8
Squamous cell carcinoma 1 0 1 0 0 0
Not otherwise specified 3 0 3 0 0 0
Systemic therapy (multiple possible)
Chemotherapy 7 3 4 4 2 2
Immunotherapy 9 3 6 2 2 0
Targeted therapy 2 0 2 2 1 1

Fig. 2  Receiver operating characteristic curves of the developed 
classifiers in the training and the test dataset. Left: ROC classi-
fier using the contrast enhancing tumor volume. Center: Radiomics 
model based on a radiomics signature with features extracted from 

T1-weighted contrast-enhanced MRI. Right: Radiomics models based 
on a combination of the contrast enhancing tumor volume and radi-
omics features
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higher complexity of the texture. Accordingly, in our study, 
brain metastases without PD-L1 expression were larger and 
seemed to show a more complex texture and heterogenous 
pattern compared to brain metastases with PD-L1 expres-
sion (Fig. 4).

In patients with brain metastases secondary to NSCLC, 
recent findings indicate a discrepancy in extra- and intrac-
ranial PD-L1 expression and a heterogeneity in brain metas-
tases in terms of the PD-L1 expression itself [13, 15, 29]. 
Accordingly, 15% of our patients showed a discrepancy 

between the intra- and extracranial PD-L1 expression. 
Similarly, differences in the tumor microenvironment in 
the brain may also be a predictive marker for response to 
immunotherapy [30, 31, 32]. Initial results showed that local 
immune features in patients with primary NSCLC might be 
reflected by characteristic radiological findings [33]. Espe-
cially for patients eligible for radiosurgery or fractionated 
radiotherapy as first-line therapy for brain metastases, tissue 
samples are usually not available. Thus, reliable tools for a 
non-invasive prediction of the intracranial PD-L1 expression 

Table 2  Top - Results from random stratified cross validation of 
model 1 (contrast enhancing tumor volume) and model 2 (contrast 
enhancing tumor volume + radiomics features) using the data set from 

the University Hospital Cologne. Bottom - Test results of model 1 
and model 2 using the independent data set from the University Hos-
pital Regensburg. 

Acc: accuracy; AUC: area under the receiver operating characteristic curve; CE: contrast enhancing; CV: cross validation; SD: standard devia-
tion; Sens: sensitivity; Spec: specificity; T1c: contrast-enhanced T1-weighted MRI; T2: T2-weighted MRI

Training

Radiomics model Radiomics model + CE-volume

CV fold Acc [%] AUC Sens [%] Spec [%] Acc [%] AUC Sens [%] Spec [%]
1 100 1.00 100.0 100 91 0.97 100 83
2 73 0.67 67 80 64 0.53 67 60
3 82 0.77 67 100 91 0.90 83 100
4 100 1.00 100 100 91 0.93 100 80
5 91 0.88 100 80 91 0.80 100 80
Mean ± SD 89 ± 12 0.86 ± 0.15 87 ± 18 92 ± 11 85 ± 12 0.83 ± 0.18 90 ± 14 81 ± 14

Test
Radiomics Model Radiomics Model 

+ CE-Volume

Acc [%] AUC Sens [%] Spec [%] Acc [%] AUC Sens [%] Spec [%]
77 0.76 71 80 82 0.84 100 70

Fig. 3  Most important features of the developed radiomics signa-
ture showing significant differences in brain metastases with present 
or absent PD-L1 expression in the training set a  and the test set b. 
The developed radiomics signature included one histogram feature 

(i.e., energy) and two textural features (i.e., neighboring gray tone 
difference matrix coarseness (NGTDM coarseness) and gray level co-
occurrence matrix maximum correlation coefficient (GLCM MCC).
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and further development of radiomics signatures for char-
acterization of the local immune features and quantification 
of PD-L1 expressing tumor-infiltrating lymphocytes are of 
high clinical relevance and may be beneficial for personal-
ized precision treatment.

Radiomics models for the classification of subgroups 
matching the level of the intracranial PD-L1 expression 
(e.g., < 1%; 1–50%; >50%) may be of additional clinical 
value for the stratification of patients for immunotherapy 
using checkpoint inhibitors. Considering the small number 
of patients in our study, a further subgroup analysis would 
not provide meaningful results. Since the availability of tis-
sue samples obtained from brain metastases independent of 
the primary tumor type for immunohistochemistry and other 
neuropathological analyses is generally still low, our initial 
results should be validated in a higher number of patients in 
a prospective multicenter setting enabling further subgroup 
analyses. Another limitation of our study design is that only 
T1 contrast-enhanced MRI was available for all patients in 
the training and test data. As multimodal and multisequence 
radiomics has shown potential to improve classification 
results, the value of including additional MR sequences and 
metabolic imaging using PET should be further evaluated 
in the future.

The usefulness of radiomics analysis for the evaluation 
of the PD-L1 expression rate in patients with NSCLC was 
already shown for the primary extracranial tumor. Wang 
et al. used radiomics features from chest CT scans for the 
classification of PD-L1 expression and EGFR mutation in 
primary NSCLC. Their developed deep-learning model 
achieved a good diagnostic performance with an AUC of 
0.76 in the test data [34]. In other studies, a combination 
of clinical characteristics with CT radiomics features fur-
ther improved the predictive performance for the PD-L1 

expression (AUC of 0.85 and 0.84, respectively) [35]. In 
addition, metabolic imaging using 2-[18F]fluoro-2-deoxy-
d-glucose PET in combination with CT features was used 
for radiomics model building with promising results for the 
prediction of PD-L1 expression [36].

As radiomics analyses provide additional information 
not accessible by conventional image analysis, such features 
appear to be of clinical value to serve as potential biomark-
ers for an improved tumor characterization. To enable a pos-
sible translation in clinical practice and broader acceptance 
of radiomics models, a better understanding of the biological 
meaning of radiomics features is crucial. Therefore, further 
prospective studies correlating imaging features with spa-
tially correlated tissue samples and histomolecular work-up 
are needed.

Conclusion

Our results suggest that the newly developed radiomics 
classifier allows a non-invasive prediction of the PD-L1 
expression rate in patients with brain metastases second-
ary to NSCLC with considerably high diagnostic accuracy. 
Considering the discrepancies between the primary tumor 
and the brain metastases with respect to the PD-L1 expres-
sion rate, the model may be of clinical value for personal-
ized treatment decisions, i.e., the administration of check-
point inhibitor immunotherapy. Since our model is based 
on routinely acquired MR imaging data and the analysis 
lasts only a few minutes on a standard computer, it can be 
easily implemented in the clinical routine. Notwithstanding 
these promising results, further evaluation of the developed 
model, preferably in a higher number of patients, is needed.

Fig. 4  Representative feature expression maps showing distinct pat-
terns of radiomics features that differ between the contrast-enhanced 
T1-weighted MRI of a brain metastasis with PD-L1 expression (left) 
and without PD-L1 expression (right). Brain metastases with PD-L1 

expression showed a more homogenous texture and contrast enhance-
ment (left) whereas brain metastases with absent PD-L1 expression 
had a more heterogenous texture and contrast enhancement (right). 
MCC maximum correlation coefficient; ROI region-of-interest
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