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Abstract
Glioblastoma (GB) is one of the most aggressive and difficult-to-treat brain tumors, with a poor prognosis and limited treat-
ment options. In recent years, sonodynamic therapy (SDT) and magnetic resonance focused ultrasound (MRgFUS) have 
emerged as promising approaches for the treatment of GB. SDT uses ultrasound waves in combination with a sonosensitizer 
to selectively damage cancer cells, while MRgFUS delivers high-intensity ultrasound waves to precisely target tumor tis-
sue and disrupt the blood–brain barrier to enhance drug delivery. In this review, we explore the potential of SDT as a novel 
therapeutic strategy for GB. We discuss the principles of SDT, its mechanisms of action, and the preclinical and clinical 
studies that have investigated its use in Gliomas. We also highlight the challenges, the limitations, and the future perspectives 
of SDT. Overall, SDT and MRgFUS hold promise as novel and potentially complementary treatment modalities for GB. 
Further research is needed to optimize their parameters and determine their safety and efficacy in humans, but their potential 
for selective and targeted tumor destruction makes them an exciting area of investigation in the field of brain cancer therapy.
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Introduction

Gliomas represent about 25% of all primary brain tumors, 
encompassing malignant and not malignant subtypes [1]. 
IDH-wildtype glioblastoma (2022 WHO grade 4) exhibited 
the highest age-adjusted incidence rates and is considered 
the most aggressive variant, characterized by an extremely 
aggressive biological behavior resulting in a poor outcome 
[2]. Despite the enormous progress in biotechnology and 
medicine field, life expectancy of glioblastoma (GB) patients 
has improved only slightly over the last 30 years.

As a matter of fact, if untreated, GB’s median sur-
vival means is 3 months [3]. Interestingly, the standard 

management of GB has not changed since Roger Stupp 
published his work [4].

Recently, supramarginal resection or, where possible, 
excision of the hyperintense area in FLAIR sequences in 
MRI (so-called Flair-ectomy) has been shown to be associ-
ated with improvement in both overall survival (OS) and 
progression free survivor (PFS), although not always execut-
able, especially in lesions involving eloquent brain areas [5, 
6].

Other therapeutic strategies tested included anti-angio-
genic therapy and immunotherapy, though they did not show 
significant improvement in OS [7]. Some authors also advo-
cated the importance of palliative care to increase the quality 
of life in patients affected from this tremendous tumor [8, 9].

In the era of genomic and molecular genetics, in which 
it is possible to investigate all the potential metabolic land-
scape of the disease, new treatment strategy is going to 
rely more on biochemical and immunological treatments 
[10–12].

Various new treatments have been proposed over the 
years, regarding use of CAR T cells [13], molecular agents 
enhancing the effect of radiotherapy (RT) [14], up to the 
application of high and low intensity focus ultrasound [15].
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In this context, sonodynamic therapy (SDT) seems to 
become a promising treatment, offering the possibility 
of non-invasively eradicate solid tumor in a site-directed 
manner, employing compounds that become cytotoxic 
after being exposed to low intensity ultrasound [16]. The 
importance of this kind of treatment could gain an added 
value considering the possibility of deep lesion-targeting 
thanks to the significant depth that low-intensity ultra-
sound penetrates tissue, not damaging surround brain 
parenchyma and the chance of aiming directly to cancer 
stem cells (found to be vital cells for proliferation, dif-
ferentiation, and treatment resistance of the GB) [17–20]

Remarkably, the possibility of impairing the brain blood 
barrier (BBB) is another weapon in neurosurgical arma-
mentarium, making easier the access of chemical agents 
[20, 21].

Our review aims to provide a current view of the use 
of focused ultrasound, and particularly SDT, in the man-
agement of GB, starting with their mechanism of action 
in vitro and in animal models and ending with current or 

future clinical trials, exploring the limitations and poten-
tial of such treatment.

Materials & Methods

Search of the literature

Preferred Reporting Items for Systematic reviews and 
Meta-analyses guidelines (PRISMA) were followed to 
conduct and report this systematic literature review [22] 
(Fig. 1).

We performed a broad systematic literature search in 
different online scientific libraries (Pubmed/MEDLINE, 
Cochrane Library and ClinicalTrial.Gov) for all studies 
investigating the efficacy and feasibility of SDT in GB 
treatment. The protocol of this review has been prospec-
tively registered in Open Science Framework and it is pub-
licly available online at https://​doi.​org/​10.​17605/​OSF.​IO/​
FW4QS.

Fig. 1   PRISMA Flow Diagram
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We searched for studies published up to the 15th of 
September 2022 without backward limits, using the fol-
lowing MeSH terms “Glioblastoma” AND “Focused Ultra-
sound”, “Glioblastoma” AND “FUS”, “Glioblastoma” 
AND “MRgFUS”, “Glioblastoma” AND “Sonodynamic 
therapy“, “Glioblastoma” AND “High intensity Focused 
Ultrasound”, “Glioblastoma” AND “HIFU”, “Glioblas-
toma” AND “Sonodynamic” AND “therapy”, “Gliomas” 
AND “Sonodynamic therapy“, “Glioblastoma” AND 
“focused ultrasound” AND “sonosensitizer”, “Glioma” 
AND “focused ultrasound” AND “sonosensitizer”.

To avoid the potential omission of relevant studies we 
also manually screened reference lists of articles included 
and previous systematic reviews and meta-analyses regard-
ing the topic. Duplicate articles were eliminated using 
Microsoft Excel 16.37 (Redmond, WA, USA).

Study selection

The studies included in our paper were both studies in vitro 
and in vivo using animal models, and ongoing clinical trials. 
The proof-of-concept of our research was trying to under-
stand the effect of SDT on Glioma/GB cell line and then the 
feasibility, efficacy, and safety of its application firstly in 
animal model and then in the clinical practice, evaluating 
the ongoing clinical trials.

The research strategy initially relied on title and abstract 
analysis. The article’s full text was retrieved for further 
investigation if the title and abstract met the inclusion crite-
ria. The data collection process was conducted without using 
any automated tools. The research was conducted by two 
different authors separately (U.E.B and K.G) and eventu-
ally refined by a third author (L.B). No ethical approval was 
required for this study.

Eligibility criteria

The articles were selected according to the following inclu-
sion criteria:

•	 Full article in English.
•	 Studies in a preclinical phase (‘in vitro’ and ‘in vivo’ 

study).
•	 Case report, case series, retrospective study, prospective 

study and clinical trials.
•	 Patients age ≥ 18.
•	 Patients affected by glioblastoma treated with SDT.

Exclusion criteria:

•	 Articles not in English.

•	 Editorials, books, systematic reviews, and meta-analysis.
•	 Patients age < 18.
•	 Patients treated with focused ultrasound used to perform 

a disruption in brain-blood-barrier (BBB).
•	 Studies evaluating focused ultrasound therapy but not 

focusing on SDT.

Data extraction

According to the criteria above, all articles were identi-
fied by two reviewers (K.G. and U.E.B.). In case of a dis-
crepancy, a third author (L.B.) arbitrated until a consensus 
among the authors was reached.

The extracted data included the following: publication’s 
year, author, study design, patients’ number, patients’ mean 
age and gender, type of cells or animals, aim of the study 
and results of the study.

Results

Data selection

Our initial research carried out through Pubmed identified 
a total of 373 articles. We excluded 128 duplicated articles, 
then we performed a further screening based upon title and 
abstract reading, eliminating 157 articles.

Finally, after a full text reading and a detailed examina-
tion, 65 articles were excluded, because either they were 
focusing only on the effect of focused ultrasound on BBB 
disruption (39 articles) or they were reviewing previous sci-
entific works (16 articles) or lastly because they were not 
inherent with the purpose of this review, including finally 
23 studies in our systematic review, according to PRISMA 
flow diagram inclusion criteria.

The characteristics of included articles are the following 
ones: publication’s year, author, study design, type of cells 
and animal model (respectively for the ‘in vitro’ and for the 
‘in vivo’ studies), aim of the study and results of the study.

The articles were eventually divided in three tables, 
including studies ‘in vitro’ and studies ‘in vivo’ on animal 
models (Tables 1, 2).

Using “Sonodynamic Therapy“ AND “Glioblastoma” 
and “Focused Ultrasound” AND “Glioblastoma” as MeSH 
terms, another research on ClinicalTrial.Gov was performed, 
identifying a total of 11 trials. After exclusion criteria were 
applied, only four trials were included in the review.

The characteristics of included trials are the following 
ones: title of the trial, identifier, status, interventions charac-
teristics, aim of the study and locations of the trial (Table 3).
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Study characteristics

In vitro' and in vivo' studies

Tumor cell lines used in the listed studies were both murines 
and humans: rat C6 glioma cells were the most used ones, 
followed by human U87 GB cells and other cell lines such as 
human glioma cells U373, U105MG and U251MG.

‘In vivo’ studies used as animal models mainly murines, 
both mice and rats; only one study employed a porcine 
model.

Both ‘in vitro’ and ‘in vivo’ studies used different types of 
sonosensitizers, such as 5-Aminolevulinic acid hydrochlo-
ride (5-ALA), sinoporphyrin sodium (DVDMS), hemato-
porphyrin monomethyl ether (HMME), temozolomide 
(TMZ), photofrin, fluorescein (FL) and disodium tetraiodo 
tetrachloro fluorescein (Rose Bengal), as a way of increas-
ing the tumoral cells’ vulnerability to focused ultrasounds’ 
exposition.

‘In vitro’ studies focused their attention on the effect that 
ultrasound, with or without the use of a sonosensitizer, pro-
voked on tumoral cell lines, in term of apoptotic rate and 
intracellular level of reactive oxygen species (ROS) post-
exposition; moreover, the minimal intensity of ultrasound 
in order to produce an apoptotic effect on tumoral cell was 
also investigated [23]. Some studies also tried to quantify 
the anti-tumoral effect of ultrasound with or without the use 
of a sonosensitizer [26].

Moreover, Gonzales et. al. proved the increased efficacy 
of STD in combination with bleomycin, in its inhibition of 
tumoral growth.

‘In vivo’ studies used an animal model to verify the fea-
sibility of this technique: more than investigating just the 
anti-tumoral effect of STD, these studies prove the safety of 
SDT towards healthy brain tissue [33, 45].

Other information obtained from ‘in vivo’ studies regard 
the efficacy of focused ultrasound used in combination of a 
sonosensitizer in inducing tumor growth inhibition and the 
underlying physiopathological mechanism, described thanks 
to post-autoptic histology. STD therapy was able to induce 
an increased apoptotic rate, through an increased ROS pro-
duction, reduced production anti-apoptotic/pro-angiogenic 
factors and microvessel destruction [37].

Many of the ‘in vivo’ studies were coupled to in vitro 
experiments where the same method was tested, report-
ing analogies and differences in both results; some studies, 
instead, were performed directly ‘in vivo’, on animal mod-
els. The studies reviewed used similar sonication parameters 
regarding intensity of sonication performed (range from 0.2 
to 25 W/cm2). The frequency used in the studies ranged 
from 0.5 to 3 MHz. The maximum value of the duration was 
20 min. All the studies included, especially ‘in vivo’ stud-
ies, have demonstrated that SDT are effective in reducing Ta
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tumor volume, because of its high selectivity, low toxicity, 
and deep penetration, focusing on both the ability to reduce 
tumor growth and placing emphasis on the survival of tumor 
cells after the treatment (Tables 1, 2).

Clinical trials

We identified four clinical trials about SDT in GB treatment. 
Between them, it is listed a non-randomized, single-arm 
study whose purpose is to evaluate the safety and feasibility 
of SDT with 5-aminolevulinic acid in patients with newly 
diagnosed cerebral GBs using the ExAblate Model 4000 
Type-2 Neuro System.

Another clinical trial, non-randomized, tried to assess the 
safety, dose limiting toxicities, and preliminary efficacy of 
SDT using SONALA-001 and Exablate Type-2 device in 
subjects with recurrent or progressive GB.

Additionally, a phase 1 multi-center trial started to under-
stand the safety and tolerability of 5-aminolevulinic acid 
(5-ALA) combined with CV01 delivery of ultrasound for 
SDT in patients with recurrent high-grade glioma.

Finally, we report a phase 0 single-center open label study 
whose intention is to appraise the ascending energy doses 
of SDT utilizing the MRgFUS combined with intravenous 
5-ALA and its efficacy in patients with recurrent HGG.

Studies characteristics and aim were summarized in 
Table 3.

Discussion

Conventional therapeutic options in the treatment of solid 
brain tumors, and GBs in particular, are based on the 
assumption that these cancerous lesions have relatively 
homogeneous spatiotemporal characteristics. However, 
recent advances in the molecular, genetic, and epigenetic 
fields have shown how this does not reflect the facts at all, 
underscoring the inherent limitations of radiation and chem-
otherapy [46–48]. Moreover, the notion that GBs do not 
represent a focal pathological entity, but rather a pathology 
spread throughout the entire brain, makes clear the inherent 
limitations of surgery, although it still represents the thera-
peutic mainstay toward these tumors [49, 50].

Hence the need to develop new therapeutic strategies 
capable of eradicating the underlying pathology, possibly 
in the least invasive way, and increasing OS and PFS while 
safeguarding patients' quality of life and neurological status 
[51, 52].

In this context, the use of ultrasound for therapeutic pur-
poses (the so-called Theranostics) appears to offer interest-
ing potential and promising results and uses [53].

As a matter of fact, focused ultrasound can be employed 
either to destroy cancerous cells by heating or as an adjuvant 

therapy, in combination with chemotherapy or radiation 
therapy. The main points of values of FUS are the non-
invasiveness, incision-free, controllability via real-time 
MR guidance and the capacity to activate the immune sys-
tem [54]. The first non-invasive thermal ablation of a brain 
tumor in human was realized by Coluccia et al. [55] in their 
ongoing clinical phase I study in 2014, when they firstly 
employed Magnetic resonance-guided focused ultrasound 
surgery (MRgFUS) for safe thermal ablation of a centrally 
located recurrent GB. This is possible thanks to recent 
advances in magnetic resonance imaging, which allow safe 
and precise thermal ablation of neoplastic tissue. Moreover, 
the opportunity to create an MRI-derived temperature map-
ping of the targeted tissue allow a non-invasive monitoring 
of the ablating procedure. In more recent years, knowledge 
about the different mechanisms of action of ultrasound at 
various intensities and frequencies, used alone or in combi-
nation with other substances, has been expanded, exploring 
new potentials, and developing new therapeutic strategies, 
including precisely SDT [56–61].

Sonodynamic therapy

SDT has been developed as a promising tool in brain tumor 
treatment. SDT takes its cue from photodynamic therapy 
(PDT), in which a light-activated photosensitizer can cause 
the generation of ROS, which in turn would mediate a cyto-
toxic effect on neoplastic cells. However, the main limitation 
of PDT is the range of action, which is limited to superficial 
lesions due to the poor penetration of laser light into brain 
tissue [42, 62]. This obstacle is overcome using low-intensity 
ultrasound, which has a greater penetrative capacity [63].

As just mentioned, SDT involves the application of 
focused ultrasound with a substance that sensitizes cells 
to the destroying effects of sound, called sonosensitizer. It 
includes both ultrasonication, via non-invasive low-intensity 
ultrasound penetrating soft tissues and focus on a specific 
site, and sonosensitizers, which embrace non-toxic chemi-
cal agents such as 5-ALA, ATX-70, Hypocrellin, Rose Ben-
gal and many others [64–66]; some of these compounds 
are commonly used in glioma surgery to intraoperatively 
visualize the tumor and can be employed to induce cyto-
toxic effects to neoplastic cells when subjected to a specific 
acoustic field [31, 39, 40]. The advantage of this technique 
is to minimize adverse events and maximizing on-target 
responses. Furthermore, the use of chemical agents that are 
non-toxic in the absence of a specific stimulus distinguishes 
the definition of SDT from the broader meaning of FUS 
employed to enhance the effects of an already toxic com-
pound [67, 68].

Sheehan et colleagues [69] employed the SDT on two 
cellular lines, rat C6 and human U87 GB cells, and found 
that two innocuous agents, which are FUS and 5-ALA, 
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can lead to cell death by the transformation of 5-ALA to 
PPIX in malignant glioma cells, where it generates reactive 
oxygen species responsible of cellular apoptosis. ‘In vivo’ 
studies have proved that focused ultrasound in combination 
with the systemic administration of 5-ALA is effective in 
treating intracranial gliomas in rats, not demonstrated by 
the complete tumor resection but by the reduction in tumor 
size from the initial tumor volume [34, 35, 37, 39]. In this 
regard, Nonaka et al. [33] pinpointed the optimal focused 
ultrasound acoustic energy and duration for the ablation of 
brain tumor in rats, without damaging normal brain tissue; 
in their experience, this selective anti-tumor effect was pro-
duced by weaker focused ultrasound intensity at 25 W/cm2 
at 1 MHz for 5 min.

In 2019, Abdolhosseinzadeh et al. [70] investigated the 
effects of focused acoustic waves in a focal area through 
some accurate simulations. Results obtained in 2D, and 3D 
models showed that ultrasound waves could be used in the 
form of pulse waves with different time periods to provoke a 
focused thermal lesion on neoplastic tissue [71, 72]. Never-
theless, ‘in vivo’ it is necessary to overcome the blood brain 
barrier (BBB), which represents a real obstacle to sonosen-
sitizers. To this aim, low-intensity focused ultrasound can 
be combined to microbubbles, which proved to increase the 
permeability of the BBB, allowing the treatment of intrac-
ranial GB in mice. These results can suggest the use of SDT 
with sonosensitizers in human GB [73–75].

Sonosensitizers

As previously mentioned, the sonosensitizers used in SDT 
are harmless molecules that when subjected to an acoustic 
field mediate a cytotoxic effect. Many of these molecules 
are the same as those used in photodynamic therapy and are 
agents based on porphyrin or related molecules (protopor-
phyrin IX, hematoporphyrin, etc.). In fact, there is evidence 
that such molecules, when exposed to the action of ultra-
sound, result in the production of reactive oxygen species 
(ROS). In their ‘in vitro’ study, Shen et al. [32] employed 
as a sonosensitizer the sinoporphyrin sodium, purified from 
photofrin II, which showed great antitumor effect on human 
GB cell lines; particularly, this sonosensitizer can easily 
enter in cancer cells and accumulate into the mitochondria, 
where it gives raise to cytotoxity through the production of 
ROS.

However, although these agents are preferentially picked 
up by the tumor, they exhibit marked hydrophobicity, and 
their distribution appears to be ubiquitous [76]. Despite 
this apparently drawback, it has been postulated by Raspa-
gliesi and colleagues that three contemporary events must 
occur to determine a cytotoxic effect: the administration of 
ultrasound, the administration of a sonosensitizer, and the 

presence of a lesion where the latter can reach a significant 
concentration. This concept led to the non-invasive effect on 
SDT on normal brain tissue, since, even if the sonosensitizer 
has been collected in healthy tissue, it would be inconse-
quential [45].

Thus, it seems clear that the choice of sonosensitizer is 
also crucial. Ideally, the perfect sonosensitizer should exhibit 
high affinity for tumor cells and slow clearance from the 
neoplasm, while sparing healthy brain parenchyma [77–79].

Mechanism of action of sonodynamic therapy

The effects of thermal ablation on tumoral cells are still not 
completely clear. Is has been demonstrated that hyperther-
mia (HT) can enhance the 5-ALA-SDT induced cell apop-
tosis partly by activating caspases and by modulating Bcl-2 
family members. Moreover, HT is responsible of increasing 
ROS production and reducing metalloproteases (MMPs) 
induced by 5-ALA-SDT in human glioma cells [38, 80] 
(Figs. 2, 3).

HT can also regulate some molecular aspects of the 
immune response, such as Fas gene and its ligand FasL, 
and act as an immunomodulator in cancer therapy [81, 
82]. In more details, it seems that the increasing in local 
temperature may act as a natural trigger or danger signal to 
the immune system. Hyperthermia can therefore enhance 
the expression of FAS-ligand mRNA, which has a role in 
functional maturation of dendritic cells together with secre-
tion of proinflammatory cytokines, which in turn activate 
T lymphocytes and induce a polarization toward a Th1 
phenotype. Moreover, high temperature may promote the 
action of a particular set of protein, the HSPs, which may 
act in protecting cells from dangerous stress by regulating 
cell homeostasis [83] and may also affect the stability of 
cellular membranes by inducing structural changing that 
intervene in signaling events and cell migration in immune 
response [84, 85].

The link between ultrasound exposure, presence of sono-
sensitizer and generation of ROS appear clear, and there 
is a consensus regarding their involvement in mediating 
the cytotoxic effect on cancer cells [86–88]. Nonetheless, 
other mechanisms have been proposed to elucidate the SDT-
mediated cytotoxic effect. These include sonoluminescence, 
namely the emission of light from cavitation bubbles, which 
would appear to play a role both in the activation of certain 
sonosensitizers and in mediating antitumor effects [89, 90], 
and sonomechanical mechanisms that would mediate dam-
age by inducing changes at the level of cell membranes, such 
as a reduction in membrane fluidity and an increase in lipid 
peroxidation [91, 92]. Noteworthy are the various cytotoxic 
actions and implicated mechanisms that characterize the dif-
ferent sonosensitizers, although further studies on this are 
needed [93, 94].
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Interestingly, SDT can also be used in combination 
with other agents commonly used to treat GB to enhance 
their action, such as the temozolomide (TMZ). Resistance 
of high-grade glioma cells to TMZ is related to high level 
expression of NHE-1 protein, which enhance cells invasion 
to normal brain tissue. In their article, Chen et al. [27] dem-
onstrated that SDT can suppress NHE-1 expression, thus 
allowing the cytotoxic effect of TMZ in vitro.

Another target to take advantage of to enhance the anti-
tumor efficacy of TMZ is the p-glycoprotein, referred to as 
multidrug resistance receptor (MDR1), a transmembrane 
protein which act as an efflux pump and confer multidrug 
resistance in brain tumor. Consequently, high expression of 
MDR1 is present in resistant GB and the downregulation of 
MDR1 via Akt/NF-kB pathway can improve the antitumor 
effect of temozolomide in GB cells. Shono et al. [31] dem-
onstrated that the elevation of cellular PpIX using celecoxib 
is related to a down regulation of Akt/NF-kB/MDR1 path-
way, thus enhancing the anti-tumor efficacy of SDT. Some 
authors advocated that the SDT mediated by hematopor-
phyrin monomethyl ether (HMME) can induce apoptosis 
on C6 glioma cells in vitro and suggest that the mitochon-
drial signal pathway may play a pivotal role, because of the 
observed production of ROS, loss of MMP and Bcl-2 and 
protein expression in caspace-9, caspase-3 and Bax [25, 29].

Ultrasound parameters affecting SDT results

Although the exact mechanism of action of SDT is not yet 
fully understood, it is assumed that the biological effects of 
this technique are strongly correlated with the phenomenon 
of acoustic cavitation (stable vs. inertial cavitation) derived 
from the interaction between ultrasound and the propagation 
medium, ultimately resulting in apoptosis of the affected 
cells. In addition to the mechanical effect of ultrasound, 
the action of SDT is also based on the sonochemical effect 
related to the formation of various species of free radicals 
and the different decomposition kinetics of sonosensitizers 
[63, 95, 96]. These various mechanisms of action in turn 
are closely related to the ultrasound parameters used and 
to other factors associated to the experimental setting (see 
Table 4).

For instance, it has been demonstrated that most sonosen-
sitizers respond to US frequency ranging from 0.2 to 3 MHz 
[42] and that a decrease in frequency is correlated to an 
increase in ultrasound toxicity [25]. However recent works 
have pointed out apoptotic cell ratio was primarily affected 
by sonosensitizer concentration and then by other variables 
such as US frequency, irradiation time and intensity [97, 98]. 
US intensity usually ranges from 0.5 to 10W/cm2 and can be 
applied in a continuous or pulsatile mode [96]. Regarding 
this parameter, many studies have noted an intensity-depend-
ent reduction in cell viability of various cancer types [99, 

ROS ROS

ROS

Fig. 2   Sonodynamic therapy could be effective in glioma cells-death though transformation of 5-ALA (green dots) to PPIX (red dots). The pro-
cess results in the production of reactive oxygen species (ROS), leading to cells death
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100]. Nejad et al. [101] have shown in a model of human 
oral squamous cell line HSC-2 how irradiating cells with 
3.5 MHz US at 20, 32, 55, and 73 W/cm2 was associated 
to a cell survival rate of 97, 81, 62 and 40%, respectively.

Irradiation time and duty cycle also influenced SDT 
results, with greater citotoxity at greater irradiation time and 
duty cycle [102]. Besides US parameters, many other fac-
tors may influence SDT response ‘in vitro’ studies. Irradia-
tion uniformity and intensity distribution, for example, are 
related to the distance between cells and US apparatus, as 
well as the characteristics of the coupling media and culture 
medium also seem to profoundly impact the outcomes of 
SDT. Other two crucial factors that affect the results of SDT 
are the type of irradiated sample and the sonosensitizer con-
centration, the latter closely related to the apoptotic effect, 
as shown by Zhang et al. [103–105].

Ongoing clinical trials

Evidence regarding the potential application of SDT in high-
grade gliomas are mostly taken from pre-clinical ‘in vitro’ 
and ‘in vivo’ studies. Currently, there are four ongoing trials 
concerning the role of SDT in high grade gliomas registered 
on “Clinicaltrial.gov”, of which three are recruiting.

The aim of the first trial is to evaluate the safety and tol-
erability of 5-ALA combined with CV01 delivery of ultra-
sound in patients affected by recurrent high-grade gliomas. 
(ClinicalTrials.gov Identifier: NCT05362409). This ongoing 
phase 1 trial is recruiting 33 patients, to which 5-ALA will 
be administered as sonosensitizer prior to CVo1-delivered 
ultrasound, which will deliver non-ablative, low-intensity 

ultrasound; 5-ALA will be then re-administered every 
4 weeks prior to CV01. The primary outcome is to evalu-
ate the incidence of adverse events and to determine the 
Maximum Tolerable Duration in the first 12 months. Sec-
ondary outcome is represented by the assessment of Overall 

Fig. 3   Representation of 3 
mechanisms of sonodynamic 
therapy: A 5 ALA SDT could 
reduce level of Bcl2, thus 
activating apoptosis via caspase 
9 pathway. B 5 ALA SDT 
increase levels of ROS, thus 
inducing cell death. C heating 
itself could increase level of 
Heat shock protein 70, thus 
inducing immune response 
through structural changing in 
cell membrane

BCL- 2

CELL
DEATH

Caspase 9

ROS

ROSROS

ROS

5 ALA -
SDT

5 ALA -
SDT

Hea�ng

Hsp70

Immune 
response

Table 4   ‘In vitro’ factors and variables potentially influencing SDT 
outcomes

Factors Variables

Ultrasound Parameters • Frequency
• Intensity
• Irradiation time and duty cycle

Spatial Configuration • Cell-to-transducer distance
• Ultrasound beam/culture vessel ratio

Coupling Media • Volume
• Composition
• Viscosity
• T°
• Acoustic Propagation

Culture Vessels • Geometry
• Absorbers
• Material Type

Culture Medium • Composition
• Volume
• Acoustic Properties

Irradiation sample type • Adhering cells
• Suspension cells
• Cell motion
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Response Rate, Duration of Response, OS and PFS in the 
first 12 months.

The second recruiting trial (ClinicalTrials.gov Identifier: 
NCT05370508) aims to evaluate the safety and preliminary 
efficacy of SDT by using SONALA-001 as sonosensitizer 
and Exablate 4000 Type-2 MR-guided focused ultrasound 
as device in people affected by recurrent or progressive GB. 
The primary outcomes are represented by the evaluation 
of the safety of SDT in the first 12 months, the maximum 
tolerable duration in the first 29 days, the determination of 
recommended phase 2 schedule and the assessment of pro-
gression free survival in the first 6 months.

The third prospective, non-randomized, single-arm, 
not yet recruiting study (ClinicalTrials.gov Identifier: 
NCT04845919) aims to evaluate the safety and feasibility 
of SDT by using 5-ALA and Exablate 4000 Type-2 MRg-
FUS in patients newly diagnosed with GB. Patients screened 
will undergo SDT treatment, will perform a strict neuro-
radiological follow-up after the procedure (minimum 2 MRI) 
and will undergo tumor resection 14–21 days after SDT. The 
primary outcome is represented by the early identification of 
hemorrhage, oedema, or other damages in the first 10 days; 
secondary outcomes are represented by the evaluation of the 
rate of neurological deficits and the radiological response to 
treatment in the first 10 days after the procedure.

The last nRCT (identifier: NCT 04559685) is a Phase 0 
single center, first in human, open-label study of ascend-
ing energy doses of SDT utilizing the MRgFUS combined 
with intravenous ALA to assess safety and efficacy in up 
to 30 participants with recurrent HGG. The primary out-
comes are to assess the biological changes associated with 
the SDT, analyzing the percentage of Cleaved Caspase-3, 
MIB-1 level and GammaH2Ax of the surgical specimen. 
Secondary outcomes include the evaluation of radiographic 
evidence of tumor physiological imaging changes and the 
assessment of performance, safety and tolerability of the 
MRgFUS and SDT.

Conclusions: challenges, limits, and future 
directions

This review explored the current literature regarding the role 
of SDT in glioma treatment, and particularly in GB, con-
sidering the evidence from ‘in vitro’ and ‘in vivo’ studies, 
and the ongoing clinical trials on its clinical human applica-
tion. We also focused on the possible mechanisms of action 
underlying SDT and the role of different sonosensitizers. 
The study of the latter seems to enshrine the marriage of 
SDT and nanomedicine, paving the way for future research 
and new possibilities.

Based on the studies that have been discussed on this 
paper and the current ongoing trials, SDT could be a 

valuable option in patients with GB, due to the opportunity 
to induce toxicity only in a precise localization while mini-
mizing harm in normal areas. Indeed, thanks to the devel-
opment of increasingly sophisticated and accurate software 
is possible to target tumor volume precisely. In addition, 
nanotechnology-based drug delivery systems have been 
developed to enhance the selective accumulation of the 
sonosensitizer in tumor cells. Actually, SDTseems to be 
more effective in treating GB than low-grade glioma (LGG). 
This is because GB cells are more susceptible to the effects 
of SDT due to their higher rate of metabolism and greater 
degree of angiogenesis compared to LGG cells [38, 106, 
107]. However, more research is needed to confirm these 
findings and determine the optimal parameters for SDT in 
the treatment of different types of brain tumors. Further-
more, the effectiveness of SDT may also depend on other 
factors such as tumor size, location, genetic characteristics, 
and vascular pattern. For instance, brain tumors located near 
the skull base may be more amenable to SDT. The size of 
the tumor can also affect the effectiveness of the procedure. 
Larger tumors may be more difficult to treat with SDT, as the 
ultrasound waves may not be able to penetrate deep enough 
into the tumor to effectively kill the cancer cells.

Limitation on the clinical application rely on the fact 
that SDT represents a novel technique that needs to be fur-
ther investigated. First, the role of sonosensitizers should 
be deepened: many sensitizers are employed in both PDT 
and SDT and residuals can accumulate in areas other than 
tumors, thus leading to hypersensitivity to light. Strategies 
to overcome this limitation are therefore needed, such as the 
opportunity to employ microbubbles to carry sonosensitizer 
or to employ new sensitizers specific for the SDT. Moreover, 
attention should be payed to the phenomenon of cavitation, 
which enables the sonochemical reactions to occur. Initiation 
of cavitation can be difficult, because of the high pressure 
required. Authors suggested some strategies to facilitate the 
cavitation, such as the application of standing waves rather 
than progressive or the dual frequency sonication [96].

Other major concerns are that US procedures require 
long treatment sessions, therefore confining its application 
to small volumes, and the lack of in-vivo studies; in this 
regard efforts have been made and several ongoing clinical 
and pilot trials aim to better define the real clinical employ-
ment of SDT in patients affected by GB [108].

Challenges are also represented by the correct applica-
tion into the neurooncological field of devices currently 
employed for other neurological disorders; an example is 
given by the essential tremor which benefit from the MRg-
FUS performed with the ExAblate Neuro 4000. It is there-
fore necessary to adapt and modify some characteristic 
such as the frequencies employed, which are lower in the 
setting of a tumor compared to the treatment of essential 
tremor (220 KHz vs 650 KHz) [109].At present, SDT is not 
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indicated as a first-line treatment for GB or any other type 
of brain cancer.

However, several scenarios are still open: SDT may have 
potential as an adjunctive treatment to enhance the effective-
ness of standard therapies, such as chemotherapy via chemo-
sensitization effect, or as a salvage option for patients who 
have failed other treatments, alone or in combination to other 
techniques to enhance its effect (e.g. hyperthermotherapy). 
In some cases, it may also be considered as a primary treat-
ment strategy for patients who are not suitable candidates 
for surgery or who have recurrent tumors that are difficult to 
treat with other modalities.

Further studies are certainly needed to better define the 
role of sonodynamic therapy in these patients and, particu-
larly, the eligibility criteria for this treatment, such as the 
stage of disease (i.e., primary, or recurrent GB) and the 
opportunity to employ SDT as a first line treatment or as 
a palliative strategy, as well as patient condition, such as 
KPS or current comorbidities. Finally, the opportunity to 
use this technique in brain tumors other than gliomas should 
be deepened: over the last years new indications have been 
considered as potential targets of the ultrasound therapy, 
such as brain metastasis (from breast cancer or melanoma), 
neuroblastoma, neurofibromatosis, astrocytomas and pontine 
gliomas, and both preclinical and clinical trials are ongoing 
[108].
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