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Abstract
Introduction HGF/c-MET signaling is a significant driver of glioblastoma (GBM) growth and disease progression. Unfor-
tunately, c-MET targeted therapies have been found to be largely ineffective suggesting additional redundant mechanisms 
of c-MET activation.
Methods Utilizing RNA-sequencing (RNA-seq) and ribosome profiling analyses of circular RNAs, circ-HGF (hsa_
circ_0080914) was identified as markedly upregulated in primary GBM and found to potentially encode an HGF protein 
variant (C-HGF) 119 amino acids in length. This candidate HGF variant was characterized and evaluated for its ability to 
mediate c-MET activation and regulate PDX GBM cell growth, motility and invasive potential in vitro and tumor burden in 
intracranial xenografts in mice.
Results An internal ribosome entry site (IRES) was identified within the circ-HGF RNA which mediated translation of the 
cross-junctional ORF encoding C-HGF and was observed to be highly expressed in GBM relative to normal brain tissue. 
C-HGF was also found to be secreted from GBM cells and concentrated cell culture supernatants or recombinant C-HGF 
activated known signaling cascades downstream of c-MET. C-HGF was shown to interact directly with the c-MET recep-
tor resulting in its autophosphorylation and activation in PDX GBM lines. Knockdown of C-HGF resulted in suppression 
of c-MET signaling and marked inhibition of cell growth, motility and invasiveness, whereas overexpression of C-HGF 
displayed the opposite effects. Additionally, modulation of C-HGF expression regulated tumor growth in intracranial xeno-
grafted PDX GBM models.
Conclusions These results reveal an alternative mechanism of c-MET activation via a circular RNA encoded HGF protein 
variant which is relevant in GBM biology. Targeting C-HGF may offer a promising approach for GBM clinical management.
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Introduction

Glioblastoma is a highly lethal CNS cancer with a median 
survival of only 12–17 month [1, 2]. Unfortunately, notwith-
standing a relatively progressive understanding of the muta-
tional landscape of the disease, genomic insights have failed 
to yield improvements in overall patient survival [3, 4]. Sev-
eral factors contribute to therapeutic failure, notably poor 
blood–brain barrier penetration of current targeted inhibi-
tors and intratumoral heterogeneity with high plasticity limit 
effectiveness of current therapies [5, 6]. Recently, amplified 
extrachromosomal DNA containing oncogenes have also 
been demonstrated to play a role in targeted therapy resist-
ance [7]. c-MET amplification occurs in 47% of primary and 
44% of secondary GBM [8]. Moreover, activating mutations 
in c-MET are significant events during the progression of 
low-grade gliomas to secondary GBM [9]. An analysis of 
TCGA data demonstrated that ~ 30% of GBM overexpress 
the ligand for c-MET, hepatocyte growth factor (HGF), 
and c-MET, suggesting autocrine activation may occur in 
patients [10]. Efforts to target c-MET as monotherapy or 
in combination with other therapies have been unsuccess-
ful in GBM therapy [11]. While poor BBB penetration and 
intratumoral heterogeneity may provide some explanation 
as to the lack of effectiveness of c-MET targeted therapies, 
other unidentified modulators may also participate in GBM 
growth and therapy resistance.

Circular RNAs (circRNAs) are covalently closed RNA 
transcripts which are generally expressed at reduced levels 
relative to their linear cognate mRNAs. Several circRNAs 
have been shown to be translated and the protein products 
demonstrated to have important roles in cancer [12]. In fact, 
most circRNA translation products to date have effects on 
tumor cell progression or harbor tumor suppressor activities, 

consequently these peptides/short proteins represent promis-
ing drug targets for tumor treatment as well as potential bio-
markers [13]. Perhaps most striking is the observation that 
the majority of the circRNA translation products described 
play important roles in glioma tumorigenesis and malignant 
progression indicating the relevance of this novel class of 
RNAs in this neoplasm [13, 14]. CircRNAs have also been 
found to be exceptionally stable as compared to their linear 
counterparts [12, 15].

Here we report the discovery of a circRNA-templated 
HGF protein variant derived from IRES-mediated transla-
tion of the circ-HGF RNA. This protein variant (C-HGF) is 
secreted from GBM cells and stimulates c-MET activity and 
its downstream signaling effectors. Modulation of C-HGF 
expression in PDX cell line models demonstrated regula-
tion of cell growth, motility and invasive characteristics 
and markedly affected in vitro tumor growth in xenograft 
experiments.

Materials and methods

Details regarding cell cultures, reagents, in vitro and  in 
vivo protocols and data analyses are described in Online 
Resource 1 Supplemental Materials and Methods.

Results

Circular‑HGF is a potential coding RNA 
in glioblastoma

To identify differentially expressed circRNAs in GBM we 
compared primary and normal tissue from 4-paired sets of 
samples by RNA-seq analyses (Fig. 1A). A total of 127,360 
circRNAs were identified, of which 19,294 had been previ-
ously annotated in circBase [16]. A majority of circRNAs 
were less then 1000 nucleotides in length and of the 1510 
confirmed differentially expressed circular RNAs, 1296 
were significantly downregulated, while 214 were mark-
edly upregulated (by a factor of 2.5 fold relative to normal 
brain). We also performed ribosome profiling on these 
4-paired GBM versus normal brain samples to identify cir-
cRNAs which were translatable (Fig. 1B). We concentrated 
our efforts on identifying head-to-tail junction reads which 
were specific for translating circRNAs. We excluded any 
reads containing mismatches and confined the minimum 
read-junction overlap to eight nucleotides on either side of 
the junction site. Potential translating circRNAs were cho-
sen when the unique junction reads were found in at least 
three of the samples and more then eight total junction reads 
were observed. We identified a total of 780 high confidence 
circRNAs, of which 763 were annotated in circBase. We 

Fig. 1  Circular-HGF is a candidate coding circRNA. a Approach 
undertaken for circRNA-sequencing (RNA-seq) and ribosome profil-
ing (Ribo-seq) experiments. 4-paired GBM and normal brain (NB) 
were subjected to circ-RNA seq and Ribo-seq. Shown is a Venn 
diagram of coding circRNAs and differentially expressed circular 
RNAs (DEcRNAs) overlapping in GBM and NB. b Differentially 
expressed circular RNAs from Ribo-seq experiments. Candidate 
upregulated circRNAs are labeled orange. c Relative expression lev-
els as determined via qRT-PCR of protein encoding circRNAs versus 
NB. n = 14 independent samples and results are shown as box plots 
containing the 1st and 3rd quartiles. Whiskers indicate minima and 
maxima. Wilcoxon test, **, p = 0.005, ***, p < 0.001. d Illustration of 
the annotated genomic region of the human HGF gene and derived 
circ-HGF RNA [36, 37]. Sanger sequencing was conducted to con-
firm head-to-tail splicing from GBM cells. e Schematic of convergent 
and divergent primer design to detect linear and circular HGF RNAs. 
f Circ-HGF RNA is resistant to RNase-R treatment from GBM6 or 
HK296 PDX GBM cells. **, p < 0.05, n = 3. g Northern blot analysis 
was performed to determine the RNA the relative levels of linear and 
circular RNAs for HGF in GBM6 cells. h The relative expression of 
circ-HGF was assessed by qRT-PCR in nuclear and cytoplasmic frac-
tions from GBM6 cells. n = 3

◂
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then compared these coding circRNAs to the differentially 
expressed circRNAs and identified 25 circRNAs which were 
differentially translated between GBM and normal brain 
samples (Online Resource 2 Suppl. Fig. S1). Seven poten-
tial candidate circRNAs, which were upregulated in GBM, 
were validated by qRT-PCR (Fig. 1C). As GBM samples 
may include other cell types which may introduce expres-
sion biases, we also confirmed these findings in a panel of 
GBM PDX lines (GBM6, GBM9, GBM43, HK296; lines 
expressed c-MET) (Online Resource 3 Suppl. Fig. S2) and 
we identified circ-HGF (hsa_circ_0080914) as one of the 
most differentially upregulated circRNAs which we selected 
for further characterization as HGF/c-MET activation is a 
known driver of GBM [11, 17]. As annotated in circBase 
using the human reference genome GRCh37/hg19, circ-
HGF is generated by the backsplicing of exons 6–11 of 
HGF located on chromosome 7 in GBM (Fig. 1D). Conver-
gent and divergent primers were designed to detect linear 
mRNA and circular RNA (Fig. 1E) and subsequently utilized 
to monitor these species in RNase-R treated RNA samples 
from GBM6 or HK296 cells. As shown in Fig. 1F, following 
treatment with RNase-R, linear HGF mRNA displayed a sig-
nificant reduction in abundance whereas, circ-HGF was rela-
tively resistant consistent with its closed circular structure 
and increased stability as compared to its cognate mRNA. 
Northern blotting was also performed to determine the rela-
tive RNA levels of HGF mRNA and circ-HGF (Fig. 1G). 
Subsequent qRT-PCR analysis of nuclear and cytoplasmic 
cell fractions displayed elevated cytoplasmic localization 
of circ-HGF RNA (Fig. 1H) consistent with its potential 
translation.

Circ‑HGF encodes a 119 amino acid protein which 
is translated by an IRES and is overexpressed in GBM

Circ-HGF RNA junction reads in ribosome profiling experi-
ments were detected in all four primary GBM tumor samples 
tested and not found in any of the normal brain samples 
(Fig. 2A, top). We identified a potential IRES within the 
circ-HGF RNA 211 nucleotides upstream of the cross-junc-
tion within the RNA circle (Fig. 2A, bottom). This IRES was 
validated in reporter assays utilizing a dual luciferase-split 
nanoluciferase construct in which nanoluciferase expression 
and activity is dependent on an IRES driving nanoluciferase 
translation [18] (Fig. 2B). A firefly luciferase internal con-
trol gene also measures cap-dependent initiation, thus both 
forms of initiation can be ascertained from the same reporter 
mRNA. Several deletion mutants of the native IRES were 
constructed and as shown in Fig. 2C, the full-length IRES 
(47 nucleotides) was required for activity. A cross-junc-
tion open reading frame driven from this IRES potentially 
encoded a 119-amino acid protein (C-HGF) (see Fig. 2A, 
Online Resource 4 Suppl. Fig. S3). As C-HGF possesses a 

unique 49 amino acid terminal sequence formed by a ribo-
somal frameshift occurring at the circular RNA junction, we 
generated a specific antibody to this unique sequence and the 
antibody detected a specific protein at 13.6 kDa in GBM6 
and HK296 cells (Fig. 2D). We confirmed the expression of 
C-HGF via mass spectroscopy analysis of immunoprecipi-
tated protein using this antibody (Fig. 2E & Online Resource 
5 Suppl. Table 1). C-HGF expression was also detectable in 
primary GBM via immunofluorescence microscopy analysis 
(Fig. 2F). Moreover, elevated C-HGF was expressed in pri-
mary GBM samples relative to normal brain as determined 
via immunoblotting utilizing the C-terminal 49 amino acid-
specific antibody (Fig. 2G). Taken together these data dem-
onstrate that circ-HGF encodes a 119 amino acid protein 
whose translation is mediated via an IRES and is highly 
expressed in GBM.

C‑HGF is a secretory protein, activates STAT3, AKT 
and ERK signaling and regulates GBM properties

To assess whether C-HGF displayed secretory properties 
and may stimulate c-Met signaling, we initially generated 
a GFP-tagged version of C-HGF and expressed this pro-
tein in HK296 cells. As shown in Fig. 3A, C-HGF-GFP was 
soluble and was secreted from cells. To examine whether 
supernatants from cells in which we modulated C-HGF 
expression would secrete the active protein, we generated 
stable knockdowns of C-HGF via transduction of shRNAs 
targeting C-HGF in GBM6 and HK296 cells. Knockdown 
of C-HGF was specific in that expression of endogenous 
native HGF in these cells was unaffected (Online Resource 
6 Suppl. Fig. S4). HK296 cells were stably transduced with 
either a construct expressing circ-HGF or stably transduced 
with a lentiviral expression vector into which the ORF for 
C-HGF had been inserted. Supernatants from these cells 
were concentrated and immunoblotted for C-HGF (Fig. 3B). 
These cells were also subsequently analyzed by immunob-
lot for the activities of known c-MET effectors (Fig. 3C). 
Cells in which C-HGF had been knocked down displayed 
markedly reduced P-STAT3, P-S437-AKT, P-T308-AKT, and 
P-ERK levels, while in cells overexpressing C-HGF these 
substrates were significantly elevated. c-MET phosphoryla-
tion was also inhibited in the C-HGF knockdown lines and 
displayed increased levels in the overexpressing lines. These 
data demonstrated that C-HGF was capable of activating 
the STAT3, AKT and MAPK pathways, known effectors 
of c-MET signaling. To examine the effects of modulat-
ing C-HGF expression on growth, migratory capacity and 
invasiveness we assessed these properties in the PDX GBM 
lines. As shown in Fig. 3D-F, GBM6 C-HGF knockdown 
lines exhibited inhibition of growth, migration and invasive 
characteristics as compared to cells transduced with a non-
targeting control shRNA. In contrast, HK296 cells stably 
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overexpressing either the circ-HGF RNA or C-HGF pro-
tein displayed marked increases in growth, migration and 
invasion relative to control cells (Fig. 3G-I). These results 
demonstrate that C-HGF is secreted from cells regulating 
STAT3, AKT and ERK signaling, as well as GBM cell 
properties.

C‑HGF/c‑MET signaling controls GBM cell growth, 
migration and invasion

To determine whether C-HGF had direct effects on c-MET 
activity in GBM cells we generated recombinant His-tagged 
C-HGF and found that GBM6 or HK296 GBM cells when 
treated with this recombinant protein (rC-HGF) resulted in 
significant activation of c-MET as monitored by P-Y1234-
MET and P-Y1235-MET autophosphorylation (Fig.  4A). 
Additionally, rC-HGF exposure resulted in phosphoryla-
tion of c-MET  Y1349 and  Y1356 residues that are essential 
for the recruitment of adaptor proteins involved in c-MET 
signaling [19–21]. Moreover, we determined whether 
C-HGF could directly interact with c-MET in HK296 cells 
and in co-immunoprecipitation experiments, antibodies spe-
cific for C-HGF effectively co-immunoprecipitated c-MET 
(Fig. 4B). Co-immunoprecipitating in the reciprocal fash-
ion with c-MET antibodies, C-HGF was also detectable in 
c-MET immunoprecipitates. We subsequently examined the 
effects of rC-HGF on GBM6 and HK296 cell proliferation, 
migration and invasive capacity. As shown in Fig. 4C, treat-
ment with rC-HGF increased the proliferation of both PDX 
lines in a dose-dependent fashion. Similarly, increases in 

cell mobility and invasiveness were observed in these lines 
upon exposure to rC-HGF (Fig. 4D-E). We then determined 
whether the C-HGF specific antibody targeting the c-termi-
nal unique sequence would neutralize the stimulatory effects 
of rC-HGF exposure in GBM6 and HK296 cells. As shown 
in Figs. 4F-H, co-addition of C-HGF antibody to rC-HGF 
treated cultures markedly reduced proliferation, migration 
and invasiveness of these PDX GBM lines compared to con-
trols. We also evaluated the responses of GBM6 and HK296 
cells in which c-MET expression was stably knocked down 
via shRNAs to rC-HGF. As shown in Supplementary Fig-
ure S5A (Online Resource 7), treatment of cells with rC-
HGF induced c-MET signaling in control non-targeting scr 
shRNA expressing cells and was blunted or undetectable 
in c-MET targeting shRNA expressing cells. While c-MET 
knockdown significantly reduced GBM6 and HK296 growth, 
motility and invasiveness relative to scr shRNA expressing 
control cells, c-MET knockdown GBM6 and HK296 cells 
displayed no significant increases in growth, motility or 
invasive character in response to rC-HGF as compared to the 
marked induction observed in control scr shRNA expressing 
cells (Supplementary Figure S5B-D). Taken together these 
data suggest that C-HGF's effects are mediated via c-MET.

Effects of C‑HGF modulation on in vivo GBM growth

To examine the effects of C-HGF on in vivo tumor growth 
we utilized the C-HGF knockdown GBM6 and the C-HGF 
overexpressor HK296 PDX lines we previously gener-
ated (see Fig. 3). Intracranial xenografts of luciferase-
tagged GBM6 cells expressing a non-targeting shRNA 
and two independent C-HGF targeting shRNA lines 
(C-HGF shRNA #1 & 2) were established and effects 
on in  vivo  growth determined. As shown in Fig.  5A, 
knockdown of C-HGF markedly inhibited the growth and 
delayed the onset of tumor progression as compared to 
xenografts expressing the non-targeting control shRNA 
(scr shRNA tumor onset = day 22; shRNAs #1 & #2 tumor 
onset = day 32). Mice bearing the C-HGF targeting shRNA 
xenografts also displayed a significant increase in overall 
survival relative to the control non-targeting shRNA group 
(Fig. 5B). Harvested tumors were sectioned and immu-
nohistochemically stained for Ki-67, phospho-c-MET 
and C-HGF expression (Fig. 5C). As shown in Fig. 5d, 
knockdown of C-HGF significantly reduced the percentage 
of positive cells expressing Ki-67, phospho-c-MET and 
C-HGF as compared with control non-targeting shRNA 
expressing GBM6 cells. In mice harboring intracranial 
xenografts of HK296 cells stably overexpressing circ-
HGF RNA or the C-HGF ORF, these xenografts displayed 
increased tumor growth and shortened the time of tumor 
onset (empty vector & pLKO.1, tumor onset = 21 days; 
circ-HGF, tumor onset = day 8; pLKO.1-C-HGF, tumor 

Fig. 3  C-HGF is secreted and activates STAT3, AKT and MEK 
signaling pathways regulating growth, migration and invasive char-
acteristics. a Live-cell fluorescence images of HK296 cells trans-
duced with C-HGF-GFP. The arrows indicate secretory C-HGF. 
Scale bar, 20  µm. b Immunoblot of concentrated culture superna-
tant from GBM6 and HK296 transduced with the indicated con-
structs (GBM6; nontargeting scramble shRNA sequence, scr shRNA; 
C-HGF targeting shRNA #1 & #2; HK296; empty RNA expression 
vector (pLKO.1), RNA expression vector overexpressing circ-HGF, 
pLJM1 control, pLJM1-C-HGF expression construct). Coomas-
sie blue staining of total protein was used as a lane loading control. 
c Expression of the indicated c-MET effectors in GBM6 or HK296 
cells stably transduced with the indicated constructs. d Effects of 
C-HGF knockdown on GBM6 cell growth. ATP-release assays (Pro-
mega CellTiter-Glo®) were used to quantify growth and displayed in 
relative light units of the indicated cell lines. Mean + S.D. are shown; 
n = 3; *, p < 0.05. e C-HGF knockdown inhibits GBM6 migration in 
C-HGF knockdown cells. The indicated modified lines were placed in 
Boyden chambers and allowed to migrate towards BSA (white bars), 
vitronectin (light yellow bars), or fibronectin (dark yellow bars). 
Mean + S.D., *, p < 0.05, n = 3. f Invasive potential of the indicated 
GBM6 knockdown lines migrating through Matrigel. Data represent 
mean + S.D. of three independent experiments. Effects of circ-HGF 
RNA or C-HGF ORF overexpression in stably transduced HK296 
cells on proliferation (g), migration (h) and invasiveness (i). As in d-
f, respectively
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onset = day 10) relative to controls (Fig.  5E). Overall 
survival of mice with tumors overexpressing circ-HGF 
RNA or the C-HGF ORF was also significantly reduced 
as compared to controls (Fig. 5F). Ki-67, phospho-c-MET 
and C-HGF expression was markedly higher in circ-HGF 
and C-HGF ORF tumors than controls consistent with the 
increase in observed growth (Fig. 5G, H).

Discussion

Significant attention has been recently focused on the 
translation of circRNAs to determine their possible clini-
cal relevance in GBM [14]. Recent reports have described 
novel protein isoforms translated from circRNAs via IRES-
mediated protein synthesis which are distinct from their 
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linear mRNA counterparts [22–25]. In the current study 
we identified a 119 aa variant of HGF whose translation is 
mediated by an IRES element within the circ-HGF RNA. 
The translation product, C-HGF, is secreted by GBM cells 
and is capable of stimulating c-MET signal cascade activ-
ity. Our data also suggests that C-HGF directly binds to 
c-MET resulting in its direct autophosphorylation and acti-
vation, as well as stimulating c-MET downstream effectors. 
shRNA-mediated blockade of C-HGF expression in PDX 
GBM lines resulted in marked inhibition of GBM growth, 
migration and invasive properties, while overexpression of 
C-HGF conferred the opposite effects in vitro. Recombinant 
C-HGF stimulated growth and associated GBM properties 
which were inhibited by co-treatment with a neutralizing 
antibody targeting a unique 49 residue c-terminal sequence 
within C-HGF. Knockdown or overexpression of C-HGF 
expression in PDX lines recapitulated the effects on GBM 
cell properties observed in vitro, in terms of tumor burden 
and overall survival in xenograft studies in mice.

Our data are consistent with a model in which dysregula-
tion of C-HGF expression in GBM results in activation of 
c-MET signaling promoting downstream signaling driving 
growth, motility and invasiveness in GBM in a paracrine/
autocrine fashion. This is supported by our observations that 
C-HGF is secreted from GBM cells and can co-immuno-
precipitate with c-MET leading to autophosphorylation of 
the receptor (see Figs. 2A&B, 3B). Moreover, the observa-
tion that c-MET phospho-Y1349 and phospho-Y1356 levels 

are enhanced following rC-HGF stimulation suggest that the 
docking platform which serves to recruit additional c-MET 
interactors such as Gab1, STAT3 and Ras is functional (see 
Fig. 4A) [19–21]. STAT3 is known to associate with phos-
phorylated c-MET and undergo phosphorylation itself, which 
was also seen in our experiments following overexpression or 
exposure to rC-HGF (Figs. 3C& 4A) [26–28]. These data sug-
gest that C-HGF may be competent to activate c-MET in an 
analogous manner as its natural ligand. It will be of interest to 
determine whether c-MET endocytosis and recycling are dif-
ferentially affected via engagement by the two ligands, as this 
mechanism tightly regulates sustained c-MET activation [29].

The IRES-trans-acting factor (ITAF) requirements for 
IRES-mediated translation of circRNAs have not been 
explored in depth. The expression of mRNAs bearing IRES 
elements is controlled by multiple mechanisms and enhanced 
when canonical cap-dependent initiation is compromised 
[30]. Additionally, it has been demonstrated that an IRES 
within a particular mRNA can respond differently to various 
conditions which inhibit cap-dependent translation depend-
ing on particular ITAF-IRES interactions [30–32]. While 
it seems likely that ITAFs, which regulate IRES activity in 
mRNAs, will have similar affects on IRES activity found 
in circRNAs, this remains to be confirmed. Future studies 
aimed at identifying and characterizing the relevant ITAFs 
mediating circRNA IRES-dependent initiation are warranted.

Translation on circRNAs can also be initiated as a result 
of  m6A modification within DRACH motifs [33]. These 
sequences containing  m6A-induced ribosome engagement 
sites (MIRESs) have been reported to function as IRESs to 
drive circRNA translation [34, 35].  m6A modifications can 
be enriched in circRNAs and a single  m6A may be sufficient 
to initiate translation. Furthermore, circRNA translation has 
been reported to be stimulated by overexpression of the major 
methyltransferase complex METTL3/4 and inhibited by the 
 m6A demethylase FTO [35]. It has also been suggested that 
some degree of cooperation may exist between IRES and 
 m6A-dependent circRNA translation initiation [12]. We iden-
tified several consensus DRACH motifs within circ-HGF, 
however we were unable to detect  m6A methylation of circ-
HGF at these motifs via anti-m6A antibody immunoprecipita-
tion and subsequent qRT-PCR analysis in GBM PDX lines 
(not shown). This suggests that C-HGFs primary mechanism 
of translation initiation is IRES-dependent.

In conclusion, these studies identified a novel circ-HGF 
derived protein variant of HGF which is secreted by GBM 
cells and stimulates c-MET signaling leading to enhanced 
growth, motility and invasive characteristics. C-HGF was 
found to be highly expressed in GBM patient samples and 
promoted PDX cell growth In vitro and in xenografts. 
C-HGF was found to be translated via an IRES-dependent 
mechanism and contains 49 unique c-terminal residues 
which may serve as an effective anticancer target.

Fig. 4  C-HGF exhibits direct effects on c-MET activity regulat-
ing GBM properties. a Effects of recombinant C-HGF (rC-HGF) on 
c-MET phosphorylation and downstream effector signaling in GBM6 
and HK296 GBM cells. Cells were treated with rC-HGF (200  ng/
ml) for 8  h and subsequently immunoblotted for the indicated pro-
teins. b C-HGF co-immunoprecipitates with endogenous c-MET 
in GBM6 cells. GBM6 cell extracts were immunoprecipitated with 
control IgG, α-C-HGF or α-c-MET antibodies as shown and immu-
noprecipitates probed for the indicated proteins. Input extracts were 
immunobloted for C-HGF, c-MET and actin. c GBM6 or HK296 
were treated with either 0 (green), 50 (red) or 200 (blue) ng/ml of 
rC-HGF and proliferation assessed in ATP-release assays at the 
indicated timepoints. Mean ± S.D., *, p < 0.05, n = 3. d GBM6 or 
HK296 cells were placed in Boyden chambers in the presence of the 
indicated concentrations of rC-HGF and allowed to migrate towards 
BSA (white bars), vitronectin (light yellow bars) or fibronectin (dark 
yellow bars). Mean + S.D., *, p < 0.05, n = 3. e Invasive capacity of 
GBM6 or HK296 cells treated with the indicated concentrations of 
rC-HGF migrating through Matrigel. Mean + S.D., *, p < 0.05, n = 3. 
f ATP-release assay analysis of GBM6 or HK296 cells treated with 
control IgG, rC-HGF (200 ng/ml) or rC-HGF (200 ng/ml) + C-HGF 
antibody (1 µM) at the indicated timepoints. Mean + S.D., *, p < 0.05, 
n = 3. g Migration of GBM6 or HK296 towards BSA (white bars), 
vitronectin (light yellow bars), or fibronectin (dark yellow bars) with 
the indicated treatments; control IgG, rC-HGF (200  ng/ml) or rC-
HGF (200 ng/ml) + C-HGF antibody (1 µM). h Invasive potential of 
GBM6 or HK296 cells with the indicated treatment (control IgG, rC-
HGF (200 ng/ml) or rC-HGF (200 ng/ml) + C-HGF antibody (1 µM)) 
migrating through Matrigel. Mean + S.D., *, p < 0.05, n = 3
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