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Abstract
Purpose  Review of the clinicopathologic and genetic features of early ependymal tumor with MN1-BEND2 fusion (EET 
MN1-BEND2), classical astroblastomas, and recently described related pediatric CNS tumors. I also briefly review general 
mechanisms of gene expression silencing by DNA methylation and chromatin remodeling, and genomic DNA methylation 
profiling as a powerful new tool for CNS tumor classification.
Methods  Literature review and illustration of tumor histopathologic features and prenatal gene expression timelines.
Results  Astroblastoma, originally descried by Bailey and Cushing in 1926, has been an enigmatic tumor. Whether they are 
of ependymal or astrocytic derivation was argued for decades. Recent genetic evidence supports existence of both ependymal 
and astrocytic astroblastoma-like tumors. Studies have shown that tumors exhibiting astroblastoma-like histology can be 
classified into discrete entities based on their genomic DNA methylation profiles, gene expression, and in some cases, the 
presence of unique gene fusions. One such tumor, EET MN1-BEND2 occurs mostly in female children, and has an overall 
very good prognosis with surgical management. It contains a gene fusion comprised of portions of the MN1 gene at chro-
mosomal location 22q12.1 and the BEND2 gene at Xp22.13. Other emerging pediatric CNS tumor entities demonstrating 
ependymal or astroblastoma-like histological features also harbor gene fusions involving chromosome X, 11q22 and 22q12 
breakpoint regions.
Conclusions  Genomic DNA profiling has facilitated discovery of several new CNS tumor entities, however, traditional 
methods, such as immunohistochemistry, DNA or RNA sequencing, and cytogenetic studies, including fluorescence in situ 
hybridization, remain necessary for their accurate biological classification and diagnosis.

Keywords  Early ependymal tumor with MN1-BEND2 fusion · HGNET BCOR ex15 ITD · EWSR1-BEND2 · NET-
PATZ1 · NET-MN1 · MN1-CXXC5 · Astroblastoma · Cerebral tumor · Supratentorial ependymoma · Pediatric · Female · 
Good prognosis · Genomic DNA methylation · Chromatin remodeling

Epigenetic regulation of gene expression 
and genomic DNA methylation analysis

Nuclear chromatin is comprised of histones and other pro-
teins wrapped within coils of genomic DNA forming nucle-
osome structures that are either transcriptionally active 
(euchromatin) or inactive (heterochromatin). Differential 

gene expression occurs through multiple mechanisms but 
is largely due to epigenetic silencing of genes by DNA 
methylation [1]. Methylation of cytosine residues at mul-
tiple CpG dinucleotide sites within gene promoters, and 
adjacent first exons, effectively turns off gene expression 
by directly hindering binding of some transcription factors, 
and by recruiting proteins that alter chromatin structure and 
further interfere with transcription. Such proteins include 
methyl-CpG binding proteins that both repress transcrip-
tion directly and recruit histone deacetylases (HDACs) and 
other transcriptional corepressors. Deacetylation of specific 
histone amino-terminal lysine residues restricts transcrip-
tion factor access to DNA, while acetylation is permissive 
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to transcription [2]. Histone lysine methylation1 by histone 
methyltransferases (HMTs), e.g., histone 3 (3.1, 3.2 and 3.3) 
lysine 282 trimethylation (H3K28me3), represses gene tran-
scription by promoting heterochromatin assembly [4], or can 
activate transcription when less histone methylation, e.g., 
histone 3 lysine 28 monomethylation (H3K28me1), and/or 
concomitant acetylation occurs [5–7]. Missense mutation of 
H3K28 to methionine (H3K28M, aka H3K27M) in diffuse 
midline glioma leads to decreased histone methylation at 
this site [8].

Several new central nervous system (CNS) tumor entities 
have been defined based on genomic DNA methylation pro-
filing using Illumina’s Methylation450K and MethylationE-
PIC BeadChips [9–11]. This technology detects methylated 
cytosine residues (5-methyl-cytosine) in CpG sites and can 

be used to profile genomic DNA methylation from archived 
formalin-fixed, paraffin-embedded (FFPE) resected tumor 
material [9, 10, 12, 13]. DNA is extracted from an FFPE tis-
sue block and treated with bisulfite to convert unmethylated 
cytosines to uracil. Amplification of the DNA replaces uracil 
with thymidine. Following amplification and fragmentation, 
the DNA is hybridized to the MethylationEPIC BeadChip, 
which contains methylation status-specific oligonucleotide 
probes for over 850,000 methylation sites. Further process-
ing steps and data analysis allow comparison of an indi-
vidual tumor’s genomic DNA methylation profile to those of 
known tumors in a reference set using a random forest brain 
tumor classifier developed by the German Cancer Research 
Center (DKFZ, www.​molec​ularn​europ​athol​ogy.​org/​mnp/) 
[9] and/or by data dimensionality reduction algorithms, e.g., 
t-distributed Stochastic Neighbor Embedding (tSNE) or Uni-
form Manifold Approximation and Projection (UMAP) fol-
lowed by two- or three-dimensional mapping [9–14] (Fig. 1).

Fig. 1   Unsupervised UMAP 
dimension reduction analysis 
map of genomic DNA methyla-
tion from the DFKZ CNS tumor 
reference set. The reference set 
includes methylation data for 
2729 tumors (76 pathological 
diagnoses) and 72 normal brain 
tissues. Each group of data 
points represent a specific nor-
mal tissue or tumor diagnosis 
or closely related diagnoses [9]. 
The arrow indicates HGNET 
MN1 tumors (consisting mostly 
of EET MN1-BEND2)

1  Not to be confused with DNA methylation.
2  Because the N-terminal methionine is cleaved from histone pro-
teins, H3K28 has historically been referred to as H3K27, with clinical 
usage of H3K28 occurring only recently [3].

http://www.molecularneuropathology.org/mnp/
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Early ependymal tumor with MN1‑BEND2 
fusion

Early ependymal tumors with MN1-BEND2 fusion (EET 
MN1-BEND2) are pediatric cerebral tumors most often 
occurring in the parietal or frontal lobes [10], however, a 
spinal tumor containing the fusion has also been described 
(Fig. 2, Table 1, Table S1). To date, cases with confirmed 
MN1-BEND2 fusions have only been well documented in 
females (n = 19), the vast majority in children (mean and 
median ages, 9.6 and 9 years, respectively, n = 18) [10] 
(Table S1). However, larger studies are needed to confirm 
their sex distribution.

EET MN1-BEND2 was first identified as a subset of 
pediatric CNS tumors belonging to a methylation class 
defined as high-grade neuroepithelial tumors with MN1 
alteration (HGNET-MN1). This designation was based on 
DNA methylation profiling combined with identification 

of MN1-BEND2 and MN1-CXXC5 fusions by RNA-seq in 
a small number of cases, and detection of nonspecific MN1 
gene rearrangement by break-apart fluorescence in situ 
hybridization (FISH) [13].

The protein encoded by the meningioma (disrupted in 
balanced translocation) 1 (MN1) gene at chromosome 
22q12.1 acts as a chromatin remodeler and transcriptional 
coregulator [15]. The function of BEN domain containing 
2 encoded by BEND2 at Xp22.13 is unknown. However, 
other BEN domain-containing DNA-binding proteins are 
involved in chromatin remodeling [16].

Studies from our group confirmed the presence of MN1-
BEND2 fusions in additional tumors within the HGNET-
MN1 methylation class and demonstrated that they are typ-
ically associated with patient survival of over 10 years [10, 
12]. Clearly, many tumors within this methylation class 
are not clinically high-grade. Therefore, I will henceforth 

Fig. 2   Typical MR findings of 
EET MN1-BEND2. T1 post-
contrast MR images of EET 
MN1-BEND2 presenting in a 
9-year-old girl. T1 post-contrast 
axial and sagital images show 
typical well-demarcated com-
plex solid and cystic appearance 
of EET MN1-BEND2. Like 
other supratentorial ependymal 
tumors, they often show a bub-
bly and/or multinodular appear-
ance [59]. Images courtesy of 
Dr. Bret Mobley, Vanderbilt 
University

Table 1   Methylation classes 
and clinical characteristics of 
ETT MN1-BEND2 and related 
tumors

Methylation Class Tumor Entity Gender Ages Location

EET MN1-BEND2 F>>M  = 9.6 yr
Median, 9 yr

Parietal > frontal > occipital
>> spinal cord

EWSR1-BEND2 M=F  = 19 yr
Median, 20 yr

M: Lower medulla >
cervicothoracic > thoracic spinal cord

F: Frontal = cervicothoracic spinal cord

MAMLD1-BEND2 F 3 yr Lumbar spinal cord

NET-MN1 altered

MN1-CXXC5 M>F 3 yr, 16 yr, 36 yr Parietal, temporal

MN1-PATZ1 Median, 3.5 yr
NET-PATZ1

EWSR1-PATZ1
M=F

Median, 8 yr
Supratentorial > cerebellar, spinal cord

Different shades of the same color indicate methylation subclasses
yr years, x mean
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refer to it as neuroepithelial tumors with MN1 alteration 
(NET-MN1).

In our study, the 5-year (n = 6)3 and 10-year (n = 5) sur-
vival values for EET MN1-BEND2 were both 100% [12]. 
Tumor recurrences requiring re-resection were relatively 
common, however. One-half of patients experienced recur-
rence after initial resection: one patient at 4.3 years; one at 
2, 4 and 4.5 years; and one at 1, 4, 5, 8 and 11 years.

Histologically, EET MN1-BEND2 are characterized by 
abundant perivascular tumor cell pseudorosettes arranged in 
a solid and/or loose papillary pattern corresponding to solid 
and cystic components by imaging, respectively [12, 17] 
(Figs. 2, 3B and C). EET MN1-BEND2 are generally well 
circumscribed both radiographically and microscopically 
and generally do not infiltrate brain parenchyma. Tumor 
blood vessels are often hyalinized and can appear sclerotic, 
as may the intervening tumor stroma (Fig. 3C). Mitotic activ-
ity and necrosis are frequently present (Fig. 3D). In addition 
to polygonal, columnar, and sometimes tapered perivascular 
tumor cells, focal clear or rhabdoid cytomorphology may 

Fig. 3   Histopathology of EET 
MN1-BEND2. A Perivascular 
pseudorosette in EET MN1-
BEND2, B EET MN1-BEND2 
papillary growth pattern. C 
Vascular and stromal sclero-
sis in EET MN1-BEND2. D 
EET MN1-BEND2 showing 
tumor necrosis. E ZFTA-RELA 
supratentorial ependymoma 
pseudorosette. F MAPK 
astroblastoma pseudorosette 
demonstrating more elon-
gated cells with prominent 
nucleoli. A multinucleate cell 
is indicated by the arrow. G 
EET MN1-BEND2 EMA 
immunohistochemical stain 
demonstrating membrane and 
dot-like cytoplasmic positivity. 
H ZFTA-RELA supratentorial 
ependymoma showing similar 
EMA immunostaining. I and J 
Scattered GFAP immunostain-
ing in EET MN1-BEND2 and 
ZFTA-RELA ependymoma, 
respectively. K Diffuse GFAP 
staining in MAPK astro-
blastoma. L MN1 immuno-
histochemical stain of EET 
MN1-BEND2 depicting strong 
nuclear staining. Such staining 
was absent in MAPK astroblas-
tomas, however the sensitiv-
ity and specificity of MN1 
immunohistochemical staining 
for EET MN1-BEND2 is not yet 
known [10]
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also occur [10, 17–20]. Immunohistochemistry reveals that 
EET MN1-BEND2 usually demonstrate cell membrane and 
dot-like cytoplasmic epithelial membrane antigen (EMA, 
aka MUC1) and podoplanin immunoreactivity, and varia-
ble patchy or negative glial fibrillary acidic protein (GFAP) 
immunoreactivity [10, 19, 21, 22] (Fig. 3G and I). These 
histologic and immunohistochemical features are also found 
in other supratentorial and spinal ependymal tumors [18, 
23–27] (Fig. 3E, H and J).

EET MN1-BEND2 were termed astroblastoma, MN1 
altered in the 2021 WHO classification of CNS tumors [18] 
because of their general resemblance to astroblastomas orig-
inally described by Percival Bailey, Harvey Cushing, and 
Paul Bucy [28, 29], that is, their demonstration of numerous, 
often back-to-back tumor cell perivascular pseudorosettes, 
sometimes referred to as astroblastic pseudorosettes. The 
latter are similar to, and at times indistinguishable from, 
pseudorosettes seen in supratentorial or spinal ependymo-
mas [13, 17, 23, 30] (Fig. 3A, B and E).
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Fig. 4   Pediatric supratentorial ependymal tumor genes are highly 
expressed in the late embryonic/early fetal period and classical astro-
blastoma associated genes are expressed later during fetal and post-
natal gliogenesis. The developmental expression timecourse (in post-
conception weeks) of select genes overexpressed or mutated in EET 
MN1-BEND2 and other pediatric supratentorial ependymomas and 
MAPK astroblastomas was obtained from the Allen Human Devel-
opmental Transcriptome database. Pediatric supratentorial epend-
ymoma and related tumor genes (relatively overexpressed or mutated) 
are depicted in plain type on the left and MAPK astrocytoma asso-
ciated genes are in bold on the right. The patient age bar progres-
sive color scheme is arbitrary. Pediatric ependymal tumor associated 
genes, including MAMLD1, PATZ1, FOXJ1, YAP1, MN1, CXXC5, 

RELA, EWSR1, BCOR and ZFTA1 are more highly expressed prior 
to 25 pcw. Some EET MN1-BEND2 associated genes, e.g., CELSR1, 
DLX5, HES1, FOXJ1, YAP1, SOX1, BCOR and H19, are most 
highly expressed prior to 10 pcw during the late embryonic/early 
fetal period. MAPK astrocytoma associated genes are more highly 
expressed after 25 pcw. Transcript expression is normalized by reads 
per kilobase of transcript per million mapped reads (RPKM) to com-
pensate for RNA-seq generation of more sequencing reads from 
longer RNA molecules. Data is from up to 16 brain regions from 42 
specimens [Allen Institute for Brain Science. Allen Human Brain 
Atlas. BrainSpan: Atlas of the Developing Human Brain—Devel-
opmental Transcriptome, 2010; https://​www.​brain​span.​org/​rnaseq/​
search/​index.​html (Accessed 10/31/2022)]

https://www.brainspan.org/rnaseq/search/index.html
https://www.brainspan.org/rnaseq/search/index.html
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Colleagues and I have recently shown that the gene 
expression profile of EET MN1-BEND2 strongly suggests 
ependymal differentiation, particularly derivation from an 
early ependymal precursor, and not astrocytic differentia-
tion or derivation from an astrocyte precursor as “astroblas-
toma” implies [10]. EET MN1-BEND2 express high mRNA 
levels of the ependymoma-associated genes FOXJ1, IGF2, 
CELSR1, RFX3, KCNJ5, TFF3 and YAP1 and relatively 
low levels of messages of canonical astrocyte marker genes 
such as OLIG2, GFAP, ALDH1L1, and S100 β [10, 31]. 
EET MN1-BEND2 are also enriched for homeobox gene 
expression, e.g., CUX2, SHOX, SOX1, SOX14, IRX2, PAX1, 
HOXD10, DLX5 and PRRX2, and for HES1, H19, and the 
ATP binding cassette transporter gene ABCC1 encoding 
multidrug resistance-associated protein 1. These genes are 
highly expressed during embryonic and fetal development by 
the primitive neuroepithelium and/or ventricular zone radial 
glia (vRG) neural stem cells, the latter of which conven-
tional ependymomas are believed to be derived from [10, 32, 
33]. We have thus defined these tumors as early ependymal 
tumors with MN1-BEND2 fusion due to their expression of 
both early neural stem/progenitor cell and canonical epend-
ymoma genes (Fig. 4).

Additional genetic features of EET 
MN1‑BEND2

In addition to MN1 and BEND2, overexpression or mutation 
of additional genes involved in chromatin remodeling were 
found in EET MN1-BEND2 tumors, e.g., in the SWI/SNF 
complex genes SMARCA1, SMARCAD1 and alpha-thalas-
semia, X-linked mental retardation gene (ATRX), and in 
lysine methyltransferase 2A (KMT2A, aka MLL1) [10]. The 
latter is a histone methyltransferase and transcriptional coac-
tivator important in chromatin structural regulation and neu-
ral progenitor proliferation [6]. It is a subunit of the MLL1/
MLL multiprotein complex that mediates both methylation 
of histone 3 lysine 4 (H3K4me) and acetylation of histone 4 
lysine 16 (H4K16ac) [34]. EET MN1-BEND2 additionally 
overexpressed CHD3 encoding a component of the Mi-2/
NuRD histone deacetylase complex. The mismatch repair 
gene MSH3 (at chromosome 5q14.1) was also frequently 
mutated in EET MN1-BEND2 [10].

Chromosomal copy number variations (CNVs) found in 
EET MN1-BEND2 include loss of portions of chromosomes 
6, 8, 9, 10, 14, 16, 18, 22q and X, and gains of 6p, 9p and 
X, however, the most frequent CNVs observed were losses 
of chromosomes 14, 16, 22q and X [12]. Notably, 22q loss 
is the most common chromosomal abnormality in epend-
ymomas [35].

Additional genes highly expressed in EET MN1-BEND2 
include the ventricular zone radial glia-enriched gene H19, 

which is implicated as a tumor suppressor in the pediatric 
neoplasm Wilms tumor. The H19 gene product is a long 
noncoding RNA required for the recruitment of methyl-
CpG-binding domain protein 1 (MBD1) and thus histone 
deacetylase to methylated sites on the nearby insulin growth 
factor 2 (IGF2) gene, resulting in its decreased transcription. 
miR483, also overexpressed in Wilms tumor and EET MN1-
BEND2, enhances transcription of IGF2 and IGF2 anti-
sense (IGF2-AS) genes. FAM3B, whose protein is involved 
in insulin secretion and apoptosis of insulin secreting cells, 
was also overexpressed. Like others, we found that MUM1, 
which facilitates DNA damage repair-associated chroma-
tin changes, appears highly overexpressed in EET MN1-
BEND2, however this was not the case when compared to 
normal brain controls [10, 36].

MAPK pathway activated classical 
astroblastomas

Other tumors also traditionally called astroblastomas more 
highly express OLIG2, GFAP, ALDH1L1, and S100 β 
astrocyte genes and exhibit histomorphologic and patient 
demographic characteristics more closely matching original 
descriptions of astroblastoma [10, 28]. These astrocyte-like 
astroblastomas are associated with intermediate-grade bio-
logical behavior and occur in male children, and young to 
middle-aged adults (rarely older adults) of both sexes [10, 
12]. They demonstrate genomic methylation patterns similar, 
but not identical, to those of pleomorphic xanthoastrocy-
toma (PXA). Like PXA and other astrocytomas, they highly 
express and frequently harbor mutations in mitogen acti-
vated protein kinase (MAPK) pathway genes, e.g., BRAF, 
MAP3K5, MAP4K4 and NF1. BRAF V600E mutation espe-
cially occurred in young adult female patients [10, 12, 37].

MAP3K1, however, exhibited deletion mutations more 
often in EET MN1-BEND2 and other supratentorial ependy-
mal tumors including ZFTA-RELA ependymomas and pap-
illary tumors of the pineal region (PTPR). The latter share 
other genetic features with ependymomas and are consid-
ered to be ependymal tumors by some authors [10, 24, 38]. 
MAP3K1 is a cell survival/apoptosis regulator involved in 
ERK and JNK MAPK pathways, and in NF-κB and p53 
signaling. It was also mutant in an EET MN1-BEND2 case 
reported by others and its gene promoter is hypermethylated 
in pediatric supratentorial and spinal ependymomas [21, 39].

A large subset of MAPK astroblastomas also showed 
PI3K/AKT/mTOR pathway alterations, including phos-
phoinositide-3-kinase (PI3K) subunit (PI3KCA, PI3KC3, 
PI3KR1, and PI3KR3) overexpression or mutations, AKT2, 
TSC2, RABEP1 and PTEN mutations, and TERT fusions 
not found in EET MN1-BEND2 [10]. They also harbor 
mutations in AHNAK (an actin binding protein related to 
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phospholipase C signaling and cell migration), and more 
frequent mutations in WNT pathway genes, and show TCF4 
and FAM107A overexpression [10]. MAPK astroblastomas 
also demonstrate mutations in multiple chromatin regu-
latory genes, e.g., SMARCA1, SMARCA2, SMARCAD1, 
SMARCD3, ATRX, and in histone methyltransferases, e.g., 
KMT2A, KMTA2C, KMT2D, and KMT2E. Additionally, 
MAPK pathway-associated astroblastomas show greater 
gene expression overlap with cerebral astrocyte precursor 
cells, i.e., outer radial glia (oRG) and truncated radial glia 
(tRG), than do EET MN1-BEND2 [10, 40].

Histologically, MAPK astroblastomas more often demon-
strate elongate, tapering perivascular cells and more promi-
nent nucleoli than do EET MN1-BEND2 (Fig. 3F). These 
types of rosettes would more appropriately be described 
as “astroblastic” and morphologically resemble tRG. They 
also more frequently show multinucleate tumor cells, may 
exhibit eosinophilic granular bodies [10, 12, 17] and dem-
onstrate invasion of neighboring brain parenchyma [17]. 
These histomorphologic features were also noted in the 
original descriptions of astroblastomas by Bailey and Cush-
ing, and Bailey and Bucy [28, 29]. Unlike generally seen 
in ependymal tumors, MAPK astroblastomas are diffusely 
GFAP positive and EMA negative by immunohistochemical 
staining consistent with astrocyte differentiation (Fig. 3K). 
We suggest that the term astroblastoma should be reserved 
for these MAPK pathway dominant tumors (astroblastoma, 
MAPK type) [10].

Other NET‑MN1 methylation class tumors

The NET-MN1 methylation class contains two additional, 
closely associated subclasses of tumors characterized by MN1-
CXXC5 or EWSR1-BEND2 fusions [13, 41, 42] (Table 1). 
EWSR1 encodes EWS RNA binding protein 1, a transcriptional 
activator whose gene at 22q12.2 is also the first component of 
fusions found in the pediatric tumor Ewing sarcoma. EWSR1-
BEND2 harboring tumors tend to present in children to young 
adults [41] (Table 1, Table S1). Radiologic findings are similar 
to EET MN1-BEND2 [42]. Four cases presenting in the lower 
medulla and/or upper spinal cord have been reported in males: 
an infant aged 3 months (medulla to C4), a 20-year-old (brain-
stem NOS), a 38-year-old (lower medulla) and a 36-year-old 
(T3–T5) [41–44]. One cervicospinal and two frontal tumors 
with EWSR1-BEND2 have been reported in females, aged 6, 
and 6 and 26 years, respectively [41]. The mean and median 
ages of reported cases with documented fusions are 19 and 
20 years (n = 7), respectively. The EWSR1-BEND2 fusion 
was also reported in a tumor described only as a spinal epend-
ymoma [45]. Additionally, a cervicothoracic tumor with EWSR1  
rearrangement by FISH was reported in a 6-year-old girl [46] 

and a multiply recurrent cervicomedullary tumor matching 
the NET-MN1 methylation class, but not otherwise molecu-
larly characterized, was reported in a woman who presented at 
approximately 16 years of age [47]. A pontomedullary tumor 
exhibiting vascular and stromal sclerosis and MN1 rearrange-
ment by FISH was reported in an 11-year-old male, possibly 
representing an EET MN1-BEND2 or MN1-CXXC5 lesion [48]. 

The histologic features of EWSR1-BEND2 tumors may 
be identical to those of EET MN1-BEND2, i.e., abundant 
perivascular pseudorosettes, including perivascular and stro-
mal sclerosis in some cases, conspicuous mitotic activity, focal 
necrosis, patchy variable GFAP immunoreactivity, and often 
diffuse EMA positivity [41]. Overall survival of patients with 
EWSR1-BEND2 tumors is less favorable than for EET MN1-
BEND2, at approximately 60% at 5 years and likely attributa-
ble to their frequent medullary and upper spinal cord locations.

A lumbospinal tumor with MAMLD1-BEND2 fusion 
matching the NET-MN1 methylation class, was reported in 
a 3-year-old girl [49]. MAMLD1, located at Xq28, encodes 
a developmentally important transcriptional coactiva-
tor [50]. YAP1 at 11q22.1, encoding for a DNA-binding 
Hippo pathway regulatory protein, and MAMLD1 fusions 
(YAP1-MAMLD1) appear to drive oncogenesis in a subset 
of supratentorial ependymomas occurring mostly in female 
infants [23, 51].

CXXC5 at 5q31.2 codes for a protein that binds unmethyl-
ated CpG sites and promotes chromatin structural changes, 
thereby modulating expression of multiple proliferation, 
cell cycle arrest and cancer related genes [52]. Fewer MN1-
CXXC5 harboring tumors have been well described. One 
case, originally diagnosed as anaplastic ependymoma, 
presented in the temporal lobe of a 3-year-old boy [53], 
and another case in the parietal lobe of a 16-year-old male 
[13]. An additional case showing more poorly differenti-
ated, tumor architecture lacking prominent pseudorosettes, 
occurred in the parietal lobe of a 36-year-old woman [54].

The extent in which MN1-CXXC5, EWSR1-BEND2 
and MAMLD1-BEND2 containing tumors are biologically 
similar to EET MN1-BEND2 is not currently known. The 
histology of MN1-CXXC5 tumors may vary compared to 
EET MN1-BEND2 and EWSR1-BEND2 tumors, and indeed 
MN1-CXXC5 tumors appear to form a slightly distant satel-
lite cluster of the NET-MN1 methylation class [54]. The 
common denominator of BEND2 as the downstream gene 
in MN1-BEND2, EWSR1-BEND2 and MAMLD1-BEND2 
fusion harboring tumors has led to speculation that BEND2 
is the more biologically important overexpressed gene func-
tion in these histologically similar lesions [10, 41, 49]. Per-
haps the NET-MN1 methylation class should be renamed 
NET-BEND2 altered.
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High‑grade neuroepithelial tumor 
with BCOR exon 15 internal tandem 
duplication

High-grade neuroepithelial tumors with BCOR exon 15 
internal tandem duplication (HGNET BCOR ex15 ITD) 
are rare pediatric tumors belonging to a discrete methyla-
tion class [13, 55]. BCOR (BCL6 co-repressor) at Xp11.4 
represses gene transcription through interaction with the 
DNA binding protein BCL-6 [56] and may recruit a histone 
deacetylase. BCOR mutation, however, results in methyla-
tion of histone 3 lysines 4 and 36 leading to reactivated tran-
scription of silenced genes [57].

HGNET BCOR ex15 ITD are predominantly cerebral 
tumors, but have also rarely occurred in the basal gan-
glia, cerebellum, and pons. From their series and literature 
review, Ferris et al. reported that they occur nearly equally 
in males and females (n = 35) in patients ranging from 0 to 
22 years with a median patient age of 3.5 years [55]. Imag-
ing shows large, well‐circumscribed, heterogeneous tumors 
demonstrating variable enhancement, often with central 
necrosis or hemorrhage, and restricted diffusion indicative 
of a highly cellular lesion [55].

The largest reported series of HGNET BCOR ex15 ITD 
describes them as being histologically heterogenous, but 
they typically contain more classical ependymoma-like 
pseudorosettes demonstrating a fibrillary perivascular anu-
clear zone, palisading necrosis, and an absence of micro-
vascular proliferation [55, 58]. Homer Wright rosettes were 
additionally seen in some cases, which are not characteristic 
of ependymal tumors, but occur in more primitive embryo-
nal tumors [58]. Although generally well circumscribed, 
some cases can be infiltrative. They are reportedly mostly 
GFAP-negative and lack ependymoma-like EMA immunore-
activity, however most cases demonstrate NeuN and BCOR 
nuclear immunoreactivity. EET MN1-BEND2 also highly 
express BCOR [10, 19]. HGNET BCOR ex15 ITD are truly 
high-grade tumors. Their prognosis appears to be signifi-
cantly worse than that of EET MN1-BEND2, however, some 
long-term survivors are reported [55, 59]. Nosologically, 
they may be best considered an anaplastic early ependymal 
tumor or an embryonal tumor (Fig. 4).

Neuroepithelial tumors with PATZ1 fusions

Neuroepithelial tumors with PATZ1 fusions (NET-PATZ1) 
are a diverse group of mostly pediatric tumors harboring 
fusions between nearby chromosome 22q12 region genes, 
i.e., MN1-PATZ1 or EWSR1-PATZ1 [60] (Table 1). PATZ1 at 
22q12.2, like MN1 at 22q12.1, encodes a chromatin remod-
eler and transcriptional coregulator. NET-PATZ1 tumors are 

relatively heterogenous histologically. Most were originally 
diagnosed as glioblastoma or high-grade astrocytoma, fol-
lowed by anaplastic ependymoma. A cerebral tumor in a 
13-year-old girl demonstrating a perivascular pseudorosette 
pattern harbored both EWSR1-PATZ1 and MN1-GTSE1 
fusions [61]. GTSE1 at 22q13.31 encodes a cell cycle regula-
tory protein that binds p53 and shuttles it out of the nucleus 
in response to DNA damage. In a separate report, a tumor 
with a EWSR1-PATZ1 fusion was described as a gangli-
oglioma [62].

NET-PATZ1 frequently show necrosis, but like EET 
MN1-BEND2 and HGNET BCOR ex15 ITD, generally 
lack microvascular proliferation4. NET-PATZ1 appear to 
occur equally in male and female patients in multiple CNS 
locations (cerebrum, cerebellum, spinal cord), however most 
are supratentorial. Although, the demographic and anatomic 
data of NET-PATZ1 were not described individually for 
MN1 and EWSR1 fusion tumors [60]. tSNE analysis of their 
tumor methylation profiles reveals that both fusion types 
form a methylation class grouping, or perhaps separate, 
but closely associated subgroups [60]. Some NET-PATZ1, 
presumably those originally diagnosed as anaplastic epend-
ymoma, show histology very similar to EET MN1-BEND2 
[60]. NET-PATZ1 are predicted to show intermediate bio-
logical behavior. However, the latter is not established, and 
their clinical aggressiveness could be variable because of 
their overall heterogeneity.

Diagnosis of EET BEND2 and related tumors

Although some features may be more common in one tumor 
type versus another within the extended NET-MN1 meth-
ylation class, HGNET BCOR ex15 ITD, other ependymal 
or astroblastoma-like tumors, and MAPK astroblastomas, 
these tumors cannot be reliably distinguished by histology 
alone [12]. Because it encompasses three or more distinct 
pathological entities, prior studies of cases assigned to the 
HGNET-MN1 methylation class should be interpreted with 
caution [59, 63–65].

Pathological diagnosis requires ancillary testing. Immu-
nohistochemistry should be performed for EMA or podo-
planin, GFAP, BCOR, and p65-RELA or L1CAM for 
ZFTA-RELA ependymomas [26, 66, 67]. Unlike MAPK 
astroblastoma and many astrocytomas, which tend to be 
diffusely GFAP immunoreactive, EET MN1-BEND2 shows 
variable, but usually only focal GFAP immunoreactivity, 
but like ependymoma, when present tends to be positive in 

4  EET MN1-BEND2 may show folding of central vessels within 
pseudorosettes, which is not to be confused with true microvascular 
proliferation [12, 17]
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perivascular pseudorosettes [10, 68, 69]. Like other ependy-
mal tumors [70], NET-MN1 class lesions may occasionally 
show immunoreactivity for neuronal markers [59].

Currently, molecular studies are necessary to evaluate for 
characteristic fusions by FISH, PCR, RNA or DNA sequenc-
ing, or Nanostring technology [12, 21, 67, 71]. Genomic 
DNA methylation analysis will likely become increasingly 
helpful to establish a precise diagnosis of many pediatric 
CNS tumors [10, 11, 19]. FISH for MN1-BEND2 using 
fusion probes rather than relatively nonspecific break apart 
analysis may be preferable [21]. More than one molecular 
diagnostic modality may be required, for example to confirm 
FISH or genomic DNA methylation results.

DNA methylation can be reliably performed on FFPE tis-
sue, however, is currently only available at a limited number 
of academic clinical centers and is not yet FDA approved. 
Immunohistochemistry for MN1 is a promising cost-efficient 
procedure to help identify EET MN1-BEND2 tumors that 
can be easily performed in most medical centers (Fig. 3L). 
However, further studies are needed to establish its sensi-
tivity and specificity, as it may be positive in other tumors 
highly expressing MN1, perhaps especially rare tumors with 
alternate MN1 fusions.

Treatment of EET MN1‑BEND2 and related 
tumors

Treatment for EET MN1-BEND2 is primarily surgical. 
Complete resection should be pursued whenever possible, 
as it may be curative, offer the potential for very long-term 
patient survival, reduce morbidity and/or negate the need 
for adjuvant cytotoxic chemotherapy or potentially biotrans-
formative radiation therapy [12, 18, 21].

Intraoperative pathological diagnosis or pre-resection 
stereotactic biopsy should be able to confirm ependymal 
histology and guide the surgical approach. A recent study 
demonstrated the feasibility of intraoperative tumor DNA 
methylation analysis, which could portend the future of 
intraoperative pathological diagnosis [72]. Fluorescence-
guided resection using 5-aminolevulic acid (5-ALA) may 
be helpful to achieve gross total resection (GTR) [22].

As recurrence is common, long-term surveillance is nec-
essary for EET MN1-BEND2 patients. Adjuvant therapy 
should be considered for patients with multiple recurrences 
and/or whose tumors are not completely resectable. For 
pediatric supratentorial ependymomas, GTR is associated 
with improved progression free survival, but not necessar-
ily overall survival [69]. Conformational radiation (CRT) 
increases 5-year event free survival in ependymoma [73]. 
It would therefore be rational to treat EET-MN1 BEND2 
and other new ependymal tumor entities with CRT if GTR 
is not possible. Complete resection may be hampered by 

the multinodular/multicystic nature of EET MN1-BEND2 
and EWSR1-BEND2 tumors. In brainstem or spinal cord 
tumors GTR may not be possible, therefore adjuvant therapy 
appears indicated [42, 74].

Confirmed and probable EET MN1-BEND2 cases have 
been treated with radiation or radiation and temozolomide 
with unclear benefits due to the variable, but overall indolent 
natural history of this entity [21, 22, 64]. Medullary and spi-
nal cord related-tumors (e.g., EWSR1-BEND2 lesions) that 
are not completely resectable have been successfully treated 
with radiation and temozolomide [42]. Yamada et al. [74] 
report a T1–T2 spinal cord astroblastoma-like tumor, with 
an apparent MN1 tandem duplication by FISH, in a 20-year-
old woman who exhibited dramatic functional improvement 
and tumor shrinkage in response to radiation, temozolomide, 
and bevacizumab. Because of EET MN1-BEND2’s overex-
pression of IGF2 pathway components and ABCC1, agents 
directed at these targets could be therapeutic candidates, per-
haps in combination with radiation and temozolomide [10].

One EET MN1-BEND2 case presenting in a 6-year-old 
girl recurred multiple times over ten years and appeared 
to undergo malignant transformation with acquired muta-
tions in NF-κB signaling proteins and increased expression 
of p65-RELA [21]. The patient was treated with radiation 
therapy and temozolomide after a second resection, and 
combined CCNU/temozolomide following a third. There-
fore, transformation may have theoretically been treatment 
related.

Summary

Astroblastoma has been a controversial entity. Some have 
argued they were of ependymal differentiation; others 
favored astrocytic derivation, while some have opined that 
astroblastoma histomorphology simply represents a nonspe-
cific pattern [24]. We used the terminology early ependymal 
tumors with MN1-BEND2 because of expression of early 
neural stem/progenitor cell and ependymoma-associated 
genes in this new tumor entity. They might also be appro-
priately called ependymoma with MN1-BEND2. Their histo-
logical features, immunohistochemical profile and generally 
noninvasive behavior overlap with established supratentorial 
ependymomas, as do those of related EWSR1-BEND2 har-
boring tumors. These and other newly described pediatric 
astroblastoma- or ependymoma-like tumors should therefore 
probably be considered ependymal tumors.

Perhaps the most compelling reason for their classifica-
tion as ependymal is that their current treatment and progno-
sis is more similar to that of other ependymal tumors than to 
that of astrocytic tumors. Neuroepithelial tumor is too broad 
a term as it can be used to describe any tumor ultimately 
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derived from the primitive neuroepithelium, essentially all 
primary CNS tumors, and has thus become a “wastebasket” 
term [75]. Astroblastoma is similarly becoming a wastebas-
ket description for several new tumor entities. Creation of 
additional tumor categories based on unique genetic fea-
tures, e.g., specific gene fusions, that do not correlate with a 
truly novel histology or clinical behavior is not helpful, and 
medicine may be better served by considering such lesions 
subtypes of established lineages if they share similar overall 
genetics and biological behavior.

EET-MN1 patients may have very long-term survival 
despite the presence of intermediate to high-grade tumor his-
tological features, i.e., mitotic activity, and necrosis, in many 
examples [12]. Similar to other supratentorial ependymal 
tumors, EET MN1-BEND2 tend to recur and may require 
multiple re-resections. Like ependymoma their defining his-
tologic feature is perivascular pseudorosettes and a tendency 
for discrete borders with uninvolved brain tissue and only 
local tumor cell invasion if any. The latter likely contributes 
to their relatively indolent biological behavior. Indeed, many 
cases of EET MN1-BEND2 and other NET MN1 methyla-
tion class tumors were originally diagnosed as ependymoma 
or anaplastic ependymoma [25, 45, 46, 66]. ZFTA fusion-
positive supratentorial ependymomas with alternate (non-
RELA) fusion partners form satellite subclusters of the 
RELA Ependymoma methylation class and include tumors 
demonstrating astroblastoma-like histologic features, further 
supporting that the latter are within the spectrum of ependy-
mal differentiation [26].

Many genes involved in fusions or mutated in the epend-
ymal astroblastoma-like tumors discussed in this review 
are chromatin remodelers and/or transcriptional regula-
tors affecting DNA methylation and gene expression. This 
suggests perturbations effecting DNA methylation and 
downstream chromatin and transcriptional regulation are 
important factors in pediatric CNS tumorigenesis, perhaps 
particularly ependymomagenesis. DNA damage causing 
double strand breaks repaired by error prone non-homolo-
gous and alternative end joining [76], particularly involving 
chromosomes X, 11, and 22, may lead to gene translocations 
in ependymomagenesis.

Fusions between chromosome 22.12 to 22.13 genes in 
NET-PATZ1 may be generated by a type of genomic insta-
bility called chromothripsis: a process in which catastrophic 
chromosomal instability leads to clustered deletions and 
rearrangements within a particular chromosome. Chromo-
thripsis may also be responsible for generating chromosome 
22q fusions in rare supratentorial astroblastoma-like tumors 
lacking MN1 alterations [67] and chromosome 11q13.1 gene 
fusions in ZFTA-RELA harboring supratentorial ependymo-
mas [26]. Chromosome X chromothripsis may possibly 
facilitate MN1-BEND2 fusion in some cases of EET MN1-
BEND2 [12, 65]. Characteristic gene fusions in such tumors 

may drive their oncogenic phenotypes. Chromothripsis 
itself may be initiated by mutations in SWI/SNF chromatin 
remodeling proteins or mismatch repair proteins [77].

Mutations in histone modifying proteins may also be 
important in pediatric ependymomagenesis. DNA methyla-
tion and histone deacetylation are intimately linked. In addi-
tion to methyl-CpG binding proteins, DNA methyltransferase 
1 (DNMT1), which maintains genomic DNA methylation, 
also recruits histone deacetylase [78]. SWI/SNF remodeling 
proteins recognize acetylated or methylated histones and 
alter nucleosome structure to allow transcription [79]. In 
astrocytomas, a hypermethylated genomic DNA state (CpG 
island methylator phenotype or CIMP) in isocitrate dehydro-
genase (IDH1/2) mutant tumors correlates with increased 
histone methylation, altered gene expression and improved 
patient survival [80, 81]. Mutant IDH1/2 causes elevated 
levels of 2-hydroxyglutarate, which inhibits histone dem-
ethylases and the TET family of 5-methlycytosine hydroxy-
lases leading to increased histone and DNA methylation, 
respectively [82]. IDH-mutant tumors, thus, have a better 
prognosis than IDH1/2 wildtype astrocytomas.

Inappropriate hypomethylation of growth factor genes 
such as IGF2 and other imprinted genes may be an impor-
tant factor in driving EET MN1-BEND2 tumorigenesis [10]. 
Altered gene promoter methylation could possibly be sec-
ondary to chromatin regulatory gene mutation resulting in 
chromatin structural changes that effect the activity of DNA 
methyltransferases [10, 83, 84]. Thus, chromatin structural 
regulation including by DNA methylation and post-transla-
tional modifications of histone proteins may be particularly 
important in pediatric CNS tumorigenesis.
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