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Introduction

Malignant glioma has the highest incidence among human 
primary brain tumors, and is characterized by high mortal-
ity rate, recurrence and malignancy. In spite of comprehen-
sive therapies, the prognosis and survival of glioma patients 
remain poor [1]. Malignant growth, high proliferation of gli-
oma cells and high infiltration that makes full surgical resec-
tion impossible are the predominant reasons for poor prog-
nosis and survival. Like other types of tumors, the causes of 
glioma are varied, and include activation of oncogenes. The 
embryonic stem cell (ESC) gene SALL4 has been recently 
identified as a new target for cancer therapy.

SALL4 is the human homolog of Drosophila spalt (sal) 
mapped to chromosome 20q13 and encodes a C2H2 zinc-
finger transcription factor [2], which is important for main-
tenance of pluripotent and self-renewal properties of ESCs 
[3]. With the same function of oncogenes, SALL4 partici-
pates in cell proliferation, apoptosis, cycle, invasion, drug 
resistance, and the formation and evolution [4–7] of multiple 
human solid tumors, such as hematopoiesis, hepatocellular 
carcinoma, lung cancer, myelodysplastic syndrome [8–10].

Phosphatase and tension homolog (PTEN), is a tumor 
suppressor whose expression is very low in various human 
tumors [11–13]. The PI3K/AKT signaling pathway is a well-
known pathway in the regulation of tumorigenesis, and is 
significantly activated in glioma [14]. PTEN contributes in 
antagonizing PI3K [15], thereby weakening AKT activation 
[16], which could suppress down-stream products thereby 
inducing cell cycle arrest in the G1 phase by increasing ki-67 
expression [15] and decreasing cyclin D1 expression [17].
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Based on the important function of PI3K/AKT signaling 
in glioma development [18, 19] and the crosstalk between 
SALL4 and PTEN [20], we found that SALL4 mRNA 
expression was significantly higher in glioma specimens 
than in non-cancerous brain samples. SALL4 expression 
may promote the formation of glioma, but the underlying 
mechanism remains unclear. The present study was based on 
the hypothesis that SALL4 could suppress PTEN, thereby 
strengthening PI3K/AKT signaling.

Materials and methods

Human tissue samples

Specimens were collected from patients who underwent sur-
gical removal of brain tumors at the Department of Neuro-
surgery, Brain and Nerve Research Laboratory of The First 
Affiliated Hospital of Soochow University (Suzhou, China) 
from 2009 to 2012. Six non-tumor brain samples were col-
lected from patients without brain tumors who underwent 
traumatic brain injury or arteriovenous malformation, which 
needed resection of a small part of their brain tissues to 
lower the intracranial hypertension and increase treatment 
outcome. Thirty-seven female and 32 male glioma patients 
were included. Among them, 17 had grade II (diffuse astro-
cytoma), 26 had grade III (anaplastic astrocytoma), and 26 
had grade IV (primary brain glioblastoma), according to 
the 2007 WHO classification system. The mean age of the 
patients at the time of surgical resection were 46.9 years 
for men and 44.9 years for women. The mean age was 
40.62 ± 15.64 years for grade II, 43.89 ± 15.21 for grade III 
and 48.12 ± 14.97 years for grade IV. All samples were col-
lected and immediately stored in liquid nitrogen after resec-
tion. This study was approved by the local ethics committee 
of The First Affiliated Hospital of Soochow University, and 
all patients gave informed consent for the usage of their sam-
ples in the study.

Cell cultures and treatments

The U87MG and U251MG were obtained from the Cell 
Bank Type Culture Collection of the Chinese Academy 
of Sciences (Shanghai, China). Cells were maintained in 
DMEM (Hyclone, Thermo Fisher Scientific, USA) supple-
mented with 10% FBS (Gibco, Invitrogen, USA) at 37 °C 
under a humidified atmosphere of 5%  CO2.

siRNA transfection

For down-regulation of SALL4, 50 pmol/l SALL4-siRNA, 
filtrating the best one from three different kings of SALL4-
siRNA (siRNA-1:5-CCG AAA GCA UCA A GUC AAA 

TT-3;5-UUU GAC UUG AUG CUU UCG GTT-3. siRNA-
2:5-GUC UCU GGA UGC CUG AAA TT-3; 5-UUU CAA 
GGC AUC CAG AGA CTT-3. siRNA-3:5-GUG GCC AAC 
ACU AAU GUG ATT-3; 5-UCA CAU UAG UGU UGG CCA 
CTT-3) were transfected into the cells using Lipofectamine 
2000 (invitrogen) according to the manufacturer’s instruc-
tions. The siRNA vectors were are purchased from Shanghai 
Genepharma Co., Ltd. The transfection rates of two human 
glioma cell lines U87 and U251 were determined by flow 
cytometry. Transfection ratio >80% was used for the experi-
ments (the U87 transfection efficiency was 97.8% and the 
U251 transfection efficiency was 99.8%).

Quantitative RT‑PCR

RNA from cells and specimens was extracted by TRIzol 
reagent (Invitrogen, USA), and quantified by spectropho-
tometer. Only mRNA with 260/280 ratios of 1.9–2.0 were 
used for the experiments. Relative levels of mRNA were 
examined using SYBR green real-time quantitative RT-
PCR (qRT-PCR) (LightCycle r480 Roche, Switzerland), 
and normalized by GAPDH mRNA. qRT-PCR results were 
calculated using the  2−△△CT method, data analyses were per-
formed in triplicate. Three times independent experiments 
are repeated and all data are presented as means and stand-
ard errors of the means.

Flow cytometric analysis

Glioma cell lines U87 and U251 were cultured in 6-well 
plates, at a cell density of 2 × 105 per well, to ensure a trans-
fection density of 80–90%. After culturing for 24 h, trans-
fection efficiency was detected. Cells were transfected with 
siRNA negative control, SALL4-siRNA and SALL4-siRNA-
bpv (PTEN inhibitor bpv were add into SALL4-siRNA 
group), and incubated for 48 h before the cell cycle test. 
Both transfection efficiency and cell cycle were measured 
by flow cytometer and repeated three times this experiments.

CCK‑8 assay

The proliferation of cells was detected by cell counting kit 
(CCK-8, Dojindo, China). siRNA negative control, SALL4-
siRNA and SALL4-siRNA-bpv were transfected into the 
U87 and U251 glioma cells. After incubating for 12, 24, 48 
and 72 h, CCK-8 was added and the absorbance was meas-
ured at 450 nm (Thermo, USA) after incubating for another 
2 h. The OD was calculated as mean ± SD of three measure-
ments per sample.
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Western blotting

Fourty-eight hours after SALL4-siRNA and negative con-
trol siRNA transfection or 24 h before addition of PTEN 
inhibitors pten (bpv), the whole protein lysate was prepared 
from cells by radioimmunoprecipitation assay lysis buffer 
containing 50 mM Tris/HCl pH 7.5, 0.1% sodium dodecyl 
sulfate (SDS), 1% Triton-X 100, 0.5–1% sodium deoxy-
cholate, 150 mM sodium chloride, and protease inhibitors 
(Roche). Bicinchoninic acid (BCA) protein assay kit (Beyo-
time Institute of Biotechnology) was used to calculate the 
protein concentration. Equal amounts of protein samples 
were separated with 6–10% SDS-PAGE and transferred 
onto nitrocellulose membrane, under constant voltage of 
60 V. The membrane was blocked with 5% bovine serum 
albumin (BSA) (Amresco, USA) for 2 h at room tempera-
ture, and then incubated with 1:1000 primary antibodies 
overnight at 4 °C and 1:3000 HRP-conjugated secondary 
antibody (Beyotime Institute of Biotechnology) for 2 h fol-
lowed by washing with PBST three times for 5 min each 
time. The signal was detected using enhanced chemilumi-
nescence (ECL) (Thermo). The primary antibodies used in 
this study were anti-SALL4, anti-cyclin D1 (Abcam, Japan), 
anti-PTEN, anti-PI3K, anti-p-PI3K, anti-AKT, anti-p-AKT, 
and anti-GAPDH (CST, USA). Repeated three times this 
experiments.

Immunofluorescence analysis

U87 and U251 cells were transfected with SALL4-siRNA, 
negative control and SALL4-siRNA-bpv, treated with bpv, 
fixed with 4% paraformaldehyde for 30 min, and blocked 
with BSA (Amresco) for 30 min. The cells were incubated 
with anti-PTEN, anti-p-PI3K (CST, USA) primary antibod-
ies at 4 °C overnight, and then incubated with tetrameth-
ylrhodamine isothiocyanate-labeled secondary antibody 
(diluted 1:500) at 37 °C for 30 min. The cells were stained 
with DAPI, and imaged with a fluorescence microscope 
(OLYMPUS BX50/BXFLA/DP70; Olympus Co., Japan). 
Three times independent experiments are repeated.

Statistical analysis

Statistical analyses were conducted with GraphPad, 
PRISM4.0 software (GraphPad, USA) and SPSS 13.0 soft-
ware (SPSS Inc., USA). Student’s t-test or ANOVA were 
used to test the difference between the groups. P < 0.05 was 
considered to be statistically significant.

Results

Expression of SALL4 mRNA in glioma samples 
and non‑tumor brain tissues

qPCR was performed to quantify the expression of SALL4 
in 69 glioma samples and six non-tumor brain tissues. The 
expression of SALL4 was higher in the glioma samples 
than in the non-tumor brain tissues, and increased with 
the increase in degree of malignancy in glioma (P < 0.05; 
Fig. 1a). SALL4 level was detected in different types of 
glioma cell lines(SHG139, SHG44, U87, U251, A172) and 
the more malignant the cell, the higher was the expression 
of SALL4. U87 and U251 cell lines were selected for the 
present study (Fig. 1b).

Relationship between SALL4 and PTEN in glioma

PTEN was shown to be regulated by SALL4 in some types 
of tumors. Li found the cancer suppressor gene PTEN was 
obviously down-regulated in glioma [21]. To estimate the 
effect of SALL4 on PTEN, firstly, the most efficient siRNA 
was selected from the three siRNA sequences (P < 0.05; 
Fig. 2a). Secondly, mRNA of U87 and U251 cells trans-
fected with SALL4-siRNA were used for qRT-PCR, which 
showed that the expression of PTEN was apparently up-
regulated when SALL4 was blocked (P < 0.05; Fig. 2b), 
implying a negative correlation between PTEN and SALL4. 
Western blot also demonstrated that PTEN protein was sig-
nificantly higher in cells transfected with SALL4-siRNA 
as compared to siRNA negative control and blank groups 
(P < 0.05; Fig. 2c, d). Based on these findings, the expres-
sion of SALL4 might suppress the mRNA and protein levels 
of PTEN.

siRNA‑SALL4 reduces proliferation of glioma cells

Rapid proliferation of glioma cells leads to poor progno-
sis and short survival. Cellular proliferation assays in U87 
and U251 cells were conducted using CCK-8 to explore the 
influence SALL4 on growth of glioma cells. SALL4 expres-
sion was decreased after transfection with SALL4-siRNA, 
which in turn resulted in significant decline in proliferation 
of glioma cells transfected with SALL4-siRNA (P < 0.05; 
Fig. 3a, b). However, this inhibition of proliferation was 
reversed by the PTEN inhibitor phen (bpv), here, this group 
we entitled SALL4-siRNA-bpv. Therefore, SALL4 can pro-
mote proliferation of glioma cells, and down-regulation of 
SALL4 could suppress cell growth.
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Down‑regulation of SALL4 could induce cell cycle 
arrest at G1 phase

SALL4 could work as a promoter for tumor formation in 
various human tumors including glioma, but the mechanism 
was unclear. Cell cycle analysis was performed in U87 and 
U251 cells to better understand the cell cycle modulation. 
Outcomes revealed that G1 phase was increased and S phase 
was decreased (P < 0.05; Fig. 3c, d) in cells where SALL4 
was blocked. And in cells with SALL4-siRNA-bpv, the 
repression effect was significantly relieved. Hence, inhi-
bition of SALL4 expression in glioma by SALL4-siRNA 
arrested the cell cycle at G1 phase, and inhibited cell pro-
liferation as seen by increased percentage of G1 phase cells 
and decreased S phase cells.

Down‑regulation of SALL4 could suppress 
the activation of PTEN/PI3K/AKT signaling pathway

Down-regulation of SALL4 could increase the expression 
of PTEN. PTEN is an anti-tumor gene that depresses the 
PI3K/AKT signaling pathway in many cancers, but its role 
in glioma is unknown. In the present study, western blot 
results suggested that p-PI3K, p-AKT and cyclin D1 levels 

in cells transfected with SALL4-siRNA were significantly 
lower than in cells transfected with negative control, while 
the levels were moderate in SALL4-siRNA-bpv transfected 
cells (P < 0.05; Fig. 4a). Therefore, down-regulation of 
SALL4 expression suppressed activation of PTEN/PI3K/
AKT pathway, which in turn impeded cell proliferation.

PTEN and p‑PI3K level was altered after blocking 
SALL4 in glioma cells

Immunohistochemistry showed that the expression of PTEN 
was increased, and p-PI3K was decreased in U87 and U251 
cells after knocking down SALL4 as compared to the nega-
tive control group. When PTEN inhibitor phen (bpv) was 
added to the cells transfected with SALL4-siRNA, the pro-
tein level was similar to the negative control group (P < 0.05; 
Fig. 5a–d).

Discussion

SALL4 is known to be abnormally expressed in multiple 
human tumors. In our study, abnormal expression of SALL4 
was confirmed in glioma samples. Furthermore, blocking 

Fig. 1  a shows qRT-PCR analysis (data were reported as  2−△△CT) of 
the expression of SALL4 in six non-tumor brain tissues and 69 gli-
oma tissues. SALL4 expression was markedly higher in glioma than 
in non-tumor brain tissues and increased with the increase in degree 
of malignancy in glioma. b SALL4 expression in glioma cell lines 

was up-regulated as compared to normal brain tissues (NBT includ-
ing N1, N2 and N3). N1, N2 and N3 small nuclear RNA was used as 
an internal control. *P < 0.05, **P < 0.01. Higher grade glioma cells 
had higher level of SALL4
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SALL4 increased PTEN expression and restrained the acti-
vation of PI3K/AKT pathway, thus suppressing cellular 
growth and proliferation of glioma.

SALL4 is expressed in the early stages of fetal develop-
ment, and then diminishes as differentiation proceeds, with 
very low levels found in adults [22]. Up- or down-regulation 
of SALL4 is involved in cell proliferation, invasion, drug 
resistance, apoptosis, and other processes in some malig-
nancies by targeting related genes [2, 23–26]. Owing to the 
strong proliferative function of SALL4 on cells and tissues, 
its correlation with various tumors was examined. SALL4 
was aberrantly elevated in multiple carcinomas, such as leu-
kemia, germ cell tumors, liver cancer and gastric cancer [2, 
27, 28], acting as an oncogene and biomarker [23]. AJAY 
considered that SALL4 may be an extremely useful diagnos-
tic marker in lung cancer. SALL4 played an important role 

in ESCs and human tumors. Abnormally high expression of 
SALL4 was closely related to tumor formation and progno-
sis in hematopoiesis and leukemogenesis, but SALL4 was 
also required for DNA damage response in ESCs, ensuring 
their stability during expansion [29]. SALL4 was a potent 
stimulator for the expansion of human hematopoietic stem/
progenitor cells, esophageal squamous cell and gastric can-
cers [30, 31]. Over-expression of SALL4 enhanced gastric 
cancer cell proliferation and migration, whereas knocking 
down SALL4 reversed these effects [27]. Park found that 
SALL4 expression was significantly associated with a poor 
overall survival as compared to SALL4-negative HCCs [32], 
and implied poor prognosis in human hepatocellular and 
endometrial cancers. Down-regulation of SALL4 expression 
using small-hairpin RNA led to decreased in vitro myeloid 
colony-forming abilities and impaired in vivo engraftment 

Fig. 2  a The inhibitory effect of three siRNA sequences on SALL4 
level in U87 and U251 cells. b Blocking SALL4 with different 
siRNA sequences upregulated PTEN in siRNA level. c, d Western 

blot showed that suppression of SALL4 by SALL4-siRNA increased 
PTEN protein expression (*P < 0.05)



268 J Neurooncol (2017) 135:263–272

1 3

in normal primary CD34+ cells [33]. SALL4 is a therapeutic 
target in intrahepatic cholangiocarcinoma (ICC) and endo-
metrial cancer. However, its underlying mechanism dur-
ing the development of ESCs and human tumors remains 
indistinct. Accumulating evidence reveals a crucial role for 
SALL4 in leukemogenesis due to its ability to promote pro-
liferation and participation in Wnt/β-catenin pathways [34]. 
Wang believed that regulating NANOG, OCT4, and SOX2 
may account for maintenance of pluripotent and self-renewal 
properties of ESCs. Hong W and Lauberth SM confirmed 
that by recruiting Mi-2/Nucleosome Remodeling and Dea-
cetylase (NuRD) complex, SALL4 mediated transcription to 
impact cell growth [20].

PI3K/AKT signaling is a classical pathway involved 
in the regulation of tumorigenesis, hypoxia-induced VM 

formation, migration, invasion, and proliferation due 
to increase in the expression of phosphorylated EGFR 
(pEGFR), PI3K (p-PI3K), and AKT (p-AKT) [35–38]. 
Inhibitors of PI3K, for example, LY 294002 and PTEN, 
blocked the PI3K/AKT signaling and suppressed growth of 
diverse malignant tumors, including gliomas [14, 39]. Phen 
(bpv) is a known PTEN inhibitor that antagonizes PTEN 
function, and reverses the effect of PTEN as a cancer sup-
pressor gene. Phosphorylated PI3K/AKT can promote cell 
growth and decrease apoptosis via increased Bcl-2/BAX 
ratio in human chondrosarcoma (CS) [40]. Cyclin D1 can 
be induced by growth factors through activation of various 
signaling pathways including PI3K/AKT, NF-kB [41–43], 
and p-AKT plays a crucial role in inducing cell proliferation 
by modulation of cyclin D1 in primary murine keratinocytes 

Fig. 3  a Cell counting kit (CCK-8) was used to detect cellular pro-
liferation in U87 and U251 cells at 6, 24, 48, and 72 h after siRNA 
transfection. b Shows the OD value at the time of 72 h and data were 
reported as means ± SD (*P < 0.01). c, d Blocking SALL4 induced 

U87 and U251 at the time of 48 h, cell cycle arrest in the G1 phase, 
which decreased cells in the S phase, increased cells in the G1 phase. 
Cell cycle in the cells treated with SALL4-siRNA and phen (bpv) 
were similar to blank and negative control groups (P < 0.05)
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[43, 44]. In the present study, PTEN expression was up- 
regulation when SALL4 was reduced by siRNA-SALL4, 
as a result, the inhibitory action of PTEN on PI3K/AKT 
signaling was weaken, thus receded the cycling D1 level 
which arrested the cell cycle at G1 phase, regulating glioma 
proliferation. So, our study disclosed that SALL4 can inhibit 
PTEN and promote PI3K/AKT pathway in glioma, similar 
to leukemia [24].

In our text, SALL4 was found lower expression in some 
kinds of glioma samples than non-tumor brain tissues, a cer-
tain extent like the SALL4-positive immunoreactivity was 
58% in total 102 intrahepatic cholangiocarcinoma cases [45]. 
Expression has been also reported SALL4 does not seem 
to be expressed in all trophoblastic tumors [46], individual 
genetic difference may be responsible for this phenomenon 
based on our relatively small sample, the more samples the 
more valuable outcome can be obtain.

Conclusion

Our study showed significantly high expression of SALL4 
mRNA in glioma specimens as compared to non-tumor sam-
ples using RT-PCR. Blocking SALL4 using SALL4-siRNA 
decreased proliferation of U87 and U251 cells, which was 
reversed by the addition of PTEN inhibitor phen (bpv). Fur-
thermore, marked increase in PTEN mRNA and protein 
levels was seen in cells treated with siRNA-SALL4. These 
findings suggest that SALL4 can facilitate cell growth by 
suppressing PTEN expression in glioma cell lines. The PI3K/
AKT activity was decreased in cells treated with pten (bpv) 
after transfecting with SALL4-siRNA, whereby p-PI3K and 
p-AKT protein levels were significantly increased as com-
pared to cells transfected with SALL4-siRNA only. There-
fore, blocking SALL4 could promote PTEN expression and 
restrain PI3K/AKT activity resulting in suppression of cell 
growth.

Fig. 4  a The expression of SALL4, PTEN, PI3K, p-PI3K, AKT, 
p-AKT, cyclin D1 and GAPDH in different groups were detected by 
western blot analysis. The activity of PI3K/AKT signaling pathway 

was obviously decreased in cells transfected with SALL4-siRNA. b 
Immunofluorescence analysis data showed the expression of PTEN 
and p-PI3K after different treatment showed by bar graph
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