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Abstract
Seedling size-related functional attributes of Mediterranean forest species are critical traits 
to be considered in nursery practices aimed at improving the survival and performance of 
seedlings exposed to summer drought in dryland reforestation projects. We looked at how 
nursery light regimes and nitrogen fertilization affected the survival and performance of 
Pinus pinaster Ait. under contrasting post-planting watering regimes. Seedlings grown in 
the nursery for 13 months were given low or high nitrogen doses and exposed to three light 
regimes (full sun, medium light and low light). After outplanting, half of the seedlings were 
watered fortnightly during the hottest months of the first summer and the other half were 
left unwatered. Seedling size-related variables (shoot height, basal diameter, stem volume 
and sturdiness quotient) were measured at the beginning and at the end of the study, and 
summer drought survival was checked three times. Our results showed that fertilization and 
the nursery light regime influenced initial seedling quality and transplant stress. Post-plant-
ing first summer watering also increased seedling survival probability. The medium-light 
and especially the full-sunlight regimes in the nursery decreased the probability of seedling 
mortality after outplanting. However, a low-light regime in the nursery negatively affected 
plant traits and increased the probability of post-planting seedling mortality. In comparison 
with low-N seedlings, high-N fertilization increased post-planting stress (evaluated in the 
change of sturdiness quotient after one field growth season), but did not affect survival.
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Introduction

Forest and landscape restoration seeks to recover ecological functionality and ecosystem 
services, which play an important economic role and maximize human well-being world-
wide (Lavorel 2013; César et al. 2021). In places with seasonal drought, successful forest 
restoration by planting seedlings to artificially regenerate managed stands (hereafter plan-
tations) is heavily dependent on early cultivation practices (Trubat et al. 2010; Shi et al. 
2019) and how seedling attributes develop in imposed nursery conditions (Villar-Salvador 
et al. 2004, 2013; Trubat et al. 2010, 2011; Cortina et al. 2013; Grossnickle and McDon-
ald 2018a). Successful forest restoration requires seedlings with optimal growth potential 
(Grossnickle and McDonalds 2018b). Restoration success can be improved by producing 
in-nursery phenotypes with morphological drought-avoidance traits through controlled 
light and fertilization regimes (Oliet et al. 2009; Trubat et al. 2010; Rodríguez-García and 
Bravo 2013; Merine et al. 2015; Kildisheva et al. 2017; Shi et al. 2019). Examples of such 
traits include high root collar diameter, low shoot height and sturdiness quotient and large 
stem and root volume (Ovalle et al. 2016), which are also key attributes in post-planting 
response (Oliet et al. 2009). For example, maximum plant height is related to light acqui-
sition, competitive vigour, reproductive investment and dispersal distance (Ostertag et al. 
2015). Seedling stature or relative position in the forest can also influence species interac-
tions, growth, and survival (Rodríguez-García et  al. 2011a, b) at different trophic levels 
(Lavorel 2013; Ostertag et al. 2015; Andivia et al. 2021).

Knowledge of how nursery conditions affect post-planting treatments to promote seed-
ling survival and performance in dry continental Mediterranean forests it is still scarce 
and more research is needed. Some studies indicate that nursery-cultured N-rich seedlings 
grow larger and better, with higher survival and greater competitive ability in the field after 
outplanting (Puértolas et al. 2003; Villar-Salvador et al. 2004, 2012, 2013; Fernández et al. 
2007; Oliet et al. 2009, 2013; Cuesta et al. 2010a, b). However, the impact of nursery cul-
turing techniques on the subsequent performance of outplanted seedlings could be site-
specific (Luis et al. 2009; Cortina et al. 2013; Ovalle et al. 2016; Oliet et al. 2021) dur-
ing the early establishment stage. Post-planting first-year summer irrigation generally has 
a positive effect on seedling performance and survival (Ruano et al. 2009, 2015; Pardos 
et al. 2015). Relevant research also emphasizes the importance of irradiance aspects such 
as photoperiod, PFD (photon flux density) and the amount of incident light per day used 
to cultivate tree species in the nursery (Bazzaz and Wayne 1994; Luo et  al. 2021). For 
example, seedlings grown in shade have a higher sturdiness quotient, greater imbalance in 
the shoot/root ratio (Luis et al. 2009) and suffer photoinhibition when transferred to high 
light conditions (Puértolas et al. 2009). However, if seedlings can be grown with shade in 
the nursery without impairing their quality, a great amount of water would be saved (see 
Puértolas et al. 2009).

Maritime pine (Pinus pinaster Ait) is a Mediterranean forest species of great ecological 
and economic importance. It has been planted around the world because it provides a wide 
array of ecosystem services (Ruano et al. 2015). In this study, we examined Maritime pine 
seedling stock characteristics to determine how nursery light, fertilization and post-plant-
ing first-year summer irrigation affected seedling survival and performance in the field. We 
hypothesized that (1) using nutrient-rich soil would produce larger seedlings, but differ-
ences in field survival would depend on nursery light conditions; (2) there would be differ-
ences in survival and growth among full-sunlight, medium-light and low-light nutrient-rich 
seedlings; (3) field survival and growth would be higher in watered post-planting seedlings.
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Material and methods

Seedling production and experimental design in the nursery

Maritime pine seedlings from the Cuéllar provenance (41° 10′ N–4° 30′ W) in Segovia 
(Castile-Leon, central Spain) were used in this study (Alía et al. 1996, 2009). The seedlings 
were grown from commercial seeds (harvest year 2003) received in early January 2006 
from the Centro Nacional de Mejora Forestal (INIA, National Centre for Forest Improve-
ment, Madrid, Spain) in a nursery at the University of Valladolid in Palencia (central 
Spain, 42° 01′ N–4° 32′ W, 739 m.a.s.l.) under continental Mediterranean climate condi-
tions (annual precipitation and average temperature of 450 mm and 12 °C, respectively). 
They were cultivated along with seedlings from nine other provenances, which were used 
for a study about Maritime pine seedling plasticity (Rodríguez-García and Bravo 2013).

First, the seeds were stratified for 6 weeks (from 17 January 2006 to 28 February 2006) 
in aluminium trays with moist sterile sand (Fig. S1A) in a cold room at 5 °C (www. miteco. 
gob. es). After stratification, the sand was removed by washing the seedlings with abundant 
sterile water. Then, the seed coats were sterilized by immersing the seeds for 10 min in a 
20% solution of Domestos (a commercial soapy bleach composed of sodium hypochlo-
rite with 4.3% active chlorine solution along with non-ionic and cationic surfactants, soap 
and perfume). They were washed again, kept in sterile water for 48 h, then sown in 12 cm 
diameter Petri dishes (20 seeds/dish) on two layers of sterile filter paper saturated with 
demineralized water. The dishes were placed in a germination chamber (Fig. S1B) on 3 
March 2006 in a randomized design under controlled photoperiod (14 h light/10 h dark), 
temperature (21 °C day/17 °C night) and relative humidity (60% day and night) conditions. 
The seeds were examined every three days and water was added to keep the filter paper 
saturated. After two weeks, all the seeds needed for the trial had germinated (the radicle 
could be seen, Fig. S1C).

Following germination and initial radicle growth (1–3  cm long), the seedlings were 
transferred to Arnabat® 48 cavity forest trays (308  cm3, Fig. S1D and S1E). from 17 
March to 1 April 2006. The seedlings planted in the 24 central cavities of the trays were 
used for the experiment while seedlings planted in the border cavities were excluded (as in 
Rodríguez-García and Bravo 2013). Each cavity was 18  cm2 with vertical, anti-spiralling 
ribs along the inside walls. The trays were filled with a 3:1 (v:v) peat-vermiculite mixture, 
to which 3.5 kg/m3 of Plantacote® NPK (14-8-15) slow release fertilizer (SRF) was added 
following commercial dose indications for normal nutrition of conifer cultures remain-
ing longer than 6 months in trays. The range suggested by the commercial brand varied 
between 3.0 and 7 kg/m3. The formula has a stated equivalent nutrient release period of 
8–9 months at 21 °C (as in Rodríguez-García and Bravo 2013).

The forest trays were kept inside glazed, periodically ventilated greenhouse instal-
lations for two months to prevent frost damage (which is quite common in Palencia), 
then taken out to a plot of land next to the greenhouse in early June 2006 (Fig. S1F). In 
a three-block, split-plot experimental design, a light gradient consisting of two extremes 
and one intermediate level was randomly established per block (Fig. S2). The light plots 
were oriented north–south in three 15 m long parallel lines or replicate blocks. The dis-
tance between the blocks was 2 m. Each block had three main plots: a high-light (HL) plot 
exposed to full sun irradiance with an average photosynthetic photon flux density (PPFD) 
of 337.1 µmol  m2  s−1, a medium-light plot (ML, average PPFD of 120.6 µmol  m2  s1), and 
a low-light plot (LL, average PPFD of 30.0  µmol   m2   s−1). The ML and LL plots were 

http://www.miteco.gob.es
http://www.miteco.gob.es
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established by constructing shade houses consisting of wire tents (2.60  m2 × 1.90 m high) 
covered with one (ML) or two (LL) layers of black raffia mesh. The shade houses reduced 
sun irradiance by 64% and 91% for ML and LL, respectively. PPFD was measured in each 
light plot with cross-calibrated radiation sensors (Li-190SA PAR Quantum Sensors; Li-
COR Biosciences, USA) connected to a data logger that measured conditions every 10 min 
and gathered the data every hour. PPFD measurements were taken over an entire 24  h 
period on 1 or 2 sunny days in June, July, August and September, 2006 (Rodríguez-García 
and Bravo 2013).

Two forest trays from the Cuéllar provenance were placed in each light plot. Then, a 
two-level nutrient treatment (low N and high N) was implemented in which half the trays 
in each light plot were randomly assigned and administered a low dose of nitrogen, while 
the other half received a higher dose. A total of 432 Cuéllar seedlings were used (24 usa-
ble seedlings per tray × 3-level light treatment × 2-level nutrient treatment × 3 blocks). The 
amount of SRF added to the substrate when the trays were filled was established as the 
low-N control treatment. It corresponds to standard use of slow-release fertilizer for coni-
fer cultures with medium nutrient needs that would remain longer than 6 months in trays. 
On average, each cavity received 222 mg N, 127 mg P and 238 mg K. The high-N (2× the 
low-N dose) treatment was obtained by adding N to the control substrate in a concentrated 
NH4NO3 solution (32%;1.3 g/mL) that was divided into 18 equal weekly doses (early June 
to mid-November 2006) and administered to the other half of the trays. Thus, the total N 
administered was 222 mg per low-N seedling and 444 mg per high-N seedling. Seedlings 
were kept well-watered, and the ML, LL and full-sunlight plots had similar average rela-
tive air humidity (around 69%) and air temperature (15 °C) throughout the experiment (see 
Rodríguez-García and Bravo 2013 for a detailed description).

Outplanting and field site conditions

In May 2007, we randomly selected 120 seedlings (20 seedlings per combination of nurs-
ery light x fertilization; 7 plants per combination were selected from two of the blocks and 
6 from the third one) and transplanted them in an experimental field site located in Cuéllar 
(41° 22′ N, 4° 29′ W; 749 m.a.s.l.). Previous analyses (Rodríguez-García and Bravo 2013) 
indicated no significant effects of the block on plant growth in the nursery, so this factor 
was not included in our study. The site was a flat, natural P. pinaster stand with sandy, 
acidic, Entisol soil (Rodríguez-García et al. 2010) located in a clear-cut area (harvested in 
2004) without regeneration at the time of plantation. The continental Mediterranean cli-
mate features drought in summer (June to September), frost in winter, and rainfall mainly 
in spring and late autumn. Mean annual precipitation is 610 mm, and mean annual temper-
ature is 11.2 °C (Ruano et al. 2015; data from Sistema de Clasificación Bioclimática Mun-
dial (1996–2009)). The floristic community is mainly composed of grassland species with 
small patches of low shrub species and isolated Pinus pinea trees scattered around the site.

The plantation surface covered 0.48 ha (240 m × 20 m). Seedlings were planted manu-
ally by making planting holes (0.20 m wide × 0.45 m deep) distributed 2 m × 2 m apart (a 
density of 2500 seedlings/ha) to prevent interspecific competition for soil water (Ovalle 
et al. 2016). Ten rows of 12 seedlings each were planted at the experimental site on 1 May 
2007 (Fig. S3). The Pinus pinaster plantation density in our study is typical for stands 
in Castile-Leon, where reforestation planting density does not fall below 2000 plants/ha. 
The main objective of this approach is to dominate existing shrubs as much as possible or 
quickly cover completely bare soils that need protection (Serrada et al. 2008).
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Post‑planting first summer irrigation and water availability

Watering treatments began in June 2007 and ended in mid-September 2007. The experi-
mental unit and sampling unit were each individual seedling. Half of the experimental units 
(60 seedlings; three levels of nursery light x two levels of nursery nitrogen × 10 replicates) 
were randomly assigned the summer watering (SW) treatment while the other half (60 
seedlings) received no summer watering (NSW). The homogeneous conditions of the study 
site (sandy soil, flat terrain, not stony, same herbaceous vegetation and no tree canopy) 
allowed us to assign the treatments without blocking. SW seedlings were watered seven 
times, with 2 l of water every two weeks (Ruano et al. 2009) during the period mentioned. 
Each watering event was equivalent to a rainfall of 8 l/m2 and each seedling received a total 
of 56 l/m2. The total amount of rainfall in the period from 1 June to 15 September 2007 
was 104 mm (Fig. 1). So, the cumulative summer water availability was 160 mm for the 
SW seedlings (irrigation plus rainfall), and 104 mm for the NSW seedlings (rainfall only). 
Climate data was obtained from the nearest meteorological station (SG01-Gomezserracín; 
Segovia), which is located 20 km from the experimental site and managed by the Instituto 
Tecnológico Agrario de Castilla y León (Agricultural Technological Institute of Castile-
Leon) (www. infor iego. org).

Data collection and variables assessed

Seedling stock (morphological) attributes

At the time of transplant (2007), seedling root collar diameter (hereafter basal diameter; d, 
cm) and shoot height (h, cm) were measured. We calculated the sturdiness quotient (h/d) 
and stem volume (v) using the formula for a cone ( �d

2

12
xh ,  cm3).

Fig. 1  Monthly mean, minimum and maximum air temperature, and total precipitation at the trial site dur-
ing the 2007–2008 growing season (Source: Instituto Tecnológico Agrario de Castilla y León, Gómezser-
racín station, Segovia, Spain)

http://www.inforiego.org
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Planting and watering response: growth and survival

One growing season after plantation, that is, 8  months after the first-summer watering 
treatment, and before the plants faced their second summer in the field, the seedlings were 
measured for shoot height and groundline stem diameter a second time and evaluated 
for short-term mortality (January 2008). The sturdiness quotient, stem volume and rela-
tive growth (RG) in height, basal diameter and stem volume were calculated as the height, 
diameter and stem volume increment observed in one growing season, using the formula 
RG =  (X1−X0)/(X0), where  X1 and  X0 are the final and initial variables, respectively. The 
variables analysed (RG,  X1 and  X0) were subjected to a natural logarithm transformation 
to make relationships linear (Lenssen et  al. 2003). After this second measurement, we 
checked the seedlings for medium-term mortality after three years (June 2010) and long-
term mortality after ten years (February 2017) to determine plantation success.

Statistical analysis

First, we carried out a descriptive analysis and verified compliance with normality, homo-
geneity of variance, and linearity assumptions for all seedling size-related variables using 
Shapiro–Wilk (1965) and Levene (1960) tests. Prior to analysis, all variables were trans-
formed to their natural logarithms because they did not meet normality and homoscedastic-
ity assumptions. We examined the linear relationships between all variables for nursery and 
field experiments by means of Pearson correlation coefficients (r). Relationships were con-
sidered significant when P < 0.05. Coefficients r ≤ 0.35 were considered to represent low 
or weak correlations; those r from 0.36 to 0.67 represented modest or moderate correla-
tions, those r from 0.68 to 1.0 indicated strong or high correlations and r coefficients ≥ 0.90 
denoted very high correlations (Taylor 1990).

Second, differences in seedling morphological attributes before planting and one grow-
ing season after outplanting were assessed using General Linear Models with a split-plot 
design (Eq. 1).

where, �i , �j and (��)ij represent the whole plot and �k , (��)ik, (��)jk and (���)ijk represent 
the split plot. Here, �i , �j and �k , are block effect, factor A (light) and factor B (fertilization) 
effect, respectively. The sums of squares for the factors are computed as in the three-way 
analysis of variance without replication. In the first case, we tested the light and fertili-
zation effects. The main effects of light were tested against the block x light interaction 
term due to the split-plot nursery design, but block showed no significant effects. In the 
second General Linear Model, we tested the effects of light, fertilization and watering on 
morphology.

Planting stress occurs when seedlings are not fully coupled into the hydrologic cycle 
(Grossnickle and Ivetic 2022). The Transplant Stress Index, TSI, (South and Zwolinski 
1997) can be used to estimate the intensity and length of planting stress (or transplant 
shock due to adjustment to a new environment). With time, the seedling establishes 
new roots and the direct effect of transplanting is gradually reduced. At some point in 
time, the seedling adjusts fully and subsequent growth is the same as that of a younger, 

(1)Yijk = � + �i + �j + (��)ij + �k + (��)ik + (��)jk + (���)ijk + �ijk

⎧
⎪⎨⎪⎩

i = 1, 2,… , r

j = 1, 2,… , a

k = 1, 2,… , b
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non-transplanted seedling of equivalent size (South and Zwolinski 1997). TSI is defined 
as the slope of the linear relationship between the study variable at the beginning of the 
growth period and the increment of that variable. Negative or zero slopes indicate that 
seedlings have suffered a certain amount of post-planting stress.

In this study, the slope (regression coefficient) of the relationships between height, 
basal diameter, sturdiness quotient and stem volume at planting and those same var-
iables after the first growth period (1  year) in the field—the Transplant Stress Index 
(TSI)—were checked with an analysis of covariance (ANCOVA). Height growth and 
basal diameter growth were used as dependent variables, the effect of light, nitrogen and 
post-planting watering as categorical factors (levels of treatment), and initial height and 
initial basal diameter as the independent variables (covariates) in the analyses. As block 
effect was negligible compared with treatments’ effects, it was not considered in the 
analyses. The aim was to separate the effect of seedling height and basal diameter at the 
beginning of the growth period from the effects of light, nitrogen and post-planting lev-
els of treatment. As the levels of treatments (sets) were much related to initial height and 
basal diameter, ANCOVA adjustment removed the partial set effect due to initial height 
and basal diameter from the overall effects. Reciprocally, this allowed us to determine 
the relationships between initial height and basal diameter and growth in these variables 
by adjusting for the set effect. The common regression coefficient obtained gives a TSI 
value for each nursery light, nursery fertilization and post-planting watering level. This 
procedure helps to correct the effects of combining different sets when calculating TSI. 
This TSI value is called adjusted TSI in the text  (TSIadj) (see Puertolas et al. 2003). The 
model (Eq. 2) was:

where Yij = growth of seedling j from set i, � = growth overall mean, �i = effect of set I 
on growth, � = common regression coefficient  (TSIadj), xij = initial height/basal diameter 
mean of set i, X.. = initial height/basal diameter overall mean, �ij = error term.

Finally, we examined the relationship between post-planting survival probability, 
nursery culturing effects, field irrigation treatment effects and seedling stock (morpho-
logical) attributes (h, d, h/t and v) using Generalized Linear Models (GLZ; McCullagh 
and Nelder 1989). The ‘survival of first summer conditions’ response variable (Eq. 3) 
was fitted to a binomial distribution with the Logit link function (logistic regression, 
Eq. 4). The response variable can take only one of two possible values, denoted by 0 
and 1. Therefore:

Eq. (3) express the probabilities of ‘failure’ and ‘success’, respectively, while the logistic 
regression model can be written symbolically as Eq. 4,

where �, �, � refer to categorical factors and � refer to continuous predictors. Categorical 
factors included light environment, N fertilization and post-planting watering. Seedling 
stock attributes were considered as continuous independent predictors. Two models were 
tested; one included seedling stock attributes as continuous independent predictors and the 
other did not. The final model was chosen based on its goodness of fit with Akaike infor-
mation criterion (AIC, Johnson and Omland 2004) and statistical stability, as evaluated 

(2)Yij = � + �i + �
(
xij − X..

)
+ �ij

(3)pr
(
Yi = 0

)
= 1 − �i; pr

(
Yi = 1

)
= �i

(4)logit
(
�ijkl

)
= � + �i + �j + �k + �l
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by ratios of deviance to respective degrees of freedom. After assessing the role of nursery 
culturing practices and watering in first-summer survival, we evaluated the persistence of 
significant effects on short- and long-term survival using GLZ models, following the same 
procedures. All analyses were carried out using Statistica 6.0 and SPSS 15.0 software.

Results

Effects of nursery fertilization and light on seedling stock attributes prior to field 
planting

At the end of the nursery cultivation period, 13 months after sowing, we saw that seed-
ling morphological attributes differed significantly according to light and fertilization treat-
ments (Table 1). The clearest effects were observed for low-light, high-N conditions and for 
medium-light conditions (Table 2). In general, greater shade was correlated with increased 
shoot height and sturdiness quotient but with decreased basal diameter and stem volume. 
Meanwhile, the effect of fertilization on seedling nursery attributes varied according to the 
light regime in the nursery (Tables 1 and 2). Fertilization in high light did not alter seedling 
shoot height (mean height of 30 cm, with a 95% confidence interval [CI] of 27.4–32.2 cm) 
and medium-light conditions (mean height of 38  cm; CI of 35.4–40.6  cm). In contrast, 
high-N fertilization significantly reduced seedling shoot height by 22% (30 cm) compared 
to both low-N, low-light seedlings, and medium-light seedlings (Table 2). The shoot height 
of the nutrient-rich low-light seedlings was similar (without significant differences) to that 
of seedlings grown in full sunlight (Table 2).

Basal diameter did not vary between high-N and low-N seedlings (Table 1 and Table 2) 
that received full sunlight and medium light (0.45 cm and 0.42 cm, respectively). In low-
light conditions, however, basal diameter in high-N seedlings decreased by 15% (0.29 cm) 
compared to low-N seedlings (0.34 cm). High-N fertilization reduced the sturdiness quo-
tient, but it was only significant for seedlings grown in medium-light conditions (Table 2). 
In contrast, seedling stem volume increased (although P > 0.05) with high-N fertilization 
in full-sunlight and medium-light conditions (by around 0.3 and 0.4  cm3, respectively). 
Despite this, stem volume was significantly smaller—around 42% (0.7  cm3) smaller—in 
seedlings grown in high-N, low-light conditions.

Table 1  Effects of nursery light and fertilization on (one-year-old) Pinus pinaster seedling morphological 
attributes

L = Light; N = Nitrogen fertilization; HL = high light or full sunlight (average PPFD of 337.1 µmol  m2  s−1); 
ML = medium light (average PPFD of 120.6  µmol   m2   s−1); LL = low light (average PPFD of 
30.0 µmol  m2  s−1); low N = 222 mg/seedling; high N = 444 mg/seedling
Summary of the General Linear Models. Significant effects (P < 0.05) in the models are in bold

Nursery model Intercept Light (L) Nitrogen (N) L × N

Response variables R2
adj F P F P F P F P

Shoot height (h0, cm) 0.37 5051 0.000 24.32 0.000 7.19 0.008 9.20 0.000
Basal diameter (d0, cm) 0.52 5781 0.000 56.39 0.000 1.33 0.251 9.16 0.000
Sturdiness quotient (h0/t0) 0.30 4618 0.000 87.87 0.000 9.17 0.003 0.21 0.808
Stem volume (v0,  cm3) 0.60 710 0.000 20.41 0.000 0.74 0.391 7.05 0.001
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Total shoot height and the groundline basal diameter had a significant but low correla-
tion (r = 0.20; P = 0.026), while the correlation of total shoot height with the sturdiness 
quotient (r = 0.57; P = 0.000) and stem volume (r = 0.53; P = 0.000) was moderately signifi-
cant. A moderate negative correlation between basal diameter and the sturdiness quotient 
(r =−0.66; P = 0.000) was observed, along with a positive and strong correlation between 
basal diameter and stem volume (r = 0.90; P = 0.000). We also observed a weak correlation 
between high sturdiness quotient and low stem volume (r =−0.32; P = 0.000).

Evaluation of seedling functional traits one year after planting

One growth season after outplanting (May 2008), we observed a significant effect of post-
planting first-summer watering on shoot height only (Table 3 and Fig. S4). However, light 
availability in the nursery significantly affected all seedling morphological attributes. 
Shoot height and the sturdiness quotient increased with shade, while basal diameter and 
stem volume followed the reverse pattern. Shoot height in seedlings grown in medium and 
low light was 15% higher than those grown in full sunlight, but no significant differences 
were observed between ML and HL, and between ML and LL (Fig. 2a). Consistently, the 
sturdiness quotient was 35% and 37% higher (index of 57 and 58, respectively) among 
seedlings grown in medium and low nursery light environments, when compared to full-
sunlight seedlings (index of 42) (Fig. 2b). A moderate reduction of 12% (Fig. 3a) in the 
basal diameter of medium-light seedlings (0.69 cm) was observed, along with a sharper 
reduction of 24% for seedlings grown in low-light nursery conditions (0.59 cm), compared 
to seedlings that received full sunlight (0.78 cm). Seedling stem volume (Fig. 3b) was also 
appreciably lower in seedlings grown under shade in the nursery. Medium light decreased 
stem volume by around 7% (4.89  cm3) with respect to full-sunlight seedlings (5.25  cm3), 
but no significant differences were observed. Meanwhile, stem volume was significantly 
lower, (39% or 3.19  cm3) among seedlings grown in low-light versus full-sunlight nurs-
ery conditions. The basal diameter was significantly increased (7%) with high-N fertiliza-
tion compared to low-N seedlings. The seedling sturdiness quotient (49) was significantly 
reduced (11%) with high-N fertilization (Table 3 and Fig. S5) compared to low-N seedlings 
(55). This was due to a 16% increase in basal diameter (average of 0.71 cm) in the absence 
of any notable effects of high-N fertilization on shoot height.

One year after planting in the field, significant correlations were still observed among 
all morphological attributes except shoot height and basal diameter. The sturdiness quotient 
correlated positively and highly with shoot height (r = 0.65; P = 0.000) and negatively with 
basal diameter (r =−0.63; P = 0.000). Meanwhile, stem volume correlated significantly and 
very highly with basal diameter (r = 0.89; P = 0.000), but negatively and weakly with the 
sturdiness quotient (r =−0.25; P = 0.016).

ANCOVA analyses and the regression coefficients of the linear regression models for 
pre-transplant size and post-transplant annual relative growth indicated transplant stress 
(Tables 4 and 5). The initial height and a low-light regime in the nursery significantly and 
negatively (negative ß) affected annual relative growth in height. The initial basal diameter 
at planting also negatively affected annual relative growth in basal diameter. However, a 
full-sunlight regime at the nursery positively affected relative growth in basal diameter. In 
contrast, initial seedling stem volume did not affect relative growth in volume (Table 5), 
which was not affected by the nursery treatments and watering in the field. Analysis of the 
sturdiness quotient showed a significant and negative coefficient (Table 5). In other words, 
a higher index at the time of transplant did not contribute to a higher quotient one year 
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later. However, low-N fertilization and medium-light conditions in the nursery significantly 
and positively influenced the relative increment in seedling sturdiness after transplanting.

Field survival

Short term (1 year after transplanting)

One year after planting, field survival among seedlings that had been watered in the 
summer of the first year after planting was 23% higher (Fig.  4) than for unwatered 
seedlings (88% and 65%, respectively). Regarding nursery treatments and the effect 
of the initial seedling stock attributes, we found the following. The first GLZ model 
(Table  6), which included seedling morphological variables (h0, d0, h0/t0 and v0) as 
continuous predictors and watering, fertilization, and light treatments as categorical 
predictors, showed no significant effects of nursery light and fertilization. However, 
no summer watering (NSW) after planting significantly increased the probability of 

Fig. 2  Effects of nursery light on Pinus pinaster a seedling shoot height  (h1, cm) and b sturdiness quo-
tient  (h1/d1) one field-growth season after outplanting in a dry area. Letters indicate significant differences 
(P < 0.05)

Fig. 3  Effects of nursery light on Pinus pinaster a seedling basal diameter  (d1, cm) and b stem volume 
 (v1,  cm3) one field-growth season after outplanting in a dry area. Letters indicate significant differences 
(P < 0.05)
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mortality during the first summer (estimate = 0.959; Wald statistic = 9.927; P = 0.000). 
In the second GLZ model, which did not include seedling morphological attrib-
utes (Table  6), the effect of no watering remained significant (AIC = 117.46; esti-
mate = 0.779; Wald statistic = 9.149; P = 0.002). However, the model revealed differ-
ences in field survival between seedlings grown in nursery with full sunlight and the 
other light treatments. The probability of mortality among seedlings grown in full sun-
light was significantly lower (estimate =−0.942; Wald statistic = 5.442; P = 0.019) than 
that of seedlings grown in medium and low light. Then, we tested separately for the 
effect of medium- and low-light regimes on survival and consistently observed that a 
medium-light regime in the nursery decreased the probability of mortality in the field 
(estimate =−0.541; Wald statistic = 4.019; P = 0.045). However, a low-light regime in 
the nursery was associated with increased field mortality (estimate = 1.063; Wald sta-
tistic = 9.591; P = 0.002).

Medium‑term (3 years) and long‑term (10 years) field survival

As shown in Fig.  4, survival had decreased only slightly by 2010. Fertilization in 
the nursery and the post-planting watering treatment had no significant effects on 
seedling survival three years after outplanting. However, the full-sunlight treatment 
in the nursery still significantly decreased the probability of mortality in the field 
(estimate =−0.957; Wald statistic = 10.20; P = 0.001). Seven years after the second 

Table 4  Adjusted Transplant Stress Index  (TSIadj) represented by the regression coefficient (ß ± SE) of the 
Linear Regression Models for the average seedling height before outplanting (initial, h0) and the annual 
relative height growth (RGH) one growing season after outplanting the seedlings in a dry area; and regres-
sion coefficient for the average basal diameter before outplanting (initial, d0) and the annual relative basal 
diameter growth (RGD) one growing season after outplanting the seedlings in a dry area

HL = high light (average PPFD of 337.1 µmol  m2  s−1); ML = medium light (average PPFD of 120.6 µmol 
 m2  s−1); LL = low light (average PPFD of 30.0 µmol  m2  s−1); low N = 222 mg/seedling; high N = 444 mg/
seedling. NSW = no summer watering (104 mm) vs SW = summer watering (160 mm)
Significant effects (P < 0.05) and ß in the models are in bold

Dependent 
variable

Effect Level of independ-
ent variable

vs Level ß ± SE P value

RGH h0 (covariable) − 0.30 ± 0.13 0.027
Nursery light HL LL 0.10 ± 0.14 0.456

ML LL 0.20 ± 0.13 0.126
LL ML − 0.57 ± 0.12 0.000

Nursery Fertilization Low-N High-N 0.08 ± 0.10 0.451
Post-planting watering 0 1 − 0.08 ± 0.11 0.456

RGD d0 (covariable) − 0.85 ± 0.12 0.000
Nursery light HL LL 0.43 ± 0.11 0.000

ML LL − 0.05 ± 0.09 0.585
LL ML − 0.23 ± 0.14 0.109

Nursery Fertilization Low-N High-N − 0.16 ± 0.09 0.067
Post-planting watering 0 1 0.07 ± 0.08 0.432
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evaluation (2017), the survival rate was almost identical to that of the previous evalu-
ation in all seedling groups (Fig. 4). As predicted, a significant effect of nursery light 
on field survival was still observable. Full sunlight in the nursery decreased the prob-
ability of seedling mortality in the field (estimate =−0.924; Wald statistic = 10.11; 
P = 0.001).

Discussion

Nursery regimes and seedling stock attributes

The results obtained in this study support the hypothesis that nursery light regime plays 
a greater part than nursery N fertilization in the performance and morphology of Pinus 
pinaster seedlings. The effect of fertilization was also important but varied according to 
the light regime, because light is needed for the expression of N effects on P. pinaster seed-
ling growth (Rodríguez-García and Bravo 2013) and because expression of light-depend-
ent plasticity depends on nutrient availability (Portsmuth and Niinemets 2007). Although 
high-N fertilization tended to increase shoot height and basal diameter, there were no sig-
nificant differences between high-N and low-N seedlings within each of the light regimes. 
In contrast, the high-N fertilization treatment significantly reduced the sturdiness quotient 
attained by seedlings under medium-light conditions. Under the low-light regime, high-N 

Table 5  Adjusted Transplant Stress Index  (TSIadj) represented by the regression coefficient (ß ± SE) of the 
Linear Regression Models for the average stem volume of the seedings before outplanting (initial, v0) and 
the annual relative growth in stem volume (RGV) one growing season after outplanting the seedlings in a 
dry area; and regression coefficient for the average sturdiness quotient before outplanting (initial, h0/d0) and 
the annual relative change in sturdiness quotient (RCS) one growing season after outplanting the seedlings 
in a dry area

N = Nitrogen fertilization; HL = high light (average PPFD of 337.1 µmol  m2  s−1); ML = medium light (aver-
age PPFD of 120.6 µmol  m2   s−1); LL = low light (average PPFD of 30.0 µmol  m2   s−1); low N = 222 mg/
seedling; high N = 444  mg/seedling. NSW = no summer watering (104  mm) vs SW = summer watering 
(160 mm)
Significant effects (P < 0.05) and ß in the models are in bold

Dep. Var Effect Level of indep. var vs. Level ß ± SE P value

RGV v0 (covariable) 0.06 ± 0.13 0.663
Light HL LL − 0.12 ± 0.11 0.256

ML LL − 0.11 ± 0.11 0.320
LL ML − 0.12 ± 0.15 0.393

Fertilization Low-N High-N − 0.0001 ± 0.10 0.410
Post-planting watering (W) 0 1 0.05 ± 0.11 0.692
W x N 1 × High-N 0 × Low-N 0.08 ± 0.12 0.521

RCS h0/d0 (covariable) − 0.46 ± 0.18 0.012
Light HL LL − 0.32 ± 0.18 0.080

ML LL 0.32 ± 0.11 0.005
LL ML − 0.23 ± 0.14 0.102

Fertilization Low-N High-N 0.22 ± 0.10 0.034
Post-planting watering 0 1 − 0.17 ± 0.10 0.112
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Fig. 4  Survival of Pinus pinaster evaluated 1, 3 and 10  years after outplanting (1 June 2007) for effects 
of nursery fertilization and light regime, and field watering after transplanting. Initially, n = 10 seedlings 
(replicates) per treatment combination of light x fertilization x watering. HL = high light (average PPFD 
of 337.1 µmol  m2  s−1); ML = medium light (average PPFD of 120.6 µmol  m2  s−1); LL = low light (average 
PPFD of 30.0 µmol  m2  s−1); low N = 222 mg/seedling; high N = 444 mg/seedling; SW = summer watering 
(160 mm); NSW = no summer watering (104 mm). Numbers within squares indicate the percentage of seed-
ling survival

Table 6  Models of mortality probability of Pinus pinaster seedlings in the first summer after outplanting 
in a dry area, and the effects on survival of nursery light and Nitrogen fertilization, post-transplant first-
summer watering, and the initial seedling (stock) size attributes

Summary of the Generalized Linear Models (GLZs). Model 1 included morphological attributes and Model 
2 did not
Initial seedling stock attributes:  h0 = shoot height;  d0 = basal diameter;  h0/t0 = sturdiness quotient; 
 v0 = stem volume; light conditions in the nursery for seedling growth: HL = high light (average PPFD of 
337.1  µmol  m2   s−1); ML = medium-light (average of 120.6  µmol  m2   s−1), LL = low-light (average PPFD 
of 30.0  µmol  m2   s−1); Nitrogen availability in the nursery for seedling growth: Low N = 222  mg/seed-
ling vs High N = 444  mg/seedling; Post-transplant watering treatment, NSW = no summer watering after 
outplanting (104 mm) vs SW = summer watering (160 mm); ns: included in the model but not significant 
(P > 0.05); ni: not included in the model; ( ±) sign of the parameter estimate; ( +) means that the vari-
able increases the probability of mortality and (−) means that the variable decreases it; ***(P < 0.001); 
**(P < 0.01);*(P < 0.05) significant effects at different levels of confidence which indicate differences 
among the categories of the treatments; AIC: Akaike Information Criterion

Model Continuous predictors Light Fertilization Watering AIC

N° Intercept h0 d0 h0/t0 v0 HL ML LL High-N NSW

1 ns ns ns ns ns ns ns ns ns (+)*** 122.88
2 ns ni ni ni ni (−)** (−)** (+)*** ns (+)*** 117.46
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fertilization also significantly reduced seedling shoot height to levels comparable to plants 
grown in full-sunlight conditions and seedling stem volume to almost half of the values 
observed in low-N plants.

This greater response to fertilization in shade environments has been documented for 
rapid-growth pioneer species (Monnier et al. 2013). It suggests that Maritime pine seed-
lings may perform better in full sunlight while also exhibiting a degree of shade tolerance 
and phenotypic plasticity in morphological aboveground traits during the early establish-
ment stage (Sánchez-Gómez et al. 2006; Rodríguez-García et al. 2011a, b; Corcuera et al. 
2011) that favour survival through acclimatation (Collet et al. 2006; Monnier et al. 2013). 
During this stage, such traits may not be especially responsive to soil fertility (Valdecantos 
et  al. 2006) under high or medium light availability and would only respond under very 
shady conditions and/or to very high nutrient availability in deep shade (e.g. in very dense 
regenerations after fire). This was observed in medium-light and especially in low-light 
seedlings with high-N fertilization, which reduced aboveground investment and seedling 
elongation as shade-avoidance strategies. It implies that under canopy cover, high-N ferti-
lization may be a tool for avoiding biomechanically weak phenotypes with poor light inter-
ception efficiency (Pearcy et al. 2005; Sánchez-Gómez et al. 2006).

On fertile sites, stem growth is essential as it allows individual trees to intercept light 
and avoid overtopping from neighbours, including shrubs (King 2003). Our results show 
that with higher nutrient availability in shade, P. pinaster shade tolerance mechanisms 
would not signal seedlings to increase height as a shade avoidance strategy, and competi-
tion for nutrients would become a higher priority than competition for light. A high nutri-
ent supply generates early root growth and a positive carbon balance that helps sustain the 
demand for light to maintain aboveground growth biomass (Luis et al. 2009; Cuesta et al. 
2010a, b; Villar-Salvador et al. 2012; Ovalle et al. 2016).

Regarding seedling size, the maximum height and minimum root collar diameter of our 
seedlings at the end of the nursery period were higher (Table 2) than the market require-
ments for one-year-old Pinus pinaster seedlings (30 cm and 2 mm, respectively) (Minis-
terio de la Presidencia 2003). The treatments applied in the study probably enhanced the 
development of these attributes.

Post‑transplant stress and seedling performance

Higher seedling size at planting time negatively affected subsequent first-year growth. 
After adjusting for initial seedling size, the magnitude of the transplanting stress index 
 (TSIadj), the nursery light and fertilization effects and the effect of post-planting watering 
varied depending on the seedling attribute. The  TSIadj values observed in P. pinaster in this 
study were high, and dramatically higher than the  TSIadj values observed for P. halepen-
sis (Puértolas et al. 2003; Oliet et al. 2009). For Maritime pine, this indicates an initially 
low degree of adjustment to the site (Oliet et  al. 2002) and that differences in seedling 
size are very important (Rodríguez-García et al. 2011b) in relation to initial growth after 
transplanting. For instance, the first-year relative growth in height and root basal diam-
eter in the field were controlled by nursery light. A full-sunlight regime in the nursery 
reduced transplant stress in the field and is likely connected to the lower shoot height and 
sturdiness quotient of those seedlings, as well as a more equal shoot/root ratio (Luis et al. 
2009), higher needle biomass (Rodríguez-García and Bravo 2013), higher photosynthesis 
efficiency (Bazzaz and Wayne 1994) and higher basal diameter (Collet et al. 2006). Some 
studies point out that the probability of seedling survival at the end of each year increases 
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with higher basal diameter (Villar-Salvador et al. 2012; Kabrick et al. 2015 and references 
within). This demonstrates a relationship between easily measurable aboveground seedling 
morphological variables and new root elongation (Kabrick et al. 2015) after transplanting 
to overcome transplant shock (Oliet et al. 2002; Villar-Salvador et al. 2012). The sturdi-
ness quotient of seedlings grown in the nursery with medium light and low N had a posi-
tive coefficient: they grew taller but thinner than the rest of seedlings. These results show 
great variability in size attributes and growth responses that were dependent on the nursery 
regimes. They also point to potential post-planting interactions (e.g., competition and veg-
etation dominance) between seedling size and site characteristics (drought and soil fertil-
ity, canopy light) (Oliet et al. 2009) that may influence the provision and functionality of 
restored forest and ecosystem services.

Effects of nursery regimes and post‑transplant summer watering on seedling 
survival

The results obtained in this study support the hypothesis that the nursery light regime com-
bined with higher summer water availability in the field play a greater part than nursery N 
fertilization in the survival of transplanted Pinus pinaster seedlings, because high-N ferti-
lization in the nursery did not directly affect post-planting seedling survival. Prior research 
has documented the significant effects of in-nursery fertilization on the size of seedling 
stock, but not on seedling survival in the field after outplanting (see Trubat et al. 2010 and 
Ovalle et al. 2016). This may be linked to interactions of the fertilization regime with cul-
turing characteristics (Villar-Salvador et al. 2012), species strategy, site conditions (local 
climate, soil heterogeneity) and planting conditions (Cortina et al. 2013). It highlights the 
need to match nursery fertilization regimes with the site characteristics (Oliet et al. 2021) 
and the specific objectives (e.g., wood production, resin production, soil conservation) of 
the plantation that receives the seedlings. As expected, post-planting first-year summer irri-
gation reduced the probability of seedling mortality in the field. Pardos et al. (2015) have 
also documented how first-year summer irrigation ensured seedling survival and physi-
ological performance in outplanted Pinus pinea seedlings. Similarly, Ruano et al. (2009) 
reported that field watering after outplanting greatly influenced the growth and biomass 
allocation of naturally regenerated P. pinaster seedlings.

In our study, full-sunlight in the nursery decreased outplanted seedling mortality much 
more than medium light, which had no effect on outplanted seedling mortality. However, 
seedlings grown in low-light nursery conditions had a higher probability of field mortal-
ity after transplanting. Increased sturdiness in the low-light stock seedlings, along with 
the resulting imbalance created by their smaller initial basal diameter and stem volume, 
may have been negative for water stress avoidance and field survival. The increased field 
survival of seedlings cultured with full sunlight available in the nursery may be linked to 
photosynthesis, which supports early root growth (Villar-Salvador et al. 2012) and a more 
balanced aboveground morphological structure. Other studies about the interaction of light 
and water on water-use efficiency in seedlings of Mediterranean species such as cork oak 
(Quercus suber L.) show that seedlings receiving higher irradiance maintain a higher rate 
of carbon uptake at a particular stomatal conductance. This suggests that shaded seedlings 
have a lower water-use efficiency that is unrelated to water availability (Aranda et al. 2007). 
Species are often constrained by multiple stress factors operating simultaneously, which is 
an area that needs much more research. The good results of our combined nursery study 
and field experiment can provide valuable insights for nursery and forest managers.
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Conclusions

The effect of fertilization on seedling aboveground morphological attributes after one 
growing season in the nursery became more evident (significant) with increased nursery 
shade. Nevertheless, fertilization in the nursery did not condition field survival. Field sur-
vival one growing season after outplanting was significantly higher for seedlings cultured 
in full-sunlight nursery conditions and for those that received first-year summer irrigation 
following outplanting. Medium-light conditions in the nursery did not increase field mor-
tality but low-light conditions did, probably because those seedlings had very low basal 
diameter and stem volume, and higher shoot height and sturdiness than seedlings cul-
tured in full sunlight and medium light. These results can be used by nursery managers to 
develop and produce high-quality stock that increases reforestation success. They can also 
inform forest managers in their efforts to assess, increase or sustain forest functionality for 
Maritime pine and other Mediterranean pine reforestation projects.
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