Skip to main content
Log in

Social Anhedonia: (f)MRI Studies

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Anhedonia, particularly social anhedonia, is an important psychopathological symptom which plays a key role in the development of depression and schizophrenia. In healthy people, the level of social anhedonia is associated with changes in the structure, activation, and the functional connections of different parts of the prefrontal cortex, temporal, and temporal-parietal areas, along with the basal ganglia. Key fMRI correlates of social anhedonia in patients with schizophrenia are located in the temporal lobe. There are insufficient results from people with depression and other mental disorders to allow generalization. In contrast to physical anhedonia, social anhedonia does not show a specific association with the volume or activation of the nucleus accumbens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avedisova, A. S., Zakharova, K. V., Gaskin, V. V., et al., “ Clinical and neuroimaging characteristics of apathetic depression,” Zh. Nevrol. Psikhiat., 117, No. 8, 11–17 (2017), https://doi.org/10.17116/jnevro20171178111-17.

  2. Abraham, E., Wang, Y., Svob, C., et al., “Organization of the social cognition network predicts future depression and interpersonal impairment: a prospective family-based study,” Neuropsychopharmacology, 47, No. 2, 531–542 (2022), https://doi.org/https://doi.org/10.1038/s41386-021-01065-8.

    Article  PubMed  Google Scholar 

  3. Alacreu-Crespo, A., Olie, E., Le Bars, E., et al., “Prefrontal activation in suicide attempters during decision making with emotional feedback,” Transl. Psychiatry, 10, No. 1, e313 (2020), https://doi.org/10.1038/s41398-020-00995-z.

  4. Bang, M., Kang, J. I., Kim, S. J., et al., “Reduced DNA methylation of the oxytocin receptor gene is associated with anhedonia-asociality in women with recent-onset schizophrenia and ultra-high risk for psychosis,” Schizophr. Bull., 45, No. 6, 1279–1290 (2019), https://doi.org/https://doi.org/10.1093/schbul/sbz016.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Borsini, A., Wallis, A. J., Zunszain, P., et al., “Characterizing anhedonia: A systematic review of neuroimaging across the subtypes of reward processing deficits in depression,” Cogn. Affect. Behav. Neurosci., 20, No. 4, 816–841 (2020), https://doi.org/https://doi.org/10.3758/s13415-020-00804-6.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bracht, T., Linden, D., and Keedwell, P., “A review of white matter microstructure alterations of pathways of the reward circuit in depression,” J. Affect. Disord., 187, 45–53 (2015), https://doi.org/https://doi.org/10.1016/j.jad.2015.06.041.

    Article  PubMed  Google Scholar 

  7. Bradley, K. A., Alonso, C. M., Mehra, L. M., et al., “Elevated striatal γ-aminobutyric acid in youth with major depressive disorder,” Prog. Neuropsychopharmacol. Biol. Psychiatry, 86, 203–210 (2018), https://doi.org/https://doi.org/10.1016/j.pnpbp.2018.06.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brakowski, J., Manoliu, A., Homan, P., et al., “Aberrant striatal coupling with default mode and central executive network relates to self-reported avolition and anhedonia in schizophrenia,” J. Psychiatric Res., 145, 263–275 (2022), https://doi.org/https://doi.org/10.1016/j.jpsychires.2020.10.047.

    Article  Google Scholar 

  9. Brandt, I. M., Kohler-Forsberg, K., Ganz, M., et al., “Reward processing in major depressive disorder and prediction of treatment response – Neuropharm study,” Eur. Neuropsychopharmacol., 44, 23–33 (2021), https://doi.org/https://doi.org/10.1016/j.euroneuro.2020.12.010.

    Article  CAS  PubMed  Google Scholar 

  10. Brown, V. M., Zhu, L., Solway, A., et al., “Reinforcement learning disruptions in individuals with depression and sensitivity to symptom change following cognitive behavioral therapy,” JAMA Psychiatry, 78, No. 10, 1113–1122 (2021), https://doi.org/https://doi.org/10.1001/jamapsychiatry.2021.1844.

    Article  PubMed  Google Scholar 

  11. Burklund, L. J., Craske, M. G., Taylor, S. E., Lieberman, M. D., “Altered emotion regulation capacity in social phobia as a function of comorbidity,” Social Cogn. Affect. Neurosci., 10, No. 2, 199–208 (2015), https://doi.org/https://doi.org/10.1093/scan/nsu058.

    Article  Google Scholar 

  12. Caceda, R., James, G. A., Stowe, Z. N., et al., “The neural correlates of low social integration as a risk factor for suicide,” Eur. Arch. Psychiatry Clin. Neurosci., 270, No. 5, 619–631 (2020), https://doi.org/https://doi.org/10.1007/s00406-019-00990-6.

    Article  PubMed  Google Scholar 

  13. Casement, M. D., Guyer, A. E., Hipwell, A. E., et al., “Girls’ challenging social experiences in early adolescence predict neural response to rewards and depressive symptoms,” Dev. Cogn. Neurosci., 8, 18–27 (2014), https://doi.org/https://doi.org/10.1016/j.dcn.2013.12.003.

    Article  PubMed  Google Scholar 

  14. Cernasov, P., Walsh, E. C., Kinard, J. L., et al., “Multilevel growth curve analyses of behavioral activation for anhedonia (BATA) and mindfulness-based cognitive therapy effects on anhedonia and resting-state functional connectivity: Interim results of a randomized trial,” J. Affect. Disord., 292, 161–171 (2021), https://doi.org/https://doi.org/10.1016/j.jad.2021.05.054.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chanel, G., Pichon, S., Conty, L., et al., “Classification of autistic individuals and controls using cross-task characterization of fMRI activity,” Neuroimage Clin., 10, 78–88 (2015), https://doi.org/https://doi.org/10.1016/j.nicl.2015.11.010.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chiapponi, C., Piras, F., Piras, F., et al., “GABA system in schizophrenia and mood disorders: A mini review on third-generation imaging studies,” Front. Psychiatry, 7.e61 (2016), https://doi.org/10.3389/fpsyt.2016.00061.

  17. Choi, S.-H., Lee, H., Ku, J., et al., “Neural basis of anhedonia as a failure to predict pleasantness in schizophrenia,” World J. Biol. Psychiatry, 15, No. 7, 525–533 (2014), https://doi.org/https://doi.org/10.3109/1562.2975.2013.819121.

    Article  PubMed  Google Scholar 

  18. Costi, S., Morris, L. S., Collins, A., et al., “Peripheral immune cell reactivity and neural response to reward in patients with depression and anhedonia,” Transl. Psychiatry, 11, No. 1, e565 (2021), https://doi.org/10.1038/s41398-021-01668-1.

  19. Cressman, V. L., Schobel, S. A., Steinfeld, S., et al., “Anhedonia in the psychosis risk syndrome: associations with social impairment and basal orbitofrontal cortical activity,” NPJ Schizophrenia, 1, e15020 (2015), https://doi.org/https://doi.org/10.1038/npjschz.2015.20.

    Article  Google Scholar 

  20. Cusi, A. M., Nazarov, A., Holshausen, K., et al., “Systematic review of the neural basis of social cognition in patients with mood disorders,” J. Psychiatry Neurosci., 37, No. 3, 154–169 (2012), https://doi.org/https://doi.org/10.1503/jpn.100179.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Dennison, M. J., Sheridan, M. A., Busso, D. S., et al., “Neurobehavioral markers of resilience to depression amongst adolescents exposed to child abuse,” J. Abnormal Psychol., 125, No. 8, 1201–1212 (2016), https://doi.org/https://doi.org/10.1037/abn0000215.

    Article  Google Scholar 

  22. Derntl, B., Seidel, E.-M., Eickhoff, S. B., et al., “Neural correlates of social approach and withdrawal in patients with major depression,” Soc. Neurosci., 6, No. 5–6, 482–501 (2011), https://doi.org/https://doi.org/10.1080/17470919.2011.579800.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Diaz, A. P., Fernandes, B. S., Teixeira, A. L., et al., “White matter microstructure associated with anhedonia among individuals with bipolar disorders and high risk for bipolar disorders,” J. Affect. Disord., 300, 91–98 (2022), https://doi.org/https://doi.org/10.1016/j.jad.2021.12.037.

    Article  PubMed  Google Scholar 

  24. Diederichs, C., DeMayo, M. M., Cole, J., et al., “Intermittent theta-burst stimulation transcranial magnetic stimulation increases GABA in the medial prefrontal cortex: A preliminary sham-controlled magnetic resonance spectroscopy study in acute bipolar depression,” Front. Psychiatry, 12, e665402 (2021), https://doi.org/https://doi.org/10.3389/fpsyt.2021.665402.

    Article  Google Scholar 

  25. Dodell-Feder, D., Tully, L. M., Lincoln, S. H., and Hooker, C. I., “The neural basis of theory of mind and its relationship to social functioning and social anhedonia in individuals with schizophrenia,” Neuroimage Clin., 4, 154–163 (2013), https://doi.org/https://doi.org/10.1016/j.nicl.2013.11.006.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Domschke, K., Dannlowski, U., Ohrmann, P., et al., “Cannabinoid receptor 1 (CNR1) gene: impact on antidepressant treatment response and emotion processing in major depression,” Eur. Neuropsychopharmacol., 18, No. 10, 751–759 (2008), https://doi.org/https://doi.org/10.1016/j.euroneuro.2008.05.003.

    Article  CAS  PubMed  Google Scholar 

  27. Dotson, V. M., Taiwo, Z., Minto, L. R., et al., “Orbitofrontal and cingulate thickness asymmetry associated with depressive symptom dimensions,” Cogn. Affect. Behav. Neurosci., 21, No. 6, 1297–1305 (2021), https://doi.org/https://doi.org/10.3758/s13415-021-00923-8.

    Article  PubMed  Google Scholar 

  28. Dowd, E. C. and Barch, D. M., “Pavlovian reward prediction and receipt in schizophrenia: relationship to anhedonia,” PLoS One, 7, No. 5, e35622 (2012), https://doi.org/https://doi.org/10.1371/journal.pone.0035622.

    Article  CAS  Google Scholar 

  29. Dowd, E. C., Frank, M. J., Collins, A., et al., “Probabilistic reinforcement learning in patients with schizophrenia: Relationships to anhedonia and avolition,” Biol. Psychiatry Cogn. Neurosci. Neuroimag., 1, No. 5, 460–473 (2016), https://doi.org/https://doi.org/10.1016/j.bpsc.2016.05.005.

    Article  Google Scholar 

  30. Du, H., Xia, J., Fan, J., et al., “Spontaneous neural activity in the right fusiform gyrus and putamen is associated with consummatory anhedonia in obsessive compulsive disorder,” Brain Imaging Behav., 16, No. 4, 1708–1720 (2022), https://doi.org/https://doi.org/10.1007/s11682-021-00619-0.

    Article  PubMed  Google Scholar 

  31. Duprat, R., Wu, G.-R., et al., “Accelerated iTBS treatment in depressed patients differentially modulates reward system activity based on anhedonia,” World J. Biol. Psychiatry, 19, No. 7, 497–508 (2018), https://doi.org/https://doi.org/10.1080/15622975.2017.1355472.

    Article  PubMed  Google Scholar 

  32. Eckstrand, K. L., Flores. L. E., Jr., Cross, M., et al., “Social and non-social reward processing and depressive symptoms among sexual minority adolescents,” Front. Behav. Neurosci., 13, e209 (2019), https://doi.org/10.3389/fnbeh.2019.00209.

  33. Eckstrand, K. L., Forbes, E. E., Bertocci, M. A., et al., “Anhedonia reduction and the association between left ventral striatal reward response and 6-month improvement in life satisfaction among young adults,” JAMA Psychiatry, 76, No. 9, 958–965 (2019), https://doi.org/https://doi.org/10.1001/jamapsychiatry.2019.0864.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ely, B. A., Nguyen, T. N. B., Tobe, R. H., et al., “Multimodal investigations of reward circuitry and anhedonia in adolescent depression,” Front. Psychiatry, 12, e678709 (2021), https://doi.org/https://doi.org/10.3389/fpsyt.2021.678709.

    Article  Google Scholar 

  35. Enneking, V., Krussel, P., Zaremba, D., et al., “Social anhedonia in major depressive disorder: a symptom-specific neuroimaging approach,” Neuropsychopharmacology, 44, No. 5, 883–889 (2019), https://doi.org/https://doi.org/10.1038/s41386-018-0283-6.

    Article  PubMed  Google Scholar 

  36. Fani, N., Michopoulos, V., van Rooij, S. J. H., et al., “Structural connectivity and risk for anhedonia after trauma: A prospective study and replication,” J. Psychiatr. Res., 116, 34–41 (2019), https://doi.org/https://doi.org/10.1016/j.jpsychires.2019.05.009.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ferenczi, E. A., Zalocusky, K. A., Liston, C., et al., “Prefrontal cortical regulation of brainwide circuit dynamics and reward-related behavior,” Science, 351, No. 6268, aac9698 (2016), https://doi.org/10.1126/science.aac9698.

  38. Frewen, P. A., Dozois, D. J. A., and Lanius, R. A., “Assessment of anhedonia in psychological trauma: psychometric and neuroimaging perspectives,” Eur. J. Psychotraumatol., e3 (2012), https://doi.org/10.3402/ejpt.v3i0.8587.

  39. Frey, A.-L. and McCabe, C., “Effects of serotonin and dopamine depletion on neural prediction computations during social learning,” Neuropsychopharmacology, 45, No. 9, 1431–1437 (2020), https://doi.org/https://doi.org/10.1038/s41386-020-0678-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Frey, A.-L. and McCabe, C., “Impaired social learning predicts reduced real-life motivation in individuals with depression: A computational fMRI study,” J. Affect. Disord., 263, 698–706 (2020), https://doi.org/https://doi.org/10.1016/j.jad.2019.11.049.

    Article  PubMed  Google Scholar 

  41. Fusar-Poli, P., Placentino, A., Carletti, F., et al., “Functional atlas of emotional faces processing: a voxel-based meta-analysis of 105 functional magnetic resonance imaging studies,” J. Psychiatry Neurosci., 34, No. 6, 418–432 (2009).

    PubMed  PubMed Central  Google Scholar 

  42. Gabbay, V., Bradley, K. A., Mao, X., et al., “Anterior cingulate cortex γ-aminobutyric acid deficits in youth with depression,” Transl. Psychiatry, 7, No. 8, e1216 (2017), https://doi.org/10.1038/tp.2017.187.

  43. Gabbay, V., Mao, X., Klein, R. G., et al., “Anterior cingulate cortex γ-aminobutyric acid in depressed adolescents: relationship to anhedonia,” Arch. Gen. Psychiatry, 69, No. 2, 139–149 (2012), https://doi.org/https://doi.org/10.1001/archgenpsychiatry.2011.131.

    Article  CAS  PubMed  Google Scholar 

  44. Geller, W. N., Liu, K., and Warren, S. L., “Specificity of anhedonic alterations in resting-state network connectivity and structure: A transdiagnostic approach,” Psychiatry Res. Neuroimag., 317, e111349 (2021), https://doi.org/https://doi.org/10.1016/j.pscychresns.2021.111349.

    Article  Google Scholar 

  45. Germine, L. T., Garrido, L., Bruce, L., and Hooker, C., “Social anhedonia is associated with neural abnormalities during face emotion processing,” NeuroImage, 58, No. 3, 935–945 (2011), https://doi.org/https://doi.org/10.1016/j.neuroimage.2011.06.059.

    Article  PubMed  Google Scholar 

  46. Geugies, H., Mocking, R. J. T., Figueroa, C. A., et al., “Impaired reward-related learning signals in remitted unmedicated patients with recurrent depression,” Brain, 142, No. 8, 2510–2522 (2019), https://doi.org/https://doi.org/10.1093/brain/awz167.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Gong, L., He, C., Zhang, H., et al., “Disrupted reward and cognitive control networks contribute to anhedonia in depression,” J. Psychiatric Res., 103, 61–68 (2018), https://doi.org/https://doi.org/10.1016/j.jpsychires.2018.05.010.

    Article  Google Scholar 

  48. Gradin, V. B., Perez, A., MacFarlane, J. A., et al., “Abnormal brain responses to social fairness in depression: an fMRI study using the Ultimatum Game,” Psychol. Med., 45, No. 6, 1241–1251 (2015), https://doi.org/https://doi.org/10.1017/S0033291714002347.

    Article  CAS  PubMed  Google Scholar 

  49. Gradin, V. B., Perez, A., MacFarlane, J. A., et al., “Neural correlates of social exchanges during the Prisoner’s Dilemma game in depression,” Psychol. Med., 46, No. 6, 1289–1300 (2016), https://doi.org/https://doi.org/10.1017/S0033291715002834.

    Article  CAS  PubMed  Google Scholar 

  50. Greening, S. G., Osuch, E. A., Williamson, P. C., and Mitchell, D. G., “Emotion-related brain activity to conflicting socio-emotional cues in unmedicated depression,” J. Affect. Disord., 150, No. 3, 1136–1141 (2013), https://doi.org/https://doi.org/10.1016/j.jad.2013.05.053.

    Article  PubMed  Google Scholar 

  51. Groschwitz, R. C., Plener, P. L., Groen, G., et al., “Differential neural processing of social exclusion in adolescents with non-suicidal self-injury: An fMRI study,” Psychiatry Res. Neuroimag., 255, 43–49 (2016), https://doi.org/https://doi.org/10.1016/j.pscychresns.2016.08.001.

    Article  Google Scholar 

  52. Guffanti, G., Kumar, P., Admon, R., et al., “Depression genetic risk score is associated with anhedonia-related markers across units of analysis,” Transl. Psychiatry, 9, No. 1, e236 (2019), https://doi.org/10.1038/s41398-019-0566-7.

  53. Gunther, V., Lindner, C., Dannlowski, U., et al., “Amygdalar gray matter volume and social relating in schizophrenia,” Neuropsychobiology, 74, No. 3, 139–143 (2016), https://doi.org/https://doi.org/10.1159/000458528.

    Article  PubMed  Google Scholar 

  54. Gunther, V., Zimmer, J., Kersting, A., et al., “Automatic processing of emotional facial expressions as a function of social anhedonia,” Psychiatry Res. Neuroimag., 270, 46–53 (2017), https://doi.org/https://doi.org/10.1016/j.pscychresns.2017.10.002.

    Article  Google Scholar 

  55. Han, S., Cui, Q., Wang, X., et al., “The anhedonia is differently modulated by structural covariance network of NAc in bipolar disorder and major depressive disorder,” Prog. Neuropsychopharmacol. Biol. Psychiatry, 99, e109865 (2020), https://doi.org/https://doi.org/10.1016/j.pnpbp.2020.109865.

    Article  CAS  Google Scholar 

  56. Hao, L., Yang, J., Wang, Y., et al., “Neural correlates of causal attribution in negative events of depressed patients: Evidence from an fMRI study,” Clin. Neurophysiol., 126, No. 7, 1331–1337 (2015), https://doi.org/https://doi.org/10.1016/j.clinph.2014.10.146.

    Article  PubMed  Google Scholar 

  57. Harnett, N. G., Stevens, J. S., van Rooij, S. J. H., et al., “Multimodal structural neuroimaging markers of risk and recovery from posttrauma anhedonia: A prospective investigation,” Depress. Anxiety, 38, No. 1, 79–88 (2021), https://doi.org/https://doi.org/10.1002/da.23104.

    Article  PubMed  Google Scholar 

  58. Harvey, P.-O., Pruessner, J., Czechowska, Y., and Lepage, M., “Individual differences in trait anhedonia: a structural and functional magnetic resonance imaging study in non-clinical subjects,” Mol. Psychiatry, 12, No. 8, 767–775 (2007), https://doi.org/https://doi.org/10.1038/sj.mp.4002021.

    Article  Google Scholar 

  59. Healey, K. L., Morgan, J., Musselman, S. C., et al., “Social anhedonia and medial prefrontal response to mutual liking in late adolescents,” Brain Cogn., 89, 39–50 (2014), https://doi.org/https://doi.org/10.1016/j.bandc.2013.12.004.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Hooker, C. I., Benson, T. L., Gyurak, A., et al., “Neural activity to positive expressions predicts daily experience of schizophrenia-spectrum symptoms in adults with high social anhedonia,” J. Abnorm. Psychol., 123, No. 1, 190–204 (2014), https://doi.org/https://doi.org/10.1037/a0035223.

    Article  PubMed  Google Scholar 

  61. Keedwell, P. A., Andrew, C., Williams, S. C. R., et al., “The neural correlates of anhedonia in major depressive disorder,” Biol. Psychiatry, 58, No. 11, 843–853 (2005), https://doi.org/https://doi.org/10.1016/j.biopsych.2005.05.019.

    Article  PubMed  Google Scholar 

  62. Keedwell, P. A., Chapman, R., Christiansen, K., et al., “Cingulum white matter in young women at risk of depression: the effect of family history and anhedonia,” Biol. Psychiatry, 72, 296–302 (2012), https://doi.org/https://doi.org/10.1016/j.biopsych.2012.01.022.

    Article  PubMed  Google Scholar 

  63. Keller, J., Young, C. B., Kelley, E., et al., “Trait anhedonia is associated with reduced reactivity and connectivity of mesolimbic and paralimbic reward pathways,” J. Psychiatric Res., 47, No. 10, 1319–1328 (2013), https://doi.org/https://doi.org/10.1016/j.jpsychires.2013.05.015.

    Article  Google Scholar 

  64. Kim, B.-H., Kim, H. E., Lee, J. S., and Kim, J.-J., “Anhedonia relates to the altered global and local grey matter network properties in schizophrenia,” J. Clin. Med., 10, No. 7.e1395 (2021), https://doi.org/10.3390/jcm10071395.

  65. Kim, K. and Johnson, M. K., “Activity in ventromedial prefrontal cortex during self-related processing: positive subjective value or personal significance?” Social Cogn. Affect. Neurosci., 10, No. 4, 494–500 (2015), https://doi.org/https://doi.org/10.1093/scan/nsu078.

    Article  Google Scholar 

  66. Kini, P., Wong, J., McInnis, S., et al., “The effects of gratitude expression on neural activity,” NeuroImage, 128, 1–10 (2016), https://doi.org/https://doi.org/10.1016/j.neuroimage.2015.12.040.

    Article  PubMed  Google Scholar 

  67. Kirschner, M., Schmidt, A., Hodzic-Santor, B., et al., “Orbitofrontalstriatal structural alterations linked to negative symptoms at different stages of the schizophrenia spectrum,” Schizophr. Bull., 47, No. 3, 849–863 (2021), https://doi.org/https://doi.org/10.1093/schbul/sbaa169.

    Article  PubMed  Google Scholar 

  68. Koeppel, C. J., Herrmann, T., Weidner, K., et al., “Same salience, different consequences: Disturbed inter-network connectivity during a social oddball paradigm in major depressive disorder,” Neuroimage Clin., 31, e102731 (2021), https://doi.org/https://doi.org/10.1016/j.nicl.2021.102731.

    Article  Google Scholar 

  69. Krohne, L. G., Wang, Y., Hinrich, J. L., et al., “Classification of social anhedonia using temporal and spatial network features from a social cognition fMRI task,” Hum. Brain Mapp., 40, No. 17, 4965–4981 (2019), https://doi.org/https://doi.org/10.1002/hbm.24751.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Krystal, A. D., Pizzagalli, D. A., Smoski, M., et al., “A randomized proof-of-mechanism trial applying the ‘fastfail’ approach to evaluating κ-opioid antagonism as a treatment for anhedonia,” Nat. Med., 26, No. 5, 760–768 (2020), https://doi.org/https://doi.org/10.1038/s41591-020-0806-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kujawa, A., and Burkhouse, K. L., “Vulnerability to depression in youth: Advances from affective neuroscience,” Biol. Psychiatry Cogn. Neurosci. Neuroimag., 2, No. 1, 28–37 (2017), https://doi.org/https://doi.org/10.1016/j.bpsc.2016.09.006.

    Article  Google Scholar 

  72. Kumar, P., Goer, F., Murray, L., et al., “Impaired reward prediction error encoding and striatal-midbrain connectivity in depression,” Neuropsychopharmacology, 43, No. 7, 1581–1588 (2018), https://doi.org/https://doi.org/10.1038/s41386-018-0032-x.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Kumari, V., Peters, E., Guinn, A., et al., “Mapping depression in schizophrenia: A functional magnetic resonance imaging study,” Schizophr. Bull., 42, No. 3, 802–813 (2016), https://doi.org/https://doi.org/10.1093/schbul/sbv186.

    Article  PubMed  Google Scholar 

  74. Lamers, A., Toepper, M., Fernando, S. C., et al., “Caudate hyperactivation during the processing of happy faces in borderline personality disorder,” Neuropsychologia, 163, e108086 (2021), https://doi.org/https://doi.org/10.1016/j.neuropsychologia.2021.108086.

    Article  Google Scholar 

  75. Lee, H.-S., Lee, J.-E., Lee, K.-U., and Kim, Y.-H., “Neural changes associated with emotion processing in children experiencing peer rejection: a functional MRI study,” J. Korean Med. Sci., 29, No. 9, 1293–1300 (2014), https://doi.org/https://doi.org/10.3346/jkms.2014.29.9.1293.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Lee, J. S., Han, K., Lee, S.-K., et al., “Altered structural connectivity and trait anhedonia in patients with schizophrenia,” Neurosci. Lett., 579, 7–11 (2014), https://doi.org/https://doi.org/10.1016/j.neulet.2014.07.001.

    Article  CAS  PubMed  Google Scholar 

  77. Lee, J. S., Kim, E. S., Kim, E. J., et al., “The relationship between self-referential processing-related brain activity and anhedonia in patients with schizophrenia,” Psychiatry Res. Neuroimag., 254, 112–118 (2016), https://doi.org/https://doi.org/10.1016/j.pscychresns.2016.06.010.

    Article  Google Scholar 

  78. Lee, J. S., Park, H.-J., Chun, J. W., et al., “Neuroanatomical correlates of trait anhedonia in patients with schizophrenia: a voxel-based morphometric study,” Neurosci. Lett., 489, No. 2, 110–114 (2011), https://doi.org/https://doi.org/10.1016/j.neulet.2010.11.076.

    Article  CAS  PubMed  Google Scholar 

  79. Li, G., Cao, C., Fang, R., et al., “Neural correlates of posttraumatic anhedonia symptoms: Decreased functional connectivity between ventral pallidum and default mode network regions,” J. Psychiatric Res., 140, 30–34 (2021), https://doi.org/https://doi.org/10.1016/j.jpsychires.2021.05.061.

    Article  Google Scholar 

  80. Li, X., Li, Z., Li, K., et al., “The neural transfer effect of working memory training to enhance hedonic processing in individuals with social anhedonia,” Sci. Rep., 6, e35481 (2016), https://doi.org/https://doi.org/10.1038/srep35481.

    Article  CAS  Google Scholar 

  81. Li, Z., Zhang, C.-Y., Huang, J., et al., “Improving motivation through real-time fMRI-based self-regulation of the nucleus accumbens,” Neuropsychology, 32, No. 6, 764–776 (2018), https://doi.org/https://doi.org/10.1037/neu0000425.

    Article  PubMed  Google Scholar 

  82. Liu, R., Wang, Y., Chen, X., et al., “Anhedonia correlates with functional connectivity of the nucleus accumbens subregions in patients with major depressive disorder,” Neuroimage Clin., 30, e102599 (2021), https://doi.org/https://doi.org/10.1016/j.nicl.2021.102599.

    Article  Google Scholar 

  83. Liu, X., Li, L., Li, M., et al., “Characterizing the subtype of anhedonia in major depressive disorder: A symptom-specific multimodal MRI study,” Psychiatry Res. Neuroimag., 308, e111239 (2021), https://doi.org/https://doi.org/10.1016/j.pscychresns.2020.111239.

    Article  Google Scholar 

  84. MacNamara, A., Klumpp, H., Kennedy, A. E., et al., “Transdiagnostic neural correlates of affective face processing in anxiety and depression,” Depress. Anxiety, 34, No. 7, 621–631 (2017), https://doi.org/https://doi.org/10.1002/da.22631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Macoveanu, J., Meluken, I., Chase, H. W., et al., “Reduced frontostriatal response to expected value and reward prediction error in remitted monozygotic twins with mood disorders and their unaffected high-risk cotwins,” Psychol. Med., 51, No. 10, 1637–1646 (2021), https://doi.org/https://doi.org/10.1017/S0033291720000367.

    Article  PubMed  Google Scholar 

  86. Malejko, K., Neff, D., Brown, R., et al., “Neural correlates of social inclusion in borderline personality disorder,” Front. Psychiatry, 9, e653 (2018), https://doi.org/https://doi.org/10.3389/fpsyt.2018.00653.

    Article  Google Scholar 

  87. Matsunaga, M., Kawamichi, H., Umemura, T., et al., “Neural and genetic correlates of the social sharing of happiness,” Front. Neurosci., 11, e718 (2017), https://doi.org/https://doi.org/10.3389/fnins.2017.00718.

    Article  Google Scholar 

  88. Mellem, M. S., Liu, Y., Gonzalez, H., et al., “Machine learning models identify multimodal measurements highly predictive of transdiagnostic symptom severity for mood, anhedonia, and anxiety,” Biol. Psychiatry Cogn. Neurosci. Neuroimag., 5, No. 1, 56–67 (2020), https://doi.org/https://doi.org/10.1016/j.bpsc.2019.07.007.

    Article  Google Scholar 

  89. Mies, G. W., Van den Berg, I., Franken, I. H. A., et al., “Neurophysiological correlates of anhedonia in feedback processing,” Front. Hum. Neurosci., 7, e96 (2013), https://doi.org/https://doi.org/10.3389/fnhum.2013.00096.

    Article  Google Scholar 

  90. Mirabito, G., Taiwo, Z., Bezdek, M., and Light, S. N., “Frontostriatal activity predicts anhedonia and positive empathy subtypes,” Brain Imag. Behav., 13, No. 6, 1554–1565 (2019), https://doi.org/https://doi.org/10.1007/s11682-019-00081-z.

    Article  Google Scholar 

  91. Mitterschiffthaler, M. T., Kumari, V., Malhi, G. S., et al., “Neural response to pleasant stimuli in anhedonia: an fMRI study,” Neuroreport, 14, No. 2, 177–182 (2003), https://doi.org/https://doi.org/10.1097/00001756-200302100-00003.

    Article  PubMed  Google Scholar 

  92. Morgan, J. K., Silk, J. S., Woods, B. K., and Forbes, E. E., “Differential neural responding to affective stimuli in 6- to 8-year old children at high familial risk for depression: Associations with behavioral reward seeking,” J. Affect. Disorders, 257, 445–453 (2019), https://doi.org/https://doi.org/10.1016/j.jad.2019.06.058.

    Article  PubMed  Google Scholar 

  93. Park, I. H., Chun, J. W., Park, H.-J., et al., “Altered cingulostriatal function underlies reward drive deficits in schizophrenia,” Schizophr. Res., 161, No. 2–3, 229–236 (2015), https://doi.org/https://doi.org/10.1016/j.schres.2014.11.005.

    Article  PubMed  Google Scholar 

  94. Pelletier-Baldelli, A., Orr, J. M., Bernard, J. A., and Mittal, V. A., “Social reward processing: A biomarker for predicting psychosis risk?” Schizophr. Res., 226, 129–137 (2020), https://doi.org/https://doi.org/10.1016/j.schres.2018.07.042.

    Article  PubMed  Google Scholar 

  95. Perini, I., Gustafsson, P. A., Hamilton, J. P., et al., “Brain-based classification of negative social bias in adolescents with nonsuicidal self-injury: Findings from simulated online social interaction,” EClinicalMedicine, 13, 81–90 (2019), https://doi.org/https://doi.org/10.1016/j.eclinm.2019.06.016.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Pessin, S., Philippi, C. L., et al., “Influence of anhedonic symptom severity on reward circuit connectivity in PTSD,” Behav. Brain Res., 407, e113258 (2021), https://doi.org/https://doi.org/10.1016/j.bbr.2021.113258.

    Article  Google Scholar 

  97. Pfarr, J.-K., Brosch, K., Meller, T., et al., “Brain structural connectivity, anhedonia, and phenotypes of major depressive disorder: A structural equation model approach,” Hum. Brain Mapp., 42, No. 15, 5063–5074 (2021), https://doi.org/https://doi.org/10.1002/hbm.25600.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Pisoni, A., Davis, S. W., and Smoski, M., “Neural signatures of saliency- mapping in anhedonia: A narrative review,” Psychiatry Res., 304, e114123 (2021), https://doi.org/https://doi.org/10.1016/j.psychres.2021.114123.

    Article  Google Scholar 

  99. Pulcu, E., Lythe, K., Elliott, R., et al., “Increased amygdala response to shame in remitted major depressive disorder,” PLoS One, 9, No. 1, e86900 (2014), https://doi.org/https://doi.org/10.1371/journal.pone.0086900.

    Article  CAS  Google Scholar 

  100. Quarmley, M. E., Nelson, B. D., Clarkson, T., et al., “I knew you weren’t going to like me! Neural response to accurately predicting rejection is associated with anxiety and depression,” Front. Behav. Neurosci., 13, e219 (2019), https://doi.org/https://doi.org/10.3389/fnbeh.2019.00219.

    Article  Google Scholar 

  101. Regenbogen, C., Kellermann, T., Seubert, J., et al., “Neural responses to dynamic multimodal stimuli and pathology-specific impairments of social cognition in schizophrenia and depression,” Brit. J. Psychiatry, 206, No. 3, 198–205 (2015), https://doi.org/https://doi.org/10.1192/bjp.bp.113.143040.

    Article  Google Scholar 

  102. Rutgen, M., Pfabigan, D. M., Tik, M., et al., “Detached empathic experience of others’ pain in remitted states of depression – An fMRI study,” Neuroimage Clin., 31, e102699 (2021), https://doi.org/https://doi.org/10.1016/j.nicl.2021.102699.

    Article  Google Scholar 

  103. Ryan, J., Pouliot, J. J., Hajcak, G., and Nee, D. E., “Manipulating reward sensitivity using reward circuit-targeted transcranial magnetic stimulation,” Biol. Psychiatry Cogn. Neurosci. Neuroimag., 7, No. 8, 833–840 (2022), https://doi.org/https://doi.org/10.1016/j.bpsc.2022.02.011.

    Article  Google Scholar 

  104. Rzepa, E. and McCabe, C., “Anhedonia and depression severity dissociated by dmPFC resting-state functional connectivity in adolescents,” J. Psychopharmacol., 32, No. 10, 1067–1074 (2018), https://doi.org/https://doi.org/10.1177/0269881118799935.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Sankar, A., Yttredahl, A. A., Fourcade, E. W., et al., “Dissociable neural responses to monetary and social gain and loss in women with major depressive disorder,” Front. Behav. Neurosci., 13, e149 (2019), https://doi.org/https://doi.org/10.3389/fnbeh.2019.00149.

    Article  Google Scholar 

  106. Schaefer, H. S., Putnam, K. M., Benca, R. M., and Davidson, R. J., “Event-related functional magnetic resonance imaging measures of neural activity to positive social stimuli in pre-and post-treatment depression,” Biol. Psychiatry, 60, No. 9, 974–986 (2006), https://doi.org/https://doi.org/10.1016/j.biopsych.2006.03.024.

    Article  PubMed  Google Scholar 

  107. Schaub, A.-C., Kirschner, M., Schweinfurth, N., et al., “Neural mapping of anhedonia across psychiatric diagnoses: A transdiagnostic neuroimaging analysis,” Neuroimage Clin., 32, e102825 (2021), https://doi.org/https://doi.org/10.1016/j.nicl.2021.102825.

    Article  Google Scholar 

  108. Schilbach, L., Muller, V. I., Hoffstaedter, F., et al., “Meta-analytically informed network analysis of resting state FMRI reveals hyperconnectivity in an introspective socio-affective network in depression,” PLoS One, 9, No. 4, e94973 (2014), https://doi.org/https://doi.org/10.1371/journal.pone.0094973.

    Article  CAS  Google Scholar 

  109. Schwartz, K. T. G., Kryza-Lacombe, M., Liuzzi, M. T., et al., “Social and non-social reward: A Preliminary examination of clinical improvement and neural reactivity in adolescents treated with behavioral therapy for anxiety and depression,” Front. Behav. Neurosci., 13, e177 (2019), https://doi.org/https://doi.org/10.3389/fnbeh.2019.00177.

    Article  Google Scholar 

  110. Schwarz, K., Moessnang, C., Schweiger, J. I., et al., “Transdiagnostic prediction of affective, cognitive, and social function through brain reward anticipation in schizophrenia, bipolar disorder, major depression, and autism spectrum diagnoses,” Schizophr. Bull., 46, No. 3, 592–602 (2020), https://doi.org/https://doi.org/10.1093/schbul/sbz075.

    Article  PubMed  Google Scholar 

  111. Seidel, E.-M., Satterthwaite, T. D., Eickhoff, S. B., et al., “Neural correlates of depressive realism – an fMRI study on causal attribution in depression,” J. Affect. Disord., 138, No. 3, 268–276 (2012), https://doi.org/https://doi.org/10.1016/j.jad.2012.01.041.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Sharma, A., Satterthwaite, T. D., Vandekar, L., et al., “Divergent relationship of depression severity to social re ward responses among patients with bipolar versus unipolar depression,” Psychiatry Res. Neuroimag., 254, 18–25 (2016), https://doi.org/https://doi.org/10.1016/j.pscychresns.2016.06.003.

    Article  Google Scholar 

  113. Shimada, K., Kasaba, R., Fujisawa, T. X., et al., “Subclinical maternal depressive symptoms modulate right inferior frontal response to inferring affective mental states of adults but not of infants,” J. Affect. Disord., 229, 32–40 (2018), https://doi.org/https://doi.org/10.1016/j.jad.2017.12.031.

    Article  PubMed  Google Scholar 

  114. Smith, E. E., Cavanagh, J. F., and Allen, J. J. B., “Intracranial source activity (eLORETA) related to scalp-level asymmetry scores and depression status,” Psychophysiology, 55, No. 1 (2018), https://doi.org/10.1111/psyp.13019.

  115. Stein, D. J., “Depression, anhedonia, and psychomotor symptoms: the role of dopaminergic neurocircuitry,” CNS Spectr., 13, No. 7, 561–565 (2008), https://doi.org/https://doi.org/10.1017/s1092852900016837.

    Article  PubMed  Google Scholar 

  116. Stretton, J., Walsh, N. D., Mobbs, D., et al., “How biopsychosocial depressive risk shapes behavioral and neural responses to social evaluation in adolescence,” Brain Behav., 11, No. 5, e02005 (2021), https://doi.org/10.1002/brb3.2005.

  117. Suffel, A., Nagels, A., Steines, M., et al., “Feeling addressed! The neural processing of social communicative cues in patients with major depression,” Hum. Brain Mapp., 41, No. 13, 3541–3554 (2020), https://doi.org/https://doi.org/10.1002/hbm.25027.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Surguladze, S., Brammer, M. J., Keedwell, P., et al., “A differential pattern of neural response toward sad versus happy facial expressions in major depressive disorder,” Biol. Psychiatry, 57, No. 3, 201–209 (2005), https://doi.org/https://doi.org/10.1016/j.biopsych.2004.10.028.

    Article  PubMed  Google Scholar 

  119. Szczepanik, J. E., Brycz, H., Kleka, P., et al., “Metacognition and emotion – How accurate perception of own biases relates to positive feelings and hedonic capacity,” Conscious. Cogn., 82, e102936 (2020), https://doi.org/https://doi.org/10.1016/j.concog.2020.102936.

    Article  Google Scholar 

  120. Takamura, M., Okamoto, Y., Okada, G., et al., “Patients with major depressive disorder exhibit reduced reward size coding in the striatum,” Prog. Neuropsychopharmacol. Biol. Psychiatry, 79 (Part B), 317–323 (2017), https://doi.org/10.1016/j.pnpbp.2017.07.006.

  121. Taylor, N., Hollis, J. P., Corcoran, S., et al., “Impaired reward responsiveness in schizophrenia,” Schizophr. Res., 199, 46–52 (2018), https://doi.org/https://doi.org/10.1016/j.schres.2018.02.057.

    Article  PubMed  Google Scholar 

  122. Tepfer, L. J., Alloy, L. B., and Smith, D. V., “Family history of depression is associated with alterations in task-dependent connectivity between the cerebellum and ventromedial prefrontal cortex,” Depress. Anxiety, 38, No. 5, 508–520 (2021), https://doi.org/https://doi.org/10.1002/da.23143.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Thai, M., Başgoze, Z., Klimes–Dougan, B., et al., “Neural and behavioral correlates of clinical improvement to ketamine in adolescents with treatment resistant depression,” Front. Psychiatry, 11, e820 (2020), https://doi.org/https://doi.org/10.3389/fpsyt.2020.00820.

    Article  Google Scholar 

  124. Uldall, S. W., Madsen, K. H., Siebner, H. R., et al., “Processing of positive visual stimuli before and after symptoms provocation in posttraumatic stress disorder – A functional magnetic resonance imaging study of trauma-affected male refugees,” Chronic Stress, 4, e2470547020917623 (2020), https://doi.org/https://doi.org/10.1177/2470547020917623.

    Article  Google Scholar 

  125. Wacker, J., Dillon, D. G., and Pizzagalli, D. A., “The role of the nucleus accumbens and rostral anterior cingulate cortex in anhedonia: integration of resting EEG, fMRI, and volumetric techniques,” NeuroImage, 46, No. 1, 327–337 (2009), https://doi.org/https://doi.org/10.1016/j.neuroimage.2009.01.058.

    Article  PubMed  Google Scholar 

  126. Wade B, C., Hellemann, G., Espinoza, R. T., et al., “Accounting for symptom heterogeneity can improve neuroimaging models of antidepressant response after electroconvulsive therapy,” Hum. Brain Mapp., 42, No. 16, 5322–5333 (2021), https://doi.org/10.1002/hbm.25620.

  127. Wade B, C., Hellemann, G., Espinoza, R. T., et al., “Depressive symptom dimensions in treatment-resistant major depression and their modulation with electroconvulsive therapy,” J. ECT, 36, No. 2, 123–129 (2020), https://doi.org/10.1097/YCT.0000000000000623.

  128. Walsh, E. C., Eisenlohr-Moul, T. A., Minkel, J., et al., “Pretreatment brain connectivity during positive emotion upregulation predicts decreased anhedonia following behavioral activation therapy for depression,” J. Affect. Disord., 243, 188–192 (2019), https://doi.org/https://doi.org/10.1016/j.jad.2018.09.065.

    Article  PubMed  Google Scholar 

  129. Wang, Y., Deng, Y., Fung, G., et al., “Distinct structural neural patterns of trait physical and social anhedonia: evidence from cortical thickness, subcortical volumes and inter-regional correlations,” Psychiatry Res., 224, No. 3, 184–191 (2014), https://doi.org/https://doi.org/10.1016/j.pscychresns.2014.09.005.

    Article  PubMed  Google Scholar 

  130. Wang, Y., Li, Z., et al., “Negative schizotypy and altered functional connectivity during facial emotion processing,” Schizophr. Bull., 44, No. 2), S491–S500 (2018), https://doi.org/https://doi.org/10.1093/schbul/sby036.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Wang, Y., Liu, W.-H., Li, Z., et al., “Altered corticostriatal functional connectivity in individuals with high social anhedonia,” Psychol. Med., 46. No. 1, 125–135 (2016), https://doi.org/https://doi.org/10.1017/S003329.1715001592.

    Article  CAS  PubMed  Google Scholar 

  132. Wang, Y., Liu, W.-H., Li, Z., et al., “Dimensional schizotypy and social cognition: an fMRI imaging study,” Front. Behav. Neurosci., 9, e133 (2015), https://doi.org/https://doi.org/10.3389/fnbeh.2015.00133.

    Article  Google Scholar 

  133. Wang, Y., Tang, S., Zhang, L., et al., “Data-driven clustering differentiates subtypes of major depressive disorder with distinct brain connectivity and symptom features,” Brit. J. Psychiatry, 219, No. 5, 606–613 (2021), https://doi.org/https://doi.org/10.1192/bjp.2021.103.

    Article  Google Scholar 

  134. Wang, Y.-Z., Han, Y., Zhao, J.-J., et al., “Brain activity in patients with deficiency versus excess patterns of major depression: A task fMRI study,” Complement. Therap. Med., 42, 292–297 (2019), https://doi.org/https://doi.org/10.1016/j.ctim.2018.12.006.

    Article  Google Scholar 

  135. Ward, J., Lyall, L. M., et al., “Novel genome-wide associations for anhedonia, genetic correlation with psychiatric disorders, and polygenic association with brain structure,” Transl. Psychiatry, 9, No. 1, e327 (2019), https://doi.org/10.1038/s41398-019-0635-y.

  136. Waugh, C. E., Hamilton, J. P., Chen, M. C., et al., “Neural temporal dynamics of stress in comorbid major depressive disorder and social anxiety disorder,” Biol. Mood Anxiety Disord., 2, e11 (2012), https://doi.org/https://doi.org/10.1186/2045-5380-2-11.

    Article  Google Scholar 

  137. Whitton, A. E., Kumar, P., Treadway, M. T., et al., “Mapping disease course across the mood disorder spectrum through a research domain criteria framework,” Biol. Psychiatry Cogn. Neurosci. Neuroimag., 6, No. 7, 706–715 (2021), https://doi.org/https://doi.org/10.1016/j.bpsc.2021.01.004.

    Article  Google Scholar 

  138. Yang, X., Huang, J., Roser, M. E., and Xie, G., “Anhedonia reduction correlates with increased ventral caudate connectivity with superior frontal gyrus in depression,” J. Psychiatr. Res., 151, 286–290 (2022), https://doi.org/https://doi.org/10.1016/j.jpsychires.2022.04.030.

    Article  PubMed  Google Scholar 

  139. Yang, X.-H., Wang, Y., Wang, D. F., et al., “White matter microstructural abnormalities and their association with anticipatory anhedonia in depression,” Psychiatry Res. Neuroimag., 264, 29–34 (2017), https://doi.org/https://doi.org/10.1016/j.pscychresns.2017.04.005.

    Article  Google Scholar 

  140. Yang, Z.-Y., Zhang, R.-T., Li, Y., et al., “Functional connectivity of the default mode network is associated with prospection in schizophrenia patients and individuals with social anhedonia,” Prog. Neuropsychopharmacol. Biol. Psychiatry, 92, 412–420 (2019), https://doi.org/https://doi.org/10.1016/j.pnpbp.2019.02.008.

    Article  PubMed  Google Scholar 

  141. Young, K. S., Bookheimer, S. Y., Nusslock, R., et al., “Dysregulation of threat neurociruitry during fear extinction: the role of anhedonia,” Neuropsychopharmacology, 46, No. 9, 1650–1657 (2021), https://doi.org/https://doi.org/10.1038/s41386-021-01003-8.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Yu, M., Cullen, N., Linn, K. A., et al., “Structural brain measures linked to clinical phenotypes in major depression replicate across clinical centres,” Mol. Psychiatry, 26, No. 7, 2764–2775 (2021), https://doi.org/https://doi.org/10.1038/s41380-021-01039-8.

    Article  PubMed  Google Scholar 

  143. Zhang, B., Lin, P., Shi, H., et al., “Mapping anhedonia-specific dysfunction in a transdiagnostic approach: an ALE meta-analysis,” Brain Imag. Behav., 10, No. 3, 920–939 (2016), https://doi.org/https://doi.org/10.1007/s11682-015-9457-6.

    Article  Google Scholar 

  144. Zhang, H., Harris, L., et al., “Anhedonia and individual differences in orbitofrontal cortex sulcogyral morphology,” Hum. Brain Mapp., 37, No. 11, 3873–3881 (2016), https://doi.org/https://doi.org/10.1002/hbm.23282.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Zhang, R.-T., Yang, Z.-Y., Wang, Y. M., et al., “Affective forecasting in individuals with social anhedonia: The role of social components in anticipated emotion, prospection and neural activation,” Schizophr. Res., 215, 322–329, (2020), https://doi.org/https://doi.org/10.1016/j.schres.2019.10.006.

    Article  PubMed  Google Scholar 

  146. Zhang, T., He, K., Bai, T., et al., “Altered neural activity in the reward- related circuit and executive control network associated with amelioration of anhedonia in major depressive disorder by electroconvulsive therapy,” Prog. Neuropsychopharmacol. Biol. Psychiatry, 109, e110193 (2021), https://doi.org/https://doi.org/10.1016/j.pnpbp.2020.110193.

    Article  Google Scholar 

  147. Zhang, Y.-J., Cai, X.-L., Hu, H.-X., et al., “Social brain network predicts real-world social network in individuals with social anhedonia,” Psychiatry Res. Neuroimag., 317, e111390 (2021), https://doi.org/https://doi.org/10.1016/j.pscychresns.2021.111390.

    Article  Google Scholar 

  148. Zhang, Y.-J., Pu, C.-C., Wang, Y.-M., et al., “Social brain network correlates with real-life social network in individuals with schizophrenia and social anhedonia,” Schizophr. Res., 232, 77–84 (2021), https://doi.org/https://doi.org/10.1016/j.schres.2021.05.016.

    Article  PubMed  Google Scholar 

  149. Zhu, X., Ward, J., Cullen, B., et al., “Phenotypic and genetic associations between anhedonia and brain structure in UK Biobank,” Transl. Psychiatry, 11, No. 1, e395 (2021), https://doi.org/10.1038/s41398-021-01522-4.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Melnikov.

Additional information

Translated from Uspekhi Fiziologicheskikh Nauk, Vol. 54, No. 1, pp. 70–90, January–March, 2023

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melnikov, M.E. Social Anhedonia: (f)MRI Studies. Neurosci Behav Physi 53, 1084–1100 (2023). https://doi.org/10.1007/s11055-023-01502-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-023-01502-9

Keywords

Navigation