Skip to main content

Advertisement

Log in

High-Definition Transcranial Direct Current Electrical Stimulation

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Transcranial direct current electrical stimulation (tDCS) is an intensely developing area in noninvasive neuromodulation. Despite large numbers of published studies, data on the possible clinical applications of the method are contradictory. One limitation of tDCS is the relatively non-local nature of stimulation using the standard montage. High-definition tDCS (HD-tDCS) is a modification of the method in which small ring electrodes are used and has greater stimulation focality. In the most commonly used montage, 4 × 1 HD-tDCS, a ring electrode (anode or cathode) is positioned over the target area and is surrounded by reference electrodes of the opposite polarity. This article addresses current data on the methodology, physiological aspects, clinical efficacy, safety, and tolerance of HD-tDCS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. S. Bakulin, A. G. Poydasheva, N. A. Pavlov, et al., “Transcranial electrical stimulation in improving hand function in stroke,” Usp. Fiziol. Nauk., 50, No. 1, 90–104 (2019), https://doi.org/10.1134/S030117981901003X.

    Article  Google Scholar 

  2. V. P. Lebedev (ed.), Transcranial Electrical Stimulation. Experimental and Clinical Studies, St. Petersburg (2009).

  3. V. A. Ilyukhina, “Theoretical and applies aspects of transcranial micropolarization in psychophysiology and clinical practice,” in: Therapeutic Electrical Stimulation of the Human Brain and Nerves, N. P. Bekhtereva (ed.), AST, Moscow, Sova, St. Petersburg, VKT, Vladimir (2008), pp. 378–461.

  4. A. M. Shelyakin and G. N. Ponomarenko, Micropolarization of the Brain, Kirov VMedA Press, St. Petersburg (2006).

    Google Scholar 

  5. A. M. Shelyakin, I. G. Preobrazhenskaya, and O. G. Tyul’kin, “Micropolarization of the brain: a nonainvasive means of correcting morphofunctional impairments in acute focal brain lesions and their sequelae,” Zh. Nevrol. Psikhiat., 106, No. 10, 27–37 (2006);

    Google Scholar 

  6. M. Alam, D. Q. Truong, N. Khadka, et al., “Spatial and polarity precision of concentric high-defi nition transcranial direct current stimulation (HD-tDCS),” Phys. Med. Biol., 61, No. 12, 4506–4521 (2016), https://doi.org/10.1016/j.brs.2014.01.039.

    Article  PubMed  Google Scholar 

  7. A. Antal, T. Z. Kincses, M. A. Nitsche, et al., “Excitability changes induced in the human primary visual cortex by transcranial direct current stimulation: direct electrophysiological evidence,” Invest. Ophthalmol. Vis. Sci., 45, No. 2, 702–707 (2004), https://doi.org/10.1167/iovs.03-0688.

    Article  PubMed  Google Scholar 

  8. S. C. Bao, W. W. Wong, T. W. H. Leung, et al., “Cortico-muscular coherence modulated by high-definition transcranial direct current stimulation in people with chronic stroke,” IEEE T. Neural Syst. Rehabil. Eng., 27, No. 2, 304–313 (2019), https://doi.org/10.1109/tnsre.2018.2890001.

    Article  Google Scholar 

  9. M. Bikson, Z. Esmaeilpour, D. Adair, et al., “Transcranial electrical stimulation nomenclature,” Brain Stimul., 12, No. 6, 1349–1366 (2019), https://doi.org/10.1016/j.brs.2019.07.010.

    Article  PubMed  PubMed Central  Google Scholar 

  10. L. J. Bindman, O. C. Lippold, and J. W. Redfearn, “Long-lasting changes in the level of the electrical activity of the cerebral cortex produced by polarizing currents,” Nature, 196, 584–585 (1962), https://doi.org/10.1038/196584a0.

    Article  CAS  PubMed  Google Scholar 

  11. L. J. Bindman, O. C. Lippold, and J. W. Redfearn, “The action of brief polarizing currents on the cerebral cortex of the rat (1) during current fl ow and (2) in the production of long-lasting after-effects,” J. Physiol. (London), 172, 369–382 (1964), https://doi.org/10.1113/jphysiol.1964.sp007425.

    Article  CAS  Google Scholar 

  12. J. J. Borckardt, M. Bikson, H. Frohman, et al., “A pilot study of the tolerability and effects of high-defi nition transcranial direct current stimulation (HD-tDCS) on pain perception,” J. Pain, 13, No. 2, 112–120 (2012), https://doi.org/10.1016/j.jpain.2011.07.001.

    Article  PubMed  Google Scholar 

  13. T. Cai, X. Xia, H. Zhang, et al., “High-defi nition transcranial direct current stimulation modulates neural activities in patients with prolonged disorders of consciousness,” Brain Stimul., 12, No. 6, 1619–1621 (2019), https://doi.org/10.1016/j.brs.2019.08.017.

    Article  PubMed  Google Scholar 

  14. E. M. Caparelli-Daquer, T. J. Zimmermann, E. Mooshagian, et al., “A pilot study on effects of 4×1 high-defi nition tDCS on motor cortex excitability,” Conf. Proc IEEE Eng. Med. Biol., Soc., 2012, 735–738 (2012), https://doi.org/10.1109/EMBC.2012.6346036.

  15. E. Cardon, V. Van Rompaey, L. Jacquemin, et al., “Sequential dual-site High-Defi nition transcranial Direct Current Stimulation (HD-tDCS) treatment in chronic subjective tinnitus: study protocol of a double-blind, randomized, placebo-controlled trial,” Trials, 20, No. 1, 471 (2019), https://doi.org/10.1186/s13063-019-3594-y.

  16. L. Castillo-Saavedra, N. Gebodh, M. Bikson, et al., “clinically effective treatment of fi bromyalgia pain with high-defi nition transcranial direct current stimulation: Phase II open-label dose optimization,” J. Pain, 17, No. 1, 14–26 (2016), https://doi.org/10.1016/j.jpain.2015.09.009.

    Article  PubMed  Google Scholar 

  17. T. Chew, K. A. Ho, and C. K. Loo, “Inter- and intra-individual variability in response to transcranial direct current stimulation (tDCS) at varying current intensities,” Brain Stimul., 8, No. 6, 1130–1137 (2015), https://doi.org/10.1016/j.brs.2015.07.031.

    Article  PubMed  Google Scholar 

  18. E. F. Chua, R. Ahmed, and S. M. Garcia, “Effects of HD-tDCS on memory and metamemory for general knowledge questions that vary by diffi culty,” Brain Stimul., 10, No. 2, 231–241 (2017), https://doi.org/10.1016/j.brs.2016.10.013.

    Article  PubMed  Google Scholar 

  19. A. F. DaSilva, D. Q. Truong, M. F. DosSantos, et al., “State-of-art neuroanatomical target analysis of high-definition and conventional tDCS montages used for migraine and pain control,” Front. Neuroanat., 15, No. 9, 89 (2015), https://doi.org/10.3389/fnana.2015.00089.

  20. A. Datta, V. Bansal, J. Diaz, et al., “Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad,” Brain Stimul., 2, No. 4, 201–207 (2009), https://doi.org/10.1016/j.brs.2009.03.005.

    Article  PubMed  PubMed Central  Google Scholar 

  21. A. Datta, M. Elwassif, F. Battaglia, et al., “Transcranial current stimulation focality using disc and ring electrode confi gurations: FEM analysis,” J. Neural Eng., 5, No. 2, 163–74 (2008), https://doi.org/10.1088/1741-2560/5/2/007.

    Article  PubMed  Google Scholar 

  22. A. Datta, D. Truong, P. Minhas, et al., “Inter-individual variation during transcranial direct current stimulation and normalization of dose using MRI-derived computational models,” Front. Psychiatry, 3, 91 (2012), https://doi.org/10.3389/fpsyt.2012.00091.

    Article  PubMed  PubMed Central  Google Scholar 

  23. J. P. Dmochowski, A. Datta, M. Bikson, et al., “Optimized multi-electrode stimulation increases focality and intensity at target,” J. Neural Eng., 8, No. 4, 046011 (2011), https://doi.org/10.1088/1741-2560/8/4/046011.

  24. K. C. Dodd, V. A. Nair, and V. Prabhakaran, “Role of the contralesional VS. ipsilesional hemisphere in stroke recovery,” Front. Hum. Neurosci., 11, 469 (2017), https://doi.org/10.3389/fnhum.2017.00469.

    Article  PubMed  PubMed Central  Google Scholar 

  25. A. Donnell, D. Nascimento, M. Lawrence, et al., “High-definition and non-invasive brain modulation of pain and motor dysfunction in chronic TMD,” Brain Stimul., 8, No. 6, 1085–1092 (2015), https://doi.org/10.1016/j.brs.2015.06.008.

    Article  PubMed  PubMed Central  Google Scholar 

  26. K. Dyke, S. Kim, G. M. Jackson, et al., “Intra-subject consistency and reliability of response following 2 mA transcranial direct current stimulation,” Brain Stimul., 9, No. 6, 819–825 (2016), https://doi.org/10.1016/j.brs.2016.06.052.

    Article  PubMed  Google Scholar 

  27. D. Edwards, M. Cortes, A. Datta, et al., “Physiological and modeling evidence for focal transcranial electrical brain stimulation in humans: a basis for high-defi nition tDCS,” Neuroimage, 74, 266–275 (2013), https://doi.org/10.1016/j.neuroimage.2013.01.042.

    Article  PubMed  Google Scholar 

  28. Z. Esmaeilpour, P. Schestatsky, M. Bikson, et al., “Notes on human trials of transcranial direct current stimulation between 1960 and 1998,” Front. Hum. Neurosci., 11, 71 (2017), https://doi.org/10.3389/fnhum.2017.00071.

    Article  PubMed  PubMed Central  Google Scholar 

  29. V. Fiori, M. A. Nitsche, G. Cucuzza, et al., “High-defi nition transcranial direct current stimulation improves verb recovery in aphasic patients depending on current intensity,” Neuroscience, 406, 159–166 (2019), https://doi.org/10.1016/j.neuroscience.2019.03.010.

    Article  CAS  PubMed  Google Scholar 

  30. D. B. Fischer, P. J. Fried, G. Ruffini, et al., “Multifocal tDCS targeting the resting state motor network increases cortical excitability beyond traditional tDCS targeting unilateral motor cortex,” Neuroimage, 157, 34–44 (2017), https://doi.org/10.1016/j.neuroimage.2017.05.060.

    Article  CAS  PubMed  Google Scholar 

  31. P. C. Gandiga, F. C. Hummel, and L. G. Cohen, “Transcranial DC stimulation (tDCS) : a tool for double-blind sham-controlled clinical studies in brain stimulation,” Clin. Neurophysiol., 117, No. 4 845–850 (2006), https://doi.org/10.1016/j.clinph.2005.12.003.

  32. E. O. Garnett and D. B. den Ouden, “Validating a sham condition for use in high defi nition transcranial direct current stimulation,” Brain Stimul., 8, No. 3, 551–4 (2015), https://doi.org/10.1016/j.brs.2015.01.399.

    Article  PubMed  Google Scholar 

  33. E. O. Garnett, S. Malyutina, A. Datta, et al., “On the use of the terms anodal and cathodal in high-defi nition transcranial direct current stimulation: A technical note,” Neuromodulation, 18, No. 8, 705–713 (2015), https://doi.org/10.1111/ner.12320.

    Article  PubMed  Google Scholar 

  34. O. Gbadeyan, K. McMahon, M. Steinhauser, et al., “Stimulation of dorsolateral prefrontal cortex enhances adaptive cognitive control: A high-defi nition transcranial direct current stimulation study,” J. Neurosci., 36, No. 50, 12530–12536 (2016), https://doi.org/10.1523/JNEUROSCI.2450-16.2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. J. Giordano, M. Bikson, E. S. Kappenman, et al., “Mechanisms and effects of transcranial direct current stimulation, Dose Response, 15, No. 1, 1559325816685467 (2017), https://doi.org/10.1177/1559325816685467.

  36. A. Guerra, V. López-Alonso, B. Cheeran, et al., “Variability in non-invasive brain stimulation studies: Reasons and results,” Neurosci. Lett., 719, 133330 (2020a), https://doi.org/10.1016/j.neulet.2017.12.058.

    Article  CAS  PubMed  Google Scholar 

  37. A. Guerra, V. López-Alonso, B. Cheeran, et al., “Solutions for managing variability in non-invasive brain stimulation studies,” Neurosci. Lett., 719, 133332 (2020b), https://doi.org/10.1016/j.neulet.2017.12.060.

    Article  CAS  PubMed  Google Scholar 

  38. B. Guleyupoglu, P. Schestatsky, D. Edwards, et al., “Classifi cation of methods in transcranial electrical stimulation (tES) and evolving strategy from historical approaches to contemporary innovations,” J. Neurosci. Meth., 219, No. 2, 297–311 (2013), https://doi.org/10.1016/j.jneumeth.2013.07.016.

    Article  Google Scholar 

  39. Y. Guo, Y. Bai, X. Xia, et al., “Effects of long-lasting high-definition transcranial direct current stimulation in chronic disorders of consciousness: A pilot study,” Front. Neurosci., 13, 412 (2019), https://doi.org/10.3389/fnins.2019.00412.

    Article  PubMed  PubMed Central  Google Scholar 

  40. B. M. Hampstead, N. Mascaro, S. Schlaefflin, et al., “Variable symptomatic and neurophysiologic response to HD-tDCS in a case series with posttraumatic stress disorder,” Int. J. Psychophysiology, 154, 93–100, (2019), https://doi.org/10.1016/j.ijpsycho.2019.10.017.

    Article  Google Scholar 

  41. M. Hartmann, S. Singer, B. Savic, et al., “Anodal high-defi nition transcranial direct current stimulation over the posterior parietal cortex modulates approximate mental arithmetic,” J. Cogn. Neurosci., 18, 1–15 (2019), https://doi.org/10.1162/jocn_a_01514.

    Article  Google Scholar 

  42. R. F. Helfrich, H. Knepper, G. Nolte, et al., “Selective modulation of interhemispheric functional connectivity by HD-tACS shapes perception,” PLoS Biol, 12, No. 12, e1002031 (2014), https://doi.org/10.1371/journal.pbio.1002031.

  43. S. Henin, D. Fein, E. Smouha, et al., “The effects of compensatory auditory stimulation and high-defi nition transcranial direct current stimulation (HD-tDCS) on tinnitus perception – A randomized pilot study,” PLoS One, 11, No. 11, e0166208 (2016), https://doi.org/10.1371/journal.pone.0166208.

  44. A. L. Herrera-Melendez, M. Bajbouj, and S. Aust, “Application of transcranial direct current stimulation in psychiatry,” Neuropsychobiology, 24, 1–12 (2019), https://doi.org/10.1159/000501227.

    Article  Google Scholar 

  45. A. T. Hill, N. C. Rogasch, P. B. Fitzgerald, et al., “Effects of prefrontal bipolar and high-defi nition transcranial direct current stimulation on cortical reactivity and working memory in healthy adults,” Neuroimage, 152, 142–157 (2017), https://doi.org/10.1016/j.neuroimage.2017.03.001.

    Article  PubMed  Google Scholar 

  46. J. C. Horvath, O. Carter, and J. D. Forte, “Transcranial direct current stimulation: fi ve important issues we aren’t discussing (but probably should be),” Front. Syst. Neurosci., 8, 2 (2014), https://doi.org/10.3389/fnsys.2014.00002.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Y. Z. Huang, M. K. Lu, A. Antal, et al., “Plasticity induced by non-invasive transcranial brain stimulation: A position paper,” Clin. Neurophysiol., 128, No. 11, 2318–2329 (2017), https://doi.org/10.1016/j.clinph.2017.09.007.

    Article  PubMed  Google Scholar 

  48. L. Jacquemin, G. S. Shekhawat, P. Van de Heyning, et al., “Effects of electrical stimulation in tinnitus patients: conventional versus highdefinition tDCS,” Neurorehabil. Neural Repair, 32, No. 8, 714–723 (2018), https://doi.org/10.1177/1545968318787916.

    Article  PubMed  Google Scholar 

  49. L. Jacquemin, G. Mertens, P. Van de Heyning, et al., “An exploratory study on the use of event-related potentials as an objective measure of auditory processing and therapy effect in patients with tinnitus,” Otol. Neurotol., 40, No. 9, e868–e875 (2019), https://doi.org/10.1097/MAO.0000000000002380.

    Article  PubMed  Google Scholar 

  50. J. H. Kindred, S. A. Kautz, E. C. Wonsetler, et al., “Single sessions of high-defi nition transcranial direct current stimulation do not alter lower extremity biomechanical or corticomotor response variables post-stroke,” Front. Neurosci., 13, 286 (2019), https://doi.org/10.3389/fnins.2019.00286.

    Article  PubMed  PubMed Central  Google Scholar 

  51. M. Kuehne, K. Schmidt, H. J. Heinze, et al., “Modulation of emotional conflict processing by high-definition transcranial direct current stimulation (HD-TDCS),” Front. Behav. Neurosci., 13, 224 (2019), https://doi.org/10.3389/fnbeh.2019.00224.

    Article  PubMed  PubMed Central  Google Scholar 

  52. H. I. Kuo, M. Bikson, A. Datta, et al., “Comparing cortical plasticity induced by conventional and high-defi nition 4 × 1 ring tDCS: a neurophysiological study,” Brain Stimul., 6, No. 4, 644–648 (2013), https://doi.org/10.1016/j.brs.2012.09.010.

    Article  PubMed  Google Scholar 

  53. J. P. Lefaucheur, A. Antal, S. S. Ayache, et al., “Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS),” Clin. Neurophysiol., 128, No. 1, 56–92 (2017), https://doi.org/10.1016/j.clinph.2016.10.087.

    Article  PubMed  Google Scholar 

  54. D. Liebetanz, M. A. Nitsche, F. Tergau, et al., “Pharmacological approach to the mechanisms of transcranial DC stimulation-induced after-effects of human motor cortex excitability,” Brain, 125, No. 10, 2238–2247 (2002), https://doi.org/10.1093/brain/awf238.

    Article  PubMed  Google Scholar 

  55. A. Liu, M. Vöröslakos, G. Kronberg, et al., “Immediate neurophysiological effects of transcranial electrical stimulation,” Nat. Commun., 9, Article 5092 (2018), https://doi.org/10.1038/s41467-018-07233-7.

  56. C. D. Luft, E. Pereda, M. J. Banissy, et al., “Best of both worlds: promise of combining brain stimulation and brain connectome,” Front. Syst. Neurosci., 8, 132 (2014), https://doi.org/10.3389/fnsys.2014.00132.

    Article  PubMed  PubMed Central  Google Scholar 

  57. K. Matsunaga, M. A. Nitsche, S. Tsuji, et al., “Effect of transcranial DC sensorimotor cortex stimulation on somatosensory evoked potentials in humans,” Clin. Neurophysiol., 115, No. 2, 456–460 (2004), https://doi.org/10.1016/s1388-2457(03)00362-6.

    Article  PubMed  Google Scholar 

  58. O. Meiron, R. Gale, J. Namestnic, et al., “High-definition transcranial direct current stimulation in early onset epileptic encephalopathy: a case study,” Brain Inj., 32, No. 1, 135–143 (2018), https://doi.org/10.1080/02699052.2017.1390254.

    Article  PubMed  Google Scholar 

  59. O. Meiron, R. Gale, J. Namestnic, et al., “Antiepileptic effects of a novel non-invasive neuromodulation treatment in a subject with early-onset epileptic encephalopathy: Case report with 20 sessions of HD-tDCS intervention,” Front. Neurosci., 13, 547 (2019), https://doi.org/10.3389/fnins.2019.00547.

    Article  PubMed  PubMed Central  Google Scholar 

  60. M. Mikkonen, I. Laakso, S. Tanaka, et al., “Cost of focality in TDCS: Interindividual variability in electric fields,” Brain Stimul., 13, No. 1, 117–124 (2020), https://doi.org/10.1016/j.brs.2019.09.017.

    Article  PubMed  Google Scholar 

  61. P. Minhas, V. Bansal, J. Patel, et al., “Electrodes for high-defi nition transcutaneous DC stimulation for applications in drug delivery and electrotherapy, including tDCS,” J. Neurosci. Meth., 190, No. 2, 188–197 (2010), https://doi.org/10.1016/j.jneumeth.2010.05.007.

    Article  CAS  Google Scholar 

  62. E. Morya, K. Monte-Silva, M. Bikson, et al., “Beyond the target area: an integrative view of tDCS-induced motor cortex modulation in patients and athletes,” J. Neuroeng. Rehabil., 16, No. 1, 141 (2019), https://doi.org/10.1186/s12984-019-0581-1.

  63. M. A. Motes, J. S. Spence, K. Yeatman, et al., “High-definition transcranial direct current stimulation to improve verbal retrieval defi cits in chronic traumatic brain injury,” J. Neurotrauma, 37, No. 1, 170– 177 (2020), https://doi.org/10.1089/neu.2018.6331.

    Article  PubMed  Google Scholar 

  64. S. S. R. Mukku, S. Selvaraj, R. Parlikar, J., et al., “High-definition transcranial direct current stimulation (HD-tDCS) for auditory hallucinations in dementia – A case series,” Asian J. Psychiatry, 37, 102– 105 (2018), https://doi.org/10.1016/j.ajp.2018.08.013.

  65. S. Nikolin, C. K. Loo, S. Bai, et al., “Focalised stimulation using high defi nition transcranial direct current stimulation (HD-tDCS) to investigate declarative verbal learning and memory functioning,” NeuroImage, 117, 11–19 (2015), https://doi.org/10.1016/j.neuroimage.2015.05.019.

    Article  PubMed  Google Scholar 

  66. M. A. Nitsche, K. Fricke, U. Henschke, et al., “Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans,” J. Physiol., 553, No. 1, 293–301 (2003a), https://doi.org/10.1113/jphysiol.2003.049916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. M. A. Nitsche, D. Liebetanz, A. Antal, et al., “Modulation of cortical excitability by weak direct current stimulation–technical, safety and functional aspects,” Suppl. Clin. Neurophysiol., 56, 255–276 (2003b), https://doi.org/10.1016/s1567-424x(09)70230-2.

    Article  PubMed  Google Scholar 

  68. M. A. Nitsche and W. Paulus, “Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation,” J. Physiol., 527, No. 3, 633–639 (2000), https://doi.org/10.1111/j.1469-7793.2000.t01-1-00633.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. M. A. Nitsche and W. Paulus, “Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans,” Neurology, 57, No. 10, 1899–1901 (2001), https://doi.org/10.1212/wnl.57.10.1899.

    Article  CAS  PubMed  Google Scholar 

  70. R. Parlikar, V. S. Sreeraj, H. Chhabra, et al., “Add-on HD-tDCS for obsessive-compulsive disorder with comorbid bipolar affective disorder: A case series,” Asian J. Psychiatry, 43, 87–90 (2019), https://doi.org/10.1016/j.ajp.2019.05.015.

    Article  Google Scholar 

  71. N. S. Philip, B. G. Nelson, F. Frohlich, et al., “Low-intensity transcranial current stimulation in psychiatry,” Am. J. Psychiatry, 174, No. 7, 628–639 (2017), https://doi.org/10.1176/appi.ajp.2017.16090996.

    Article  PubMed  PubMed Central  Google Scholar 

  72. A. Phillipou, M. Kirkovski, D. J. Castle, et al., “High-definition transcranial direct current stimulation in anorexia nervosa: A pilot study,” Int. J. Eat. Disord., 52, No. 11, 1274–1280 (2019), https://doi.org/10.1002/eat.23146.

    Article  PubMed  Google Scholar 

  73. A. Priori, “Brain polarization in humans: a reappraisal of an old tool for prolonged non-invasive modulation of brain excitability,” Clin. Neurophysiol., 114, No. 4, 589–595 (2003), https://doi.org/10.1016/s1388-2457(02)00437-6.

    Article  PubMed  Google Scholar 

  74. A. Priori, A. Berardelli, S. Rona, et al., “Polarization of the human motor cortex through the scalp,” Neuroreport, 9, No. 10, 2257–2260 (1998), https://doi.org/10.1097/00001756-199807130-00020.

    Article  CAS  PubMed  Google Scholar 

  75. D. Reato, A. Rahman, M. Bikson, et al., “Effects of weak transcranial alternating current stimulation on brain activity – a review of known mechanisms from animal studies,” Front. Hum. Neurosci., 7, 687 (2013), https://doi.org/10.3389/fnhum.2013.00687.

    Article  PubMed  PubMed Central  Google Scholar 

  76. J. Reckow, A. Rahman-Filipiak, S. Garcia, et al., “Tolerability and blinding of 4x1 high-defi nition transcranial direct current stimulation (HD-tDCS) at two and three milliamps,” Brain Stimul., 11, No. 5, 991–997 (2018), https://doi.org/10.1016/j.brs.2018.04.022.

    Article  PubMed  PubMed Central  Google Scholar 

  77. R. M. G. Reinhart and J. A. Nguyen, “Working memory revived in older adults by synchronizing rhythmic brain circuits,” Nat. Neurosci., 22, No. 5, 820–827 (2019), https://doi.org/10.1038/s41593-019-0371-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. J. Richardson, A. Datta, J. Dmochowski, et al., “Feasibility of using high-defi nition transcranial direct current stimulation (HD-tDCS) to enhance treatment outcomes in persons with aphasia,” Neurorehabilitation, 36, No. 1, 115–126 (2015), https://doi.org/10.3233/NRE-141199.

    Article  PubMed  PubMed Central  Google Scholar 

  79. J. D. Richardson, P. Fillmore, A. Datta, et al., “Toward development of sham protocols for high-defi nition transcranial direct current stimulation (HD-tDCS),” NeuroRegulation, 1, No. 1, 62–72 (2014), https://doi.org/10.15540/nr.1.1.62.

    Article  Google Scholar 

  80. G. Ruffini, M. D. Fox, O. Ripolles, et al., “Optimization of multifocal transcranial current stimulation for weighted cortical pattern targeting from realistic modeling of electric fields,” Neuroimage, 89, 216–225 (2014), https://doi.org/10.1016/j.neuroimage.2013.12.002.

    Article  PubMed  Google Scholar 

  81. G. S. Shekhawat, F. Sundram, M. Bikson, et al., “Intensity, duration, and location of high-defi nition transcranial direct current stimulation for tinnitus relief,” Neurorehabil. Neural Repair, 30, No. 4, 349–359 (2016), https://doi.org/10.1177/1545968315595286.

    Article  PubMed  Google Scholar 

  82. G. S. Shekhawat and S. Vanneste, “High-defi nition transcranial direct current stimulation of the dorsolateral prefrontal cortex for tinnitus modulation: a preliminary trial,” J. Neural Transm. (Vienna), 125, No. 2, 163–171 (2018), https://doi.org/10.1007/s00702-017-1808-6.

    Article  Google Scholar 

  83. C. D. Solomons and V. Shanmugasundaram, “A review of transcranial electrical stimulation methods in stroke rehabilitation,” Neurology India, 67, No. 2, 417–423 (2019), https://doi.org/10.4103/0028-3886.258057.

    Article  PubMed  Google Scholar 

  84. V. S. Sreeraj, D. Dinakaran, R. Parlikar, et al., “High-defi nition transcranial direct current simulation (HD-tDCS) for persistent auditory hallucinations in schizophrenia,” Asian J. Psychiatry, 37, 46–50 (2018), https://doi.org/10.1016/j.ajp.2018.08.008.

    Article  Google Scholar 

  85. H. Steinberg, “Letter to the editor: transcranial direct current stimulation (tDCS) has a history reaching back to the 19th century,” Psychol. Med., 43, No. 3, 669–671 (2013), https://doi.org/10.1017/S0033291712002929.

    Article  CAS  PubMed  Google Scholar 

  86. G. Thut, T. O. Bergmann, F. Fröhlich, et al., “Guiding transcranial brain stimulation by EEG/MEG to interact with ongoing brain activity and associated functions: A position paper,” Clin. Neurophysiol., 128, No. 5, 843–857 (2017), https://doi.org/10.1016/j.clinph.2017.01.003.

    Article  PubMed  PubMed Central  Google Scholar 

  87. W. T. To, J. Hart, D. De Ridder, et al, “Considering the infl uence of stimulation parameters on the effect of conventional and high-definition transcranial direct current stimulation,” Expert Rev. Med. Devices, 13, No. 4, 391–404 (2016), https://doi.org/10.1586/17434440.2016.1153968.

    Article  CAS  PubMed  Google Scholar 

  88. C. A. Turski, A. Kessler-Jones, C. Chow, et al., “Extended Multiple- Field High-Defi nition transcranial direct current stimulation (HDtDCS) is well tolerated and safe in healthy adults,” Restor. Neurol. Neurosci., 35, No. 6, 631–642 (2017), https://doi.org/10.3233/RNN-170757.

    Article  PubMed  PubMed Central  Google Scholar 

  89. M. F. Villamar, M. S. Volz, M. Bikson, et al., “Technique and considerations in the use of 4 × 1 ring high-defi nition transcranial direct current stimulation (HD-tDCS),” J. Vis. Exp., 77, e50309 (2013a), https://doi.org/10.3791/50309.

    Article  Google Scholar 

  90. M. F. Villamar, P. Wivatvongvana, J. Patumanond, et al., “Focal modulation of the primary motor cortex in fi bromyalgia using 4×1- ring high-defi nition transcranial direct current stimulation (HDTdcs) : Immediate and delayed analgesic effects of cathodal and anodal stimulation,” J. Pain, 14, No. 4, 371–383 (2013b), https://doi.org/10.1016/j.jpain.2012.12.007.

  91. S. Wiethoff, M. Hamada, and J. C. Rothwell, “Variability in response to transcranial direct current stimulation of the motor cortex,” Brain Stimul., 7, No. 3, 468–475 (2014), https://doi.org/10.1016/j.brs.2014.02.003.

    Article  PubMed  Google Scholar 

  92. A. J. Woods, A. Antal, M. Bikson, et al., “A technical guide to tDCS, and related non-invasive brain stimulation tools,” Clin. Neurophysiol., 127, No. 2, 1031–1048 (2016), https://doi.org/10.1016/j.clinph.2015.11.012.

    Article  CAS  PubMed  Google Scholar 

  93. H. Wong, W. C. Chan, Y. Wong, et al., “High-defi nition transcranial direct current stimulation-An open-label pilot intervention in alleviating depressive symptoms and cognitive deficits in late-life depression,” CNS Neurosci. Ther., 25, No. 11, 1244–1253 (2019), https://doi.org/10.1111/cns.13253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. F. Yavari, A. Jamil, M. Mosayebi Samani, et al., “Basic and functional effects of transcranial Electrical Stimulation (tES) – An introduction,” Neurosci. Biobehav. Rev., 85, 81–92 (2018), https://doi.org/10.1016/j.neubiorev.2017.06.015.

    Article  PubMed  Google Scholar 

  95. T. Yuan, A. Yadollahpour, J. Salgado-Ramírez, et al., “Transcranial direct current stimulation for the treatment of tinnitus: a review of clinical trials and mechanisms of action,” BMC Neurosci., 19, No. 1, 66 (2018), https://doi.org/10.1186/s12868-018-0467-3.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Poydasheva.

Additional information

Translated from Uspekhi Fiziologicheskikh Nauk, Vol. 52, No. 1, pp. 3–15, January–March, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poydasheva, A.G., Bakulin, I.S., Lagoda, D.Y. et al. High-Definition Transcranial Direct Current Electrical Stimulation. Neurosci Behav Physi 51, 1190–1198 (2021). https://doi.org/10.1007/s11055-021-01178-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-021-01178-z

Keywords

Navigation