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The increased attention given to batteries has given rise to apprehensions regarding their
availability; they have thus been categorized as essential commodities. Cobalt (Co), copper
(Cu), lithium (Li), nickel (Ni), and molybdenum (Mo) are frequently selected as the primary
metallic elements in lithium-ion batteries. The principal aim of this study was to develop a
computational algorithm that integrates geostatistical methods and machine learning tech-
niques to assess the resources of critical battery elements within a copper porphyry deposit.
By employing a hierarchical/stepwise cosimulation methodology, the algorithm detailed in
this research paper successfully represents both soft and hard boundaries in the simulation
results. The methodology is evaluated using several global and local statistical studies. The
findings indicate that the proposed algorithm outperforms the conventional approach in
estimating these five elements, specifically when utilizing a stepwise estimation strategy
known as cascade modeling. The proposed algorithm is also validated against true values by
using a jackknife method, and it is shown that the method is precise and unbiased in the
prediction of critical battery elements.

KEY WORDS: Critical battery elements, Compositional data analysis, k-means clustering, Principal
components analysis, Hierarchical simulation.

INTRODUCTION

The global demand for energy is experiencing
continuous growth, resulting in an escalation in the
use of nonrenewable energy resources, which con-
tribute to the production of greenhouse gases (Liu
et al., 2018; Comello & Reichelstein, 2019). The idea
of ecologically sound growth, in conjunction with the
widespread adoption of the Agreement of Paris on
Climate Change, has necessitated the development

of innovative, environmentally conscious technolo-
gies in the areas of manufacturing, logistics, and
power storage (Manthiram, 2020).

The utilization of battery storage systems has
emerged as a pivotal measure for mitigating adverse
environmental consequences (Crabtree, 2015). The
elements necessary for the fabrication of these bat-
teries include Li, Ni, Co, Mo, and Cu (Yu & Man-
thiram, 2021). The increasing need for lithium-ion
batteries in many applications, such as electronics,
EV propulsion systems, and energy storage and
distribution systems, along with the emphasis on
sustainable economic growth in many nations, has
resulted in a supply risk in recent years, rendering
these elements highly significant. An extensive dis-
tribution of these elements can be observed in
numerous primary deposits, including copper por-
phyry deposits (Dolotko et al., 2020). Several studies

1School of Mining and Geosciences, Nazarbayev University,

Astana, Kazakhstan.
2Department of Metallurgical and Mining Engineering, Univer-
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have modeled the critical elements in primary de-
posits (e.g., Ilyas et al., 2016; Paithankar and Chat-
terjee, 2018). Nevertheless, multivariate
geostatistical modeling of critical battery elements
has received little attention, with the current trend
of research mostly focusing on the utilization of
secondary deposits, such as tailing storage facilities,
for the extraction of these elements. Hence, it is
imperative to employ a suitable technique for re-
source assessment to facilitate the subsequent plan-
ning and extraction of these elements from their
primary sources.

In fact, improving the resource assessment of
these critical battery elements can have significant
economic, social, and environmental implications.
Accurate resource assessments contribute to a more
stable supply chain for critical battery elements. This
stability is crucial for industries heavily dependent
on these elements, such as electric vehicle (EV)
manufacturing and renewable energy. Improved
methodologies can lead to more efficient extraction,
processing, and recycling of critical battery ele-
ments, potentially reducing production costs for
batteries. This, in turn, can make renewable energy
and EVs more economically viable and accessible.

A growing demand for critical battery elements,
driven by advancements in resource assessment
methodologies, can lead to job creation in the min-
ing, processing, and recycling sectors. As the cost of
critical battery elements decreases, technologies
such as EVs and renewable energy solutions may be
more broadly available. This can contribute to more
widespread adoption of clean and sustainable tech-
nologies. Improved resource assessment method-
ologies can help identify more environmentally
friendly extraction and processing methods for crit-
ical battery elements. Enhanced resource assess-
ments may also promote better recycling practices
for used batteries, reducing the environmental im-
pact of disposal. Accurate resource assessments can
stimulate research and development efforts to
identify alternative materials or technologies,
reducing dependence on scarce resources. A better
understanding of critical battery elements can yield
advancements in energy storage technologies,
improving the efficiency and performance of bat-
teries. Mineral resource evaluation is usually applied
to these elements in the same way that it is applied
to metallic ores.

In the method typically used for resource esti-
mation, deposits are first split into subareas, known
as estimation geo-domains, and the ore grades inside

each estimation geo-domain are then estimated or
simulated (e.g., Alabert & Massonnat 1990; Hal-
dorsen & Damsleth, 1990; Dubrule, 1993; Boucher
& Dimitrakopoulos 2012; Roldão et al., 2012; Jo-
nes et al., 2013; Maleki et al., 2020). Given its sim-
plicity, the use of the stepwise (cascade) algorithm
for modeling may neglect the interdependence
across various ore grades and estimation geo-do-
mains. This could result in a hard boundary that
causes a sharp change in ore grade variations as one
crosses from one estimation geo-domain to another
(Duke & Hanna, 2001; Glacken & Snowden, 2001;
Wilde & Deutsch, 2012; Rossi & Deutsch, 2014).
Moreover, it is also common that this technique may
generate estimates of ore grades that exhibit a
gradual transition between two estimation geo-do-
mains, commonly referred to as a soft boundary,
regardless of the boundary conditions in the original
data (Maleki et al., 2022). Therefore, in this tech-
nique, one may not be able to control the repro-
duction of ore grade variation across the boundaries.
To systematically account for the spatial depen-
dence of ore grade crossing boundaries, it is possible
to construct a framework that evaluates the inter-
correlations among ore grade data within distinct
estimation geo-domains (Larrondo et al., 2004;
Mery et al., 2017; Ekolle-Essoh et al., 2022). While
this approach has the capability to restore the spatial
correlation among ore grades in the final outcomes,
it might also result in the creation of hard borders.
Therefore, the method’s viability is dependent upon
the presence of soft boundaries (Maleki and Emery,
2020).

Another approach is to use joint simulation
when both ore grade and estimation geo-domains
can be modeled together (Emery & Silva, 2009;
Cáceres&Emery, 2010; Maleki & Emery, 2015). By
employing Gaussian random fields, these two fea-
tures are concurrently modeled. Madani and Maleki
(2023) presented an alternative to this method that
utilizes two ore grades and two estimation geo-do-
mains to model three Gaussian random fields. Nev-
ertheless, this method is limited to situations
containing only soft boundaries. In instances where
hard boundaries are present, this approach is not
appropriate (Maleki et al., 2021). There are indeed
multiple instances in which soft and hard boundaries
coexist within a deposit. Madani et al. (2021b) pre-
sented a cokriging approach to address this issue
when using deterministic modeling of ore grades or
estimation geo-domains.
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To obtain the proper estimation geo-domains
required in joint or cascade simulation, there are two
common procedures based on either geological
information (e.g., mineralization zones, alteration
zones, and rock types) or grade domains in con-
junction with geological information (Ortiz and
Emery, 2006; Iliyas and Madani, 2021). Neverthe-
less, these techniques require a significant amount of
manual labor, consume a considerable amount of
time, and usually rely on subjective human inter-
pretation of the mineral deposits (Fouedjio et al.,
2018). Since domaining is a clustering task, an
alternative approach is to utilize clustering machine
learning methods to find these estimation domains
automatically and quickly. For this purpose, one can
utilize classic clustering methods such as hierarchical
clustering (Maimon et al., 2005), K-means (Jain,
2010), spectral clustering (Jain et al., 1999), and
Gaussian mixture (Scrucca et al., 2016; Madenova
and Madani, 2021). Geostatistical hierarchical clus-
tering (Romary et al., 2012; Romary et al., 2015) has
also received considerable attention (Madani et al.,
2022) in such a clustering paradigm.

To acquire estimation domains derived from
machine learning, continuous variables (such as ore
grades) are customarily fed into clustering-based
algorithms. However, there are two issues related to
this. First, this technique often fails to consider cat-
egorical variables, such as geological data. In addi-
tion, this technique may prove unfeasible when
handling high-dimensional data, which refer to da-
tasets that contain several variables. One potential
solution to this problem is the implementation of
dimension reduction process-based techniques. For
instance, Koike et al. (2022) utilized principal com-
ponents analysis (PCA) to obtain estimation geo-
domains using both metal content and lithotype
data.

In this research paper, a stochastic methodology
for modeling the critical battery elements (ore
grades of interest) within a porphyry copper deposit
is presented considering the dual nature of border
effects (hard and soft) within the estimation geo-
domains. The method uses a collocated cosimulation
technique integrated with a hierarchical cosimula-
tion of ore grades that combines joint and stepwise
simulations to accommodate both boundary char-
acteristics in the final resource evaluation results.
This technique is henceforth referred to as sequen-
tial cosimulation. To obtain the estimation geo-do-
mains, an alternative approach to PCA, namely,
factor analysis of mixed data (FAMD), was used in

combination with the k-means clustering algorithm.
This method allows the inclusion of both ore grade
and geological information in the process of
obtaining the estimation geo-domains.

The structure of the paper unfolds systemati-
cally, beginning with ‘‘Methodology’’ section, which
meticulously delineates the research’s systematic
approach and procedures. ‘‘Data (Materials)’’ sec-
tion presents a comprehensive case study that serves
as the cornerstone of the entire research endeavor.
The research outcomes are described in section
‘‘Results: stepwise modeling of ore grades and esti-
mation geo-domains,’’ with specific focus on the
revelations emanating from simulation and estima-
tion processes. In ‘‘Discussion’’ section, the results
are interpreted and analyzed within the broader
context of the research’s objectives. Finally, ‘‘Con-
clusions’’ section encapsulates this paper’s essence
by summarizing key findings, elucidating their
implications, and underscoring the overall contri-
butions of this research to the field.

METHODOLOGY

Stepwise Simulation of Estimation Geo-Domains
and Ore Grades

The conventional approach to assessing a min-
eral resource involves initial establishment of esti-
mation geo-domains, followed by the independent
estimation of ore grades within each estimation geo-
domain (Alabert&Massonnat, 1990; Haldorsen
& Damsleth, 1990; Dubrule, 1993; Boucher and
Dimitrakopoulos, 2012; Roldão et al., 2012; Jone-
s et al., 2013; Maleki et al., 2020). The approach
utilized has been found to be perfectly tailored to
circumstances in which hard variations in mean ore
grades exists across estimation geo-domain bound-
aries. This scenario is known as a hard boundary,
where there is a sudden and significant shift in the
ore grades when transitioning from one estimation
geo-domain to an adjacent one.

In the first step, the estimation geo-domains are
predicted using explicit or implicit modeling ap-
proaches. However, these methods cannot measure
the uncertainty of estimation geo-domains in a de-
posit. The application of geostatistical simulation
methodologies, namely, truncated Gaussian simula-
tion approaches (Armstrong et al., 2013; Madani,
2021a, b), is one way of addressing this problem
(Emery & González, 2007; Maleki et al., 2022). This
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method simulates the estimation geo-domains via a
truncated Gaussian simulation, which results in a
probabilistic description of each estimation geo-do-
main over each target grid node. Then, only the data
from the particular estimation geo-domain are used
to estimate ore grade i; fi ¼ 1; _sng, with n total
number of ore grades, using kriging or cokriging (in
multivariate cases) across all target grid nodes. In
this manner, each grid node ðuÞ provides informa-
tion on the probability of each estimation geo-do-

main PkðuÞ and partial estimated ore grade sY�
kðuÞ

i,

ði ¼ 1; _s; nÞ that belong to the kth estimation geo-
domain ðk ¼ 1; _s;mÞ. Consequently, the final esti-

mated ore grade Y� uð Þi can be obtained from the
following equation (Emery & González, 2007; Mal-
eki et al., 2022):

Y� uð Þi ¼
Xm

k¼1

PkðuÞ � Y�
kðuÞ

i ð1Þ

This methodology is based on a stepwise mod-
eling technique that involves the probabilistic defi-
nition of estimation geo-domains and estimated ore
grades within each estimation geo-domain. This
method follows the conventional strategy used in
developing a mineral resource model, which is
known as cascade modeling. Henceforth, within the
context of this study, this methodology will be re-
ferred to as the stepwise estimation method.

Stepwise Cosimulation of Estimation Geo-Domains
and Ore Grades

The previous methodology involved including
the uncertainty of estimation geo-domains over each
grid node by simulating the probabilities of these
estimation geo-domains. This method yields
stochastic models with a pronounced effect on the
ultimate estimation of ore grades. This stepwise
technique can be further improved by considering
the uncertainty associated with ore grades. To
achieve this objective, the initial step is similar to
that of the stepwise estimation method, employing a
simulation technique to replicate several realizations
of estimation geo-domains. Following this, ore
grades within each estimation geo-domain can be
simulated or cosimulated, depending on whether the
ore grade is univariate or multivariate. This neces-
sitates one realization of estimation geo-domains for
every realization of ore grades. The implementation
of this strategy is highly effective when handling

hard variations in mean ore grades across estimation
geo-domain boundaries. This technique is com-
monly referred to as cascade simulation. However,
its effectiveness diminishes when faced with han-
dling soft variations in mean ore grades. Soft
boundaries are, in essence, more adaptable con-
straints that permit a progressive variation in ore
grades between two adjacent estimation geo-do-
mains.

In cases involving soft boundaries, joint simu-
lation (Emery & Silva, 2009; Madani & Maleki,
2023) between ore grades and estimation geo-do-
mains is recommended. The ore grades are sub-
jected to a transformation process, in which they are
represented as Gaussian random fields. In the same
way, the estimation geo-domains undergo a trans-
formation to be expressed as one or more Gaussian
random fields. To accurately capture the joint
structure of the ore grades and estimation geo-do-
mains, it is necessary to obtain the cross-correlation
structure among these Gaussian random fields.
Then, the process of jointly simulating Gaussian
random fields is performed over the target grid
nodes while accounting for the available borehole
data. The Gaussian values obtained from the joint
simulation are then back-transformed to represent
the ore grades or truncated to the estimation geo-
domains. The applicability of this approach is lim-
ited by the number of estimation geo-domains and
the number of ore grades. The inclusion of more
than two ore grades introduces a level of complexity
that significantly increases the difficulty of the cross-
correlation inference procedure (Madani & Maleki,
2023). In this paper, a methodology for modeling ore
grades using a combination of both soft and hard
boundaries is introduced.

Proposed Approach

In this work, a technique for addressing the
simultaneous presence of soft and hard boundaries
in scenarios involving various ore grades is pro-
posed. The approach employed in this study is based
on the methodology previously introduced by Al-
meida and Journel (1994), which involves hierar-
chical simulation of ore grades. The proposed
technique incorporates this hierarchical technique
by sorting ore grades based on the presence of soft
and hard boundaries. Specifically, the ore grades
with soft boundaries are prioritized and arranged
before the other ore grades with hard boundaries.
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This allows the joint simulation to be used for ore
grades with soft boundaries, and the simulated val-
ues can then be used as collocated data to simulate
other ore grades with hard boundaries by a collo-
cated cosimulation approach. The first and second
techniques align with the approaches suggested by
Emery and Silva (2009) and Almeida and Journel
(1994), respectively. Identifying the order of vari-
ables to be simulated after considering hard/soft
boundary condition involves a combination of geo-
logical understanding, spatial analysis, and practical
considerations to ensure that the simulated fields are
consistent with the known data and reflect the
underlying geological processes. Therefore, vari-
ables that have a more direct or immediate influence
on others in the geological context may be priori-
tized in the simulation order. In addition, certain
geological features or processes may influence the
distributions of other variables, guiding the order of
simulation. Variables with greater spatial continuity
or smoother spatial patterns may be simulated first,
providing a foundation for the simulation of vari-
ables with more localized or complex structures.
Variables that are highly correlated or have known
relationships should be simulated in an order that
reflects these dependencies, ensuring that the simu-
lated values are consistent with the observed corre-
lations.

The general workflow for modeling multiple ore
grades and estimation geo-domains is as follows:

(1) Ore grades are sorted in accordance with the
presence of soft and hard boundaries; ore
grades exhibiting soft boundaries should be
prioritized.

(2) Variogram analysis is performed, and a valid
linear model of coregionalizations is obtained
using all the ore grades and estimation geo-
domains.

(3) The estimation geo-domains and ore grades
with soft boundaries are jointly simulated.

(4) The simulated values obtained from step 3 are
used as collocated data to simulate the other
ore grades with hard boundaries via the col-
located cosimulation approach. This should be
done in each estimation geo-domain sepa-
rately following a stepwise/cascade simulation.

(5) The results are postprocessed, and resource
estimation for ore grades is implemented.

The proposed methodology is henceforth re-
ferred to as the stepwise cosimulation approach.
This study employs sequential Gaussian simulation
and cosimulation (Journel & Deutsch, 1998) as the
primary paradigms for simulation and cosimulation,
respectively.

The estimation geo-domains needed for this
workflow can be identified by interpreting the geo-
logical settings of the deposit, or they can be chosen
based on the range of ore grades. The former
method based on geological descriptions is suit-
able when one is handling few estimation geo-do-
mains. However, when the number of estimation
geo-domains increases, obtaining proper estimation
geo-domains becomes tedious.

To circumvent this problem, a factorial-based
transformation approach combined with a machine
learning clustering approach is proposed in this
study for obtaining proper estimation geo-domains
to start the above workflow. To achieve this, first, a
factorial transformation based on PCA was used for
this dataset for dimension reduction. The high-di-
mensional dataset in this study encompassed five
continuous variables and three categorical variables.
The categorical variables covered 13 categories,
which, together with continuous variables, make the
dataset high-dimensional.

To address this dimensionality problem, a
mixed PCA was performed. To do so, the dimension
of categorical variables was first reduced based on
the frequency of categories and then, combined with
continuous variables, these variables were subjected
to PCA transformation. This kind of PCA involves
both categorical and continuous variables and is
referred to as FAMD.

To complete this analysis, the continuous and
categorical variables were transformed to normal
scores and indicators, respectively. The indicators,
however, can only assume binary (0/1) values, which
are incompatible with the normal scores of the
continuous variables. Consequently, it would be
challenging to assign equal weights to all initial
variables when calculating the principal components
(PCs). To circumvent this issue, to place the vari-
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ables on the same scale, the indicators were trans-
formed into nearly continuous variables. This was
followed by dividing the binary variables by the
square root of their probabilities. The final proce-
dure involved centralizing and standardizing the
nearly continuous variables to align them with the
normal scores of continuous variables. This adjust-
ment was implemented to guarantee that every sin-
gle variable was standardized and measured on a
consistent scale. The methodology is effectively ex-
plained in Visbal-Cadavid et al. (2020).

Once the factors were identified via FAMD,
any machine learning clustering approach can be
used to obtain the estimation geo-domains. Among
others, we used k-means clustering, which is an
unsupervised learning algorithm that groups similar
points and reveals hidden patterns (Jain, 2010); in
our case, these patterns revealed the estimation geo-
domains. The optimal number of clusters can be
identified using the lower value of the Bayesian
information criterion (BIC) curve, which tends to
fluctuate around a constant (Madenova and Madani,
2021). However, it is often beneficial to combine K-
means clustering with geo-domain expertise and
other geostatistical techniques to conduct a com-

prehensive analysis. The flowchart of the technique
proposed in this paper is provided in Figure 1.

DATA (MATERIALS)

Preparation and Exploratory Analysis of the Data

The stepwise algorithms were applied to a da-
taset comprising 10,994 observations from the Sar-
kuh copper porphyry deposit in Iran. The geological
characteristics of this deposit, including its geologi-
cal maps and context, have been described in detail
in Madani et al. (2022). This dataset encompasses
five geochemical ore grade components (Cu, Mo, Ni,
Li, and Co) that are of critical importance for bat-
tery applications and mineral resource evaluation.
Additionally, the dataset includes 13 geo-domains,
which encompass various rock types (such as ande-
site–diorite, granodiorite, and monzodiorite–quartz
diorite), mineralization zones (hypogene and
supergene), and alteration zones (argillic, carbona-
tization, chlorotic, phyllic, potassic, propylitic, ser-
icitic, and siliciclastic). An isotopic (homotopic)
sampling pattern was utilized, which ensured that

Figure 1. Flowchart showing the steps needed to implement the stepwise cosimulation algorithm.
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each of the elements in the dataset was evaluated
simultaneously at the same sampling locations, and
no instances of missing values were observed
(Wackernagel, 2013). The distribution patterns of
the variables at both global and local distribu-

tions are illustrated in Figures 2 and 3, employing
histograms and location maps. As illustrated in
Figure 2, the original dataset exhibits positive
skewness for every variable. Lognormality was
checked using a probability plot. As shown in Fig-

Figure 2. Original ore grade components histograms, and lognormal probability plot.
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Figure 3. Three-dimensional location maps for Co, Cu, Li, Mo, and Ni.
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ure 2, the distributions were almost linear for Co,
Cu, Li, and Ni and slightly linear for Mo, indicating
that all the variables more or less followed a log-
normal distribution.

The location maps in Figure 3 illustrate the
predominant concentrations of rich ore zones for Cu
and Mo within the center of the deposit. Conversely,
the rich ore zones for Co, Ni, and Li tended to ex-
tend toward the periphery. The drilling pattern
spanned an area of roughly 741 m, 599 m, and 633 m
in the X, Y, and Z directions, respectively.

The statistical parameters associated with the
categorical variables are presented as relative fre-
quencies (Fig. 4). The data reveal that granodiorite
exhibits the largest relative frequency (79%) among
the many rock types present in the deposit. It is
followed by monzodiorite–quartz diorite, which ac-
counted for 20% of the rock types, while andesite–
diorite represented a mere 1% of the total alteration
zone and exhibited a notable predominance of the
potassic group, accounting for a maximum relative
frequency of 72%. The dominant mineralization
zones were hypogene, constituting 98% of the entire

zone, whereas the supergene zone represented a
mere 2%.

The dataset comprises a five continuous vari-
ables that exhibit compositional nature. To mitigate
the closure effect that exists within the dataset, we
utilized an additive log-ratio transformation
(Aitchison, 1986) after introducing a filler variable.
Table 1 presents the fundamental univariate statis-
tical parameters for each variable according to their
original scale, including sample count, geometric
mean, minimum, and maximum. However, the
variance was not directly calculated using the origi-
nal compositional data. Instead, the variance was
computed using log-ratio-transformed data, yielding

Figure 4. Relative frequency of geo-domains (rock type, alteration zone, and mineralization zone).

Table 1. Statistical univariate parameters of the original ore

grades, in ppm

Co Cu Li Mo Ni

Sample count 10,994 10,994 10,994 10,994 10,994

Geometric mean 17.8 1,112.9 6.6 15 11.5

Minimum 1 5 0.1 0.1 1

Maximum 290 24,600 31 4,843 228
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values of 0.157, 0.749, 0.173, 2.463, and 0.1817 for
Co, Cu, Li, Mo, and Ni, respectively.

To verify the outcomes of the transformation,
an analysis was conducted to assess the interdepen-
dence among variables as an indicator of multivari-
ate association, both in the log-ratio and original
scales (Table 2). It is evident that the original scale
exhibited moderate associations with Co–Li, Co–Ni,
and Li–Ni. In addition, the main ore grade, repre-
sented by Cu, did not exhibit any significant corre-
lation with the other continuous components.
Nonetheless, the correlation coefficients displayed
on the original scale may be misleading due to the
dataset’s compositional structure (Grunsky & Cari-
tat, 2019). Hence, it is advisable to additionally
examine the interdependence of variables by eval-
uating the correlation coefficients after the additive
log-ratio transformation. After the additive log-ratio
transformation was applied, it was evident that the
correlation coefficients exhibited a marginal in-
crease.

To measure the dispersion of ore grades with
compositional nature, a variation matrix (Aitchison,
1986) was computed based on the original scale of
the data. The variation matrix provides details about
the extent and orientation of the distribution of data
with multiple variables within a space with multiple
dimensions. For example, the variance in Co and Ni
exhibited a significantly modest value of 0.16 in the
original scale, indicating high positive correlation or
proportionality between each of the variables. In

contrast, the variance in the original Li and Mo
concentrations exhibited a substantial magnitude of
3.59, suggesting a lack of association or a minimal
relationship between these two variables (Table 3).

Reduction in Dimension

Dimension reduction is essential owing to the
dataset’s high-dimensional characteristics (five con-
tinuous and three categorical variables, each with
multiple categories within every geo-domain). Ini-
tially, each of the geo-domains was divided into two
main geo-domain groups, depending on the most
dominant rock type, mineralization zone, and alter-
ation (Fig. 4). Consequently, the rock varieties were
classified as ‘‘others’’ (rock-other) or ‘‘granodiorite’’
(rock-GRD), with monzodiorite–quartz diorite and
andesite–diorite comprising the former category.
With respect to alterations, a single group was des-
ignated the ‘‘potassic alteration’’ (alt-POT), whereas
the remaining group (alt-other) comprised the fol-
lowing: argillic, carbonatized, chlorotic, phyllic,
propylitic, sericitic, and siliciclastic. Given the lim-
ited number of categories present in the mineralized
zone, ‘‘hypogene’’ and ‘‘supergene’’ (i.e., min-HYP
and min-SUP) were kept constant. The high-di-
mensional geo-domains were reduced into six main
groups using this approach. These main geo-domain
groups were converted into indicators, which were
subsequently combined with log ratios of ore grades
for further analysis via PCA to further reduce the
dimensionality of the dataset. This combination
helped yield the requisite principle components
using FAMD, which was introduced by Visbal-Ca-
david et al. (2020). Next, eight standardized and
centralized variables were subjected to PCA. Sub-
sequently, eight PCs were obtained, representing the

Table 2. Matrices of cross-correlations among variables (original

and log-ratio scales)

Co Cu Li Mo Ni

Original scale

Co 1 0.01 0.27 �0.04 0.39

Cu 0.01 1 �0.11 0.12 0.01

Li 0.27 �0.11 1 �0.09 0.27

Mo �0.04 0.12 �0.09 1 �0.05

Ni 0.39 0.01 0.27 �0.05 1

Log�ratio scale

Co 1 �0.07 0.36 �0.15 0.52

Cu �0.07 1 �0.15 0.29 0.01

Li 0.36 �0.15 1 �0.22 0.35

Mo �0.15 0.29 �0.22 1 �0.16

Ni 0.52 0.01 0.35 �0.16 1

Table 3. Variation matrix of ore grades at the original scale

Co Cu Li Mo Ni

Co 0 0.96 0.56 2.96 0.16

Cu 0.96 0 1.45 2.56 0.93

Li 0.56 1.45 0 3.59 0.57

Mo 2.96 2.56 3.59 0 3.01

Ni 0.16 0.93 0.57 3.01 0
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five continuous ore grades and six grouped cate-
gorical geo-domains. It is worth noting that the
complement of indicators was not considered to
avoid singularity in FAMD. The first three PCs were
selected for further analysis. The rationale for
choosing these three components can be shown by
visualizing the scree plot. To visually represent the
quantity of variance accounting for each PC, a scree
plot was generated. This approach facilitated the
assessment of the extent to which variability can be
explained by each element. The scree plot demon-

strated that the first three PCs, namely PC1, PC2,
and PC3, accounted for a significant portion of the
variability, exceeding 60%. Specifically, PC1 ex-
plained 33.09% of the total variability, followed by
PC2 with 15.09% and PC3 with 13.63% (Figure 5).
The advantage of this strategy was that the produced
PCs incorporate the influences of both ore grades
and geo-domains.

Figure 6 provides a visual representation of the
biplot, which is an effective graphic tool for illus-
trating the relationships among variables in a given
dataset and the main components (Jolliffe & Cadi-
ma, 2016). The loadings of the normal score log-
ratios over PC1 were greater for Cu, Mo, and rock-
GRD on the positive side. In contrast, Li, Co, Ni,
and alt-POT exhibited higher loadings in PC2,
indicating that PC2 more effectively captured the
variability of these variables. The PC3 exhibited a
notable increase in loading for both the min-HYP
and alt-POT variables. In summary, PC1 predomi-
nately captured the variance observed in the vari-
ables Cu, Mo, and rock-GRD. PC2 predominantly
captured the variability in Li, Co, Ni, and alt-POT.
Finally, PC3 provided a clearer understanding of the
association between min-HYP and alt-POT. In
summary, the main factor influencing the variations
in Cu and Mo contents was the composition of the
rock type, while alterations played a significant role
in controlling the variations in Li, Co, and Ni.

These relationships were corroborated by
investigating a correlation matrix (Table 4). PC1

Figure 5. Scree plot obtained for 8 variables (mixture of ore

grades and geo-domains).

Figure 6. Biplots for five ore grades and three geo-domains; Rock, MIN, and Alt represent rock-GRD, min-HYP, and alt-POT,

respectively; the continuous variables are normal log-ratio scores.
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exhibited a robust positive correlation with rock-
GRD and a conspicuous negative correlation with
Co, Li, and Ni. PC2 exhibited a pronounced positive
correlation with Cu and Mo while PC3 exhibited
significant correlations with min-HYP and alt-POT.
These observations highlight that the ore grades
within each group display substantial intercorrela-
tions. However, the absence of a significant corre-
lation between Co-Li-Ni and Cu-Mo is noteworthy.

Inference of Estimation Geo-domains

To determine the estimation geo-domains for
modeling purposes, the first three PCs derived from
the borehole data were subjected to the K-means
clustering algorithm (Figure 7a–c). Within the
framework of this technique, it is important to
ascertain the predetermined quantity of clusters.
Consequently, we designated the number of clusters
as two for PC1, PC2, and PC3. Although this might
not be the ideal number of clusters, it was helpful in
determining the estimation geo-domains that were
relevant to this deposit and this study. The clusters
obtained from the analysis are illustrated in Fig-
ure 7d.

To examine the effectiveness of two inferred
estimation geo-domains and their influences on the
ore grades and geo-domains, statistical analyses are
needed to determine the magnitude of associations
with the obtained estimation geo-domains. To assess
the relationship between ore grade/geo-domains and
inferred estimation geo-domains, Cramer’s V coef-
ficient was calculated. This parameter quantitatively
measures the dependence between the estimation
geo-domains and the geo-domains (i.e., rock types,
mineralization zones, and alterations). Cramer’s V
coefficient can be interpreted as an indicator of the

level of association between two variables and can
vary between 0 (poor association) and 1 (perfect
association) with the following classifications: very
weak association (VW; V< 0.05), weak association
(W; 0.05 £ V< 0.10), moderate association (M;
0.10 £ V< 0.15), strong association (S;
0.15 £ V< 0.25), and very strong association (VS;
0.25 £ V< 1). The Cramer’s V coefficient was
calculated using the method described by Cramér in
1946.

V ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

nðq� 1Þ

s

ð2Þ

where x2 represents test statistics obtained from the
summary of the data found in the contingency table,
q is the smaller number of rows and columns in the
contingency table, and n is the total number of
sample locations. To measure the dependence be-
tween the estimation geo-domains and ore grades in
their original scale (Co, Cu, Li, Mo, and Ni), Cra-
mer�s V coefficient was similarly used, and the con-
tinuous variables were initially transformed into
categorical variables by using thresholds that corre-
sponded to their quartiles. Subsequently, each seg-
ment of the quartiles was encoded into integers. The
obtained results are presented in Table 5.

The associations of the resulting estimation geo-
domains with five ore grades and three geo-domains
revealed strong and very strong associations, except
for the mineralization zone. The very weak associ-
ation between the mineralization zone and estima-
tion geo-domains can be attributed to the prevalence
of the hypogene zone in this deposit, which out-
weighs the influence of the supergene zone. Conse-
quently, the inference of estimation geo-domains
may not be significantly affected by mineralization
zones. This table can also be used to evaluate the

Table 4. Correlation matrix for variables and PCs

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

Co �0.46 0.28 �0.12 �0.24 0.09 �0.40 �0.07 0.68

Cu 0.22 0.69 �0.16 0.20 �0.42 �0.18 �0.42 �0.19

Li �0.45 0.09 0.13 0.14 �0.02 0.74 �0.43 0.12

Mo 0.26 0.54 0.19 �0.02 0.75 0.16 0.13 �0.01

Ni �0.42 0.35 �0.23 �0.03 �0.22 0.19 0.70 �0.27

alt-POT �0.22 0.00 0.51 0.76 �0.01 �0.29 0.16 0.06

min-HYP �0.02 0.14 0.77 �0.53 �0.30 �0.04 0.03 �0.10

rock-GRD 0.49 0.07 0.03 0.12 �0.35 0.34 0.32 0.64
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Figure 7. Location maps of a PC1, b PC2, c PC3, and d estimation geo-domains obtained from K-means clustering using PC1, PC2, and

PC3.

Table 5. Cramer’s V coefficient for measuring the magnitude of correlation between continuous/categorical variables and estimation geo-

domains

Alteration Mineralization Rock type Estimation geo-domains

Co (ppm) M W VS VS

Cu (ppm) M W VS VS

Li (ppm) S W VS VS

Mo (ppm) W W S VS

Ni (ppm) S W VS VS

Alteration – W S S

Mineralization W – VW VW

Rock type S VW – VS

Estimation geo-domains S VW VS –
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level of association between ore grades and estima-
tion geo-domains. As discussed earlier, Li, Ni, and
Co exhibited strong correlations with each other,
while alteration exhibited a strong association with
only Li and Ni. The rock type was found to exert
control over all ore grades within this porphyry
copper deposit. Therefore, aligning with common
practices in resource modeling of copper deposits,
the obtained estimation geo-domains appeared to be
effective areas for modeling the ore grades in this
deposit.

Figure 8 shows the boxplot of the continuous
variables on the original scale, along with the
resulting estimation geo-domains. Based on the
present analysis, the estimation geo-domains can be
constructed as follows:

� Estimation geo-domain 1 was mostly situated in
the middle and western regions of the deposit

(Fig. 7d). It was distinguished by a substantial
quantity of Cu and a somewhat high proportion
of Mo. As previously mentioned, the character-
istics of this particular estimation geo-domain
were shaped primarily by the type of rock pre-
sent and the occurrence of potassic alteration,
which is strongly linked to the hypogene miner-
alization zone. These characteristics may indicate
the existence of a secondary enrichment zone
that is generated as a result of the oxidation of
primary sulfide minerals. This phenomenon is
frequently observed in porphyry copper deposits.
Consequently, this field exhibited considerable
potential as a source of Cu and Mo.

� Estimation geo-domain 2 was situated in the
eastern-northern peripheral regions of the de-
posit (Fig. 7d). It is characterized by somewhat
elevated levels of Co, Li, and Ni. Hence, this

Figure 8. Boxplots of continuous variables over the original scale.
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particular area exhibited potential for successful
extraction of Co, Li, and Ni.

RESULTS: STEPWISE MODELING OF ORE
GRADES AND ESTIMATION
GEO-DOMAINS

Boundary Conditions of Ore Grades Across
Estimation Geo-domains

Once the estimation geo-domains are inferred,
one obtains the ore grades with log ratios and esti-
mation geo-domains over the borehole data. The
analysis of the variation in each component in rela-
tion to the distance to the boundary between esti-
mation geo-domains 1 and 2 is necessary for the
stepwise prediction and simulation of continuous
data. To examine this relationship, a contact analysis
was conducted, which organizes the data pertaining
to a specific estimation geo-domain and accounts for
its proximity to the boundary of another estimation
geo-domain. To accomplish this, it is customary to
examine the pairings of data points where the tail is
associated with one estimation geo-domain and the
head is associated with a different estimation geo-

domain. The contact analysis can be determined by
graphing the average grade of each estimation geo-
domain against the distance from the boundary be-
tween two estimation geo-domains (Rossi and
Deutsch, 2014).

In this study, contact analysis indicates hard
boundaries in the distributions of Co, Mo, Ni, and Li
when transitioning from estimation geo-domains 1
to 2. However, in the distribution of Cu, this tran-
sition appeared to be soft (Fig. 9). Hence, the re-
source modeling of these five components involved a
combination of one soft boundary and four hard
boundaries.

Stepwise Estimation of Ore Grades and Estimation
Geo-domains

To implement this algorithm, following the
procedure provided in section ‘‘Stepwise Simulation
of Estimation Geo-Domains and Ore Grades,’’ ini-
tially, a block model of 22,875 blocks, each with
dimensions of 10m� 10m� 10m, was taken into
account. Then, the estimation geo-domains were
modeled via truncated Gaussian simulation through
100 realizations to quantify the probability of each
estimation geo-domain (i.e., P1ðuÞ and P2ðuÞ)

Figure 9. Examination of relationships between the signed distance to the boundary separating estimation geo-domains 1 and 2 and the

average ore grades; the solid black line represents the boundary between two estimation geo-domains (geo-domain 1 on the left side and

geo-domain 2 on the right side of solid black line).
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occurring at the designated target blocks. For this
purpose, the variogram of the Gaussian random field
was inferred using the indicators of the estimation
geo-domains over the boreholes. For this purpose,
the madogram was evaluated in multiple directions;
nevertheless, no discernible zonal or geometric ani-
sotropy was detected (Appendix, Fig. 18). Conse-
quently, an omni-directional cubic variogram
structure was fitted with a range of 410 meters. In
this study, continuous data were predicted at target

locations Yk
�ðuÞi, fk ¼ 1; 2; i ¼ 1; _s; 5g by using

simple collocated cokriging in a hierarchical manner.
For this purpose, first, the log ratios of ore grades to
borehole data were split into two groups based on
their respective estimation geo-domains. Then, the
anisotropy was checked by investigating the shape of
the experimental madogram in different directions
for all the log ratios. The madogram analyses con-
ducted on the provided data did not indicate the
presence of any distinct anisotropy in the continuous
data within the estimation geo-domains (Appendix,
Fig. 18). As a result, direct and cross-variograms that
were omnidirectional in each estimation geo-domain
were quantified based on the log ratios of ore grades
within each estimation geo-domain:

Estimation Geo-Domain 1:

cCu cCu=Co cCu=Li cCu=Mo cCu=Ni

cCo=Cu cCo cCo=Li cCo=Mo cCo=Ni

cLi=Cu cLi=Co cLi cLi=Mo cLi=Ni

cMo=Cu cMo=Co cMo=Li cMo cMo=Ni

cNi=Cu cNi=Co cNi=Li cNi=Mo cNi

0
BBBBBB@

1
CCCCCCA

¼

0:243 0:033 �0:001 0:147 0:019

0:033 0:037 0:012 0:007 0:019

�0:001 0:012 0:057 �0:022 0:019

0:147 0:007 �0:022 1:190 �0:005

0:019 0:019 0:019 �0:005 0:043

0
BBBBBB@

1
CCCCCCA
Nugget

þ

0:168 0:014 0:003 �0:021 0:025

0:014 0:026 0:007 �0:006 0:012

0:003 0:007 0:047 �0:026 0:018

�0:021 �0:006 �0:026 1:139 �0:030

0:025 0:012 0:018 �0:030 0:044

0
BBBBBB@

1
CCCCCCA
Cubicð200mÞ

þ

0:380 �0:024 �0:001 �0:024 0:005

�0:024 0:014 0:001 0:003 0:000

�0:001 0:001 0:016 0:002 �0:001

�0:024 0:003 0:002 0:002 �0:000

0:005 0:000 �0:001 �0:000 0:000

0
BBBBBB@

1
CCCCCCA
Cubicð410mÞ

ð3Þ

Estimation Geo-Domain 2:

cCu cCu=Co cCu=Li cCu=Mo cCu=Ni

cCo=Cu cCo cCo=Li cCo=Mo cCo=Ni

cLi=Cu cLi=Co cLi cLi=Mo cLi=Ni

cMo=Cu cMo=Co cMo=Li cMo cMo=Ni

cNi=Cu cNi=Co cNi=Li cNi=Mo cNi

0
BBBBBB@

1
CCCCCCA

¼

0:183 0:101 0:018 0:166 0:071

0:101 0:089 0:013 0:052 0:053

0:018 0:013 0:057 0:014 0:013

0:166 0:052 0:014 0:947 0:033

0:071 0:053 0:013 0:033 0:147

0
BBBBBB@

1
CCCCCCA
Nugget

þ

0:360 0:082 �0:067 0:567 �0:005

0:082 0:040 �0:008 0:132 0:037

�0:067 �0:008 0:025 �0:109 0:004

0:567 0:132 �0:109 0:895 �0:001

�0:0057 0:037 0:004 �0:001 0:080

0
BBBBBB@

1
CCCCCCA
Cubicð200mÞ

þ

0:233 �0:079 0:034 0:075 0:065

�0:079 0:057 �0:022 �0:112 �0:054

0:034 �0:022 0:078 0:117 �0:023

0:075 �0:112 0:117 0:357 0:064

0:065 �0:054 �0:023 0:064 0:081

0
BBBBBB@

1
CCCCCCA
Cubicð410mÞ

ð4Þ
Once the spatial correlation of the log ratios

was identified, the log ratios were predicted using a
simple collocated cokriging system in a hierarchical
manner. This implies that the elements Cu, Co, Li,
Mo, and Ni were hierarchically modeled, with Cu
being the first element and Ni being the final ele-
ment in the series. The first criterion for selecting the
variables in such an order was the presence of a soft
or hard boundary, which was why Cu, with a soft
boundary, was prioritized. Given that the dataset in
this study was isotopic and exhibited almost identi-
cal spatial structures, the order of the variables with
hard boundaries (Co, Li, Mo, and Ni) had a minimal
impact on the simulation results.

A moving neighborhood with a range of 1000 m
and 60 data points was considered for modeling all
the variables. Therefore, each block informed seven
variables at the end: the probabilities of estimation
geo-domains 1 and 2 ( P1ðuÞ and P2ðuÞÞ and the

estimated values of log-ratios Yk
�ðuÞi,

fk ¼ 1; 2; i ¼ 1; _s; 5g. To use Eq. 1 to obtain the final
prediction of ore grades, the predicted values were
back-transformed from log ratios to the original
scale. Afterward, the multiplication in Eq. 1 was
accounted for. This method considers the influences
of both estimation geo-domains. Two realizations of
truncated Gaussian simulation and one realization
of ore grades are presented in Figures 10 and 11. The
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scenarios generated using the truncated Gaussian
simulation approach in Figure 10 corresponded with
the variance in the categorical variable observed in
the borehole data. However, the outcomes obtained
were somewhat patchy in nature. In addition, ore
grade fluctuations across the estimation geo-domain
boundaries were relatively smooth (Fig. 11). The use
of the kriging paradigm for stepwise estimation of
ore grades was a significant cause of such smooth-
ness. These results present the traditional modeling
of ore grades where the estimation geo-domains

were modeled first and the ore grades were then
estimated independently in each estimation geo-
domain.

Stepwise Cosimulation of Ore Grades
and Estimation Geo-domains

In the studied deposit, as shown in Figure 9,
there is a mixture of hard and soft boundaries. The
methodology employed in this research was the

Figure 10. Two realizations (a and b) of stepwise cosimulation (left column) and stepwise estimation methods (right column).
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Figure 11. One realization and estimated map of stepwise cosimulation (left) and

stepwise estimation (right) methods for a Cu, b Co, c Li, d Mo, and e Ni.
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cosimulation of ore grades, with particular emphasis
on the incorporation of the aforementioned contact
behaviors. For this purpose, a hierarchical manner of
simulation was considered. To do so, first, the Cu
and estimation geo-domains were jointly simulated
following the approach proposed by Emery and
Silva (2009), which accounts for the presence of a
soft boundary in the Cu variation (Fig. 9). Then, the
other ore grades, Co, Li, Mo, and Ni, were cosimu-
lated hierarchically, with Co being the first element
and Ni being the final element in this series. Because
the variations in Co, Li, Mo, and Ni exhibited hard
boundaries (Fig. 9), the dataset was then split into
two groups, each belonging to one estimation geo-
domain. This property of ore grade variation
encourages the use of stepwise/cascade simulation.

Variogram Analysis

Because joint and cascade simulations were
both considered in this study, proper variogram
inference was needed. In joint simulations, a linear
model of coregionalization should be inferred be-
tween Cu and the estimation geo-domains. In cas-
cade simulations, linear models of coregionalization
should be inferred for Co, Li, Mo, and Ni in each
estimation geo-domain separately. However, be-
cause the proposed hierarchical approach in this
study also necessitates considering the spatial cross-
correlations among Cu and Co, Li, Mo, and Ni, a
particular solution must be examined. To do so, first,
the variogram analysis of the Gaussian random field,
used in the previous step for implementing the
truncated Gaussian simulation, was considered. This
is a one-structure cubic variogram with a range of
410 m. Then, Cu and Co, Li, Mo, and Ni in each
estimation geo-domain were first transformed into
log-ratios and then converted to normal scores.
Notably, the entire dataset of Cu was utilized with-
out accounting for any differentiation across esti-
mation geo-domains. The spatial continuity analyses
were conducted omni-directionally because no dis-
cernible anisotropy was observed in the madogram
analyses. A linear model of coregionalization was
then inferred for the two estimation geo-domains
separately, taking into consideration that the Cu
values are identical in these two dataset groups:

Estimation Geo-Domain 1:

cCu cCu=Co cCu=Li cCu=Mo cCu=Ni

cCo=Cu cCo cCo=Li cCo=Mo cCo=Ni

cLi=Cu cLi=Co cLi cLi=Mo cLi=Ni

cMo=Cu cMo=Co cMo=Li cMo cMo=Ni

cNi=Cu cNi=Co cNi=Li cNi=Mo cNi

0
BBBBBB@

1
CCCCCCA

¼

0:281 0:157 0:000 0:115 0:112

0:157 0:488 0:153 0:025 0:250

0:000 0:153 0:449 �0:034 0:214

0:115 0:025 �0:034 0:541 0:002

0:112 0:250 0:214 0:002 0:487

0
BBBBBB@

1
CCCCCCA
Nugget

þ

0:320 0:008 0:006 �0:013 0:154

0:083 0:442 0:146 �0:039 0:195

0:006 0:146 0:439 �0:065 0:240

�0:013 �0:039 �0:065 0:467 �0:058

0:154 0:195 0:240 �0:058 0:537

0
BBBBBB@

1
CCCCCCA
Cubicð200mÞ

þ

0:454 �0:087 �0:011 �0:028 0:035

�0:087 0:085 �0:013 0:025 �0:007

�0:011 �0:013 0:130 0:037 �0:031

�0:028 0:025 0:037 0:021 �0:012

0:035 �0:007 �0:031 �0:012 0:010

0
BBBBBB@

1
CCCCCCA
Cubicð410mÞ

ð5Þ
Estimation Geo-Domain 2:

cCu cCu=Co cCu=Li cCu=Mo cCu=Ni

cCo=Cu cCo cCo=Li cCo=Mo cCo=Ni

cLi=Cu cLi=Co cLi cLi=Mo cLi=Ni

cMo=Cu cMo=Co cMo=Li cMo cMo=Ni

cNi=Cu cNi=Co cNi=Li cNi=Mo cNi

0
BBBBBB@

1
CCCCCCA

¼

0:285 0:322 0:077 0:203 0:158

0:322 0:649 0:148 0:150 0:342

0:077 0:148 0:499 0:008 0:100

0:203 0:150 0:008 0:475 0:059

0:158 0:342 0:100 0:059 0:706

0
BBBBBB@

1
CCCCCCA
Nugget

þ

0:320 0:194 �0:206 0:292 0:022

0:194 0:154 �0:112 0:181 0:065

�0:206 �0:112 0:137 �0:187 0:004

0:292 0:181 �0:187 0:268 0:026

0:022 0:065 0:004 0:026 0:077

0
BBBBBB@

1
CCCCCCA
Cubicð200mÞ

þ

0:450 �0:227 0:148 0:128 0:152

�0:227 0:239 �0:073 �0:199 �0:210

0:148 �0:073 0:437 0:268 �0:108

0:128 �0:199 0:268 0:316 0:095

0:152 �0:210 �0:108 0:095 0:259

0
BBBBBB@

1
CCCCCCA
Cubicð410mÞ

ð6Þ
Once the linear model of coregionalization was

identified, the same structure of Cu (Eqs. 5 and 6)
was considered, as was the previously inferred vari-
ogram of Gaussian random fields. An experiment
was conducted to evaluate the similarity in structure
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between Cu in estimation geo-domains 1 and 2. As
suggested by Emery and Silva (2009) and Madani
and Maleki (2023), possible cross-variograms with
normal log ratios of Cu and indicator of estimation
geo-domains were subsequently derived via a com-
bination of trial and error and Monte Carlo simu-
lation, thus:

cCu cCu=Ind
cInd=Cu cInd

 !
¼

0:285 0

0 0

� �
nugget

þ
0:32 �0:03

�0:03 0

� �
Cubic 200mð Þ

þ
0:450 �0:42

�0:42 1

� �
Cubic 410mð Þ

ð7Þ

Geostatistical Simulation. Prior to implementing the
proposed cosimulation algorithm, an evaluation is
required to assess the assumption of multi-Gaus-
sianity and bivariate normality using the normal
score values. The rationale for this is that the
sequential Gaussian cosimulation approach we pro-
pose here requires these assumptions to be validated
in the transformed variables. To accomplish this, the
spatial multi-Gaussianity of the transformed data
was evaluated by examining the experimental vari-
ogram of various orders using normal score variables
as proposed by Emery (2005). The validation results
confirmed the presence of spatial multi-Gaussianity
for all five critical elements. Hence, the normal
scores of the initial data can be employed for any
multi-Gaussian cosimulation procedure, including
sequential Gaussian cosimulation.

Once the direct and cross-variograms were fit-
ted properly, a stepwise simulation was chosen as
explained above. First, normal scores of the log ra-
tios of Cu and the estimation geo-domains were
jointly simulated using the model fitted in Eq. 7.
Then, simulated values of Cu at target locations
(normal scores) were chosen as collocated data to
hierarchically simulate 100 realizations of Co, Li,
Mo, and Ni in each estimation geo-domain sepa-
rately using the variogram model derived as in
Eqs. 5 and 6. For each realization of the estimation
geo-domains, there is one realization of the contin-
uous variables. The normal scores were then back-
transformed to log-ratios and to the original scale of
the data. Therefore, six simulated variables were
available at each block: the estimation geo-domains,
Cu, Co, Li, Mo, and Ni. Figure 10 shows two real-
izations of the truncated Gaussian simulation. The

estimation geo-domains, particularly the second one,
appeared to be more contiguous and compact in the
stepwise simulation results than in the stepwise
estimation results. This phenomenon occurred as a
result of the inclusion of Cu within the simulation of
the estimation geo-domains. One realization of
stepwise cosimulation for each ore grade is pre-
sented in Figure 11. The cosimulations were less
smooth than the stepwise estimation results were.

POSTPROCESSING OF REALIZATIONS
AND STATISTICAL VALIDATIONS

The probability maps in each block were cal-
culated by considering the outcomes of the trun-
cated Gaussian simulation from both
methodologies. For this purpose, the probability of
each block being either 1 or 2 was calculated based
on 100 realizations. The probability maps of esti-
mation geo-domain 2 obtained from both ap-
proaches are presented in Figure 12. It is evident
that there is a considerable likelihood of encoun-
tering estimation geo-domain 2 in the western-
northern region of the deposit. This observation
indicates a notable abundance of Co, Li, and Ni
within these regions. In the context of estimation
geo-domain 1, the likelihood of the presence of this
estimation geo-domain is significantly elevated in
the central and eastern sections of the deposit (op-
posite to estimation geo-domain 2). This observation
indicates a notable concentration of Cu and Mo in
these particular areas. The likelihood of encounter-
ing estimation geo-domain 2 in these regions is rel-
atively low. However, it is apparent that the
distinction between the two methodologies is not
substantial. It is important to highlight that the ini-
tial proportions were effectively replicated using
both approaches, as indicated in Table 6.

For the ore grades, examining the reproduction
of original distribution obtained from both methods
is of interest. Figure 13 shows probability plots for
the results obtained from both approaches (the
realization and final estimation maps are presented
in Figure 11). These plots were compared with the
original distribution of the ore grades. The upper tail
of the distribution is significant because it represents
valuable parts of a deposit. However, the smoothing
effect of the final results obtained from stepwise
estimation can be observed clearly, particularly
when reproducing the upper quartiles of the original
distribution for all five ore grades, while the distri-
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bution of the results obtained from stepwise cosim-
ulation was more consistent with the original distri-
bution. This discrepancy is related to the use of the
kriging method in stepwise estimation.

Additionally, the replication of the correlation
coefficient in the dataset’s original scale was con-
sidered (Fig. 14). The implementation was con-
ducted on the Co–Ni, Co–Li, and Li–Ni pairs due to
their modest correlations (Table 2). The findings
suggest that the stepwise cosimulation method
replicated more accurately the original correlation
coefficients than did the stepwise prediction ap-
proach, which notably overestimated this parameter.
This could perhaps be associated with the cokriging
mechanism employed in the stepwise estimation
approach. In some cases, the spatial structures of the
variables may be more complex than what the cok-
riging model can capture via variogram analysis.
Moreover, when variables exhibit nested variability
(variation at multiple scales), cokriging may struggle
to capture these patterns accurately, which may lead
to overestimation or underestimation of the original
correlation coefficients. Another reason may be re-
lated to the inevitable smoothing effect of the cok-
riging paradigm.

The final phase in the postprocessing of ore
grades entails examining the recoverable functions.
The primary objective of such functions is to deter-
mine the tonnage and average grade that can be
extracted at a designated cutoff grade (Maréchal,
1984). After calculating the recovery functions over
multiple realizations, the outcomes of a stepwise
cosimulation are averaged at each cutoff grade. The
acquired results were subsequently compared with
the curve derived from stepwise estimation for Cu
(Fig. 15). The dissimilarity in outcomes can be at-
tributed to the influence of the smoothing effect
observed in cokriged maps. Hence, the models de-
rived via stepwise cosimulation exhibited more
reliability, as evidenced by the superior statistical
parameters in comparison with those of stepwise
estimation. These contours were also examined for
other ore grades; however, the resulting graphs are
not shown to conserve space here. These graphs
exhibited nearly identical disparities.

To examine the reproduction of ore grade vari-
abilities across the estimation geo-domains, contact
analysis is performedover one realization. The contact
relationships of the ore grades throughout the esti-
mation geo-domains were reproduced accurately via

Figure 12. Probability maps of (a) stepwise cosimulation and (b) stepwise estimation.

Table 6. Reproduction of original proportions calculated over 100 realizations obtained from each method

Original proportion Stepwise cosimulation Stepwise estimation

Estimation geo-domain 1 0.776 0.804 0.800

Estimation geo-domain 2 0.224 0.196 0.200
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stepwise cosimulation for Cu (soft boundary) and the
other ore grades (hard boundaries). Nevertheless, the
findings derived from the stepwise estimation indi-

cated that the fluctuations in ore grade were uniformly
soft over the boundaries, a characteristic that holds
true only for Cu but not for other types of ore grades.

Figure 13. Probability plots of the original ore grade (blue circles), stepwise estimation (black circles), and stepwise cosimulation (red

circles). The latter two were obtained from the maps presented in Fig. 11.

Nasretdinova, Madani, and Maleki



This could be attributed to the inherent property of the
cokriging system, specifically its ability to produce a
smoothing effect throughout the stepwise estimation
process. For stepwise cosimulation, the curves of con-
tact analysis followed the same trends and conditions
of the hard/soft boundaries; however, they also ap-
peared to be smooth in someparts. Thismaybe related
to the grid resolution and cell size, which in this study
were relatively coarse, and so fine-scale features, such
as narrow contacts, might be averaged across neigh-
boring cells. The stepwise cosimulation thus tended to
provide a more generalized or smoothed representa-
tion of the actual variation in ore grades across esti-
mation geo-domains 1 and 2 (Fig. 16).

Validation of Outcomes

To assess the trustworthiness of the proposed
method, a jackknife method (Deutsch and Journel,
1998) was applied to the simulated ore grades using
the described stepwise cosimulation technique. For
this purpose, the dataset was randomly split into two
groups comprising the training and testing dataset,
which contained 70% and 30% of the data, respec-
tively. The proposed method was utilized to simulate
the ore grades and estimation geo-domains across the
testing data using the training data. The obtained
findings were subsequently contrasted against the
actual values across the designated test observations.
In this context, a scatterplot was employed to juxta-
pose the actual and predicted values, with the latter
being the average of the simulation results (Fig. 17a).
The finding that the conditional mean tended toward
the identity implies that the average of the simulated
outcomes exhibited both conditional unbiasedness
and accuracy. Another component that should be

considered is the evaluation of symmetric probability
intervals for each test observation, commonly re-
ferred to as the accuracy plot (Deutsch, 1996). The
graph in Figure 17b illustrates a satisfactory level of
agreement between the observed and expected pro-
portions of the probabilities. This is evident from the
fact that a portion of the probability intervals
encompassed the actual ore grades. Table 7 also
shows the error indicators (RMSE, RE, and ME)
yielded by the stepwise cosimulation algorithm, cal-
culated via jackknife validation. The errors were all
small, indicating that the algorithm was implemented
properly. To save space, the results of stepwise esti-
mation are not provided here; however, they were
checked, and it was verified that the estimation results
were accurate and conditionally unbiased.

DISCUSSION

For modeling, the algorithm proposed in this
study employs sequential Gaussian simulation and
cosimulation. This is because these simulation algo-
rithms capture the complexity of geological structures
and the variation in ore grades, thereby enabling
more realistic simulations. In addition, these algo-
rithms exhibit greater adaptability in accommodating
non-Gaussian distributions and permit the inclusion
of numerous correlated variables. Additionally, the
efficacy of these algorithms in managing both hard
and soft constraints is demonstrated.

However, when the variogram’s origin is para-
bolic, the algorithms may prove impractical. The
simulation is incapable of reproducing accurate
values in this instance. To overcome this difficulty, it
is possible to use simulation methods such as turning

Figure 14. Reproduction of correlation coefficients for the pairs of a Co–Ni, b Co–Li, and c Li–Ni for stepwise cosimulation (red lines),

stepwise estimation (black line), and original ore grades (blue line).
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Figure 15. Tonnage curves for Cu: mean grade (right), and tonnage (left). Red line: stepwise

cosimulation; black line: stepwise estimation.
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Figure 16. Contact analysis of one realization obtained from stepwise cosimulation (left column), final map obtained from stepwise

estimation (middle column), and original ore grades (right column); solid black line is the boundary between two estimation geo-domains.
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bands simulation and cosimulation (Emery, 2008)
for this purpose.

In this study, a K-means clustering algorithm
was used to obtain the estimation geo-domains of
the factors. The reasons were as follows: K-means is

easy to implement and interpret, which is advanta-
geous for geologists who may not have extensive
machine learning expertise and enables accessibility
through several software programs; K-means is
computationally efficient and scalable, which is

Figure 17. a Jackknife validation: scatterplots between the ore grades and the average of simulation results; the red plots represent the

conditional mean. b Accuracy plots comparing the proportion of test data versus nominal interval probability.
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crucial when handling large geological datasets; and
K-means allows for iterative refinement by adjusting
the number of clusters (K) or modifying the features
used in clustering. This flexibility is valuable in
refining geological estimation geo-domains based on
ongoing insights and geo-domain knowledge.

In this research, the geological variables were
transformed into indicators, and togetherwithFAMD,
they were summarized as PCs. Then, the PCs were
simulated. Because the binary variables were also
compositional, an alternative method is to skip the
FADM and implement the cosimulation directly over
the log-ratio data and indicators. However, the back-
transformation from simulated values to the original
scale of indicators is not trivial and requires further
investigation.TheGibbs sampler (GemanandGeman,
1984) could be an alternative for this purpose.

The choice of grid resolution in spatial simula-
tions has a critical impact on the level of detail
captured in the contact analysis results. A coarse
grid may lead to a smoothing effect, averaging out
fine-scale features, while a finer grid enables a more
accurate representation of intricate ore grade vari-
ations across the estimation geo-domains. A trade-
off exists between the computational efficiency and
the ability to capture fine-scale details, and the
appropriate resolution depends on the specific
characteristics and objectives of the simulation.

CONCLUSIONS

In this study, the critical battery elements and
geological information of a porphyry copper deposit
were considered for resource modeling. K-means
clustering was applied to identify the estimation geo-
domains over the PCs obtained from the critical
battery elements and the simplified geological
information. The application of K-means yielded
satisfactory results in discriminating between two
estimation geo-domains, indicating that the cluster-
ing of ore grades was conducted effectively. The
simulation results obtained using the stepwise
cosimulation strategy were compared with the sim-

ulation results produced through traditional model-
ing of ore grades, which considered a stepwise
estimation technique. The results of the statistical
validation investigations indicate that stepwise
cosimulation yields stronger reproduction of global
statistical parameters, including the mean, variance,
and correlation coefficient. In conclusion, the com-
parison between stepwise estimation and stepwise
cosimulation reveals distinct patterns in the charac-
teristics of the obtained realizations and their im-
pacts on various aspects of the estimation process.
The realizations derived from stepwise estimation
exhibit greater scatter within the estimation geo-
domains compared to those obtained through step-
wise cosimulation. Despite this difference, both
methods demonstrate similar capabilities in repro-
ducing the original proportion of estimation geo-
domains and generating comparable probability
maps. Notably, the application of stepwise cosimu-
lation significantly enhances the reproduction of the
original correlation, with improvements ranging
from approximately 30% to 80% when compared to
stepwise estimation. This suggests that the cosimu-
lation approach contributes to a more accurate
representation of the correlation structure within the
estimation geo-domains. Jackknife validation, a
crucial aspect of assessing methodological perfor-
mance, indicates that both stepwise estimation and
stepwise cosimulation exhibit similar levels of
accuracy and conditional unbiasedness. This finding
indicates that both methods can be relied upon for
robust estimation. Furthermore, the reproducibility
of the original distribution substantially improves
stepwise co-simulation, achieving levels ranging
from 90% to 100%. This highlights the effectiveness
of cosimulation in capturing the true distribution
characteristics, as the results obtained by cosimula-
tion outperformed those obtained by stepwise esti-
mation. A noteworthy observation in tonnage
estimation reveals that stepwise cosimulation leads
to a notable increase of approximately 30–60% for
higher cutoffs. Conversely, it yielded a significant
decrease of around 40–75% for lower cutoffs com-
pared to stepwise estimation. This underscores the

Table 7. Stepwise cosimulation error analysis for jackknife validation, where RMSE = root mean square error; RE = relative error;

and ME = mean error

Cu (ppm) Co (ppm) Li (ppm) Mo (ppm) Ni (ppm)

RMSE 0.349 0.729 0.164 1.223 0.729

RE 3.252 �0.051 �0.083 �1.899 �0.067

ME 0.742 0.532 0.027 1.902 0.654
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impact of the chosen method on tonnage estimates
and suggests that cosimulation may yield more
accurate and refined results, particularly in the
context of different cutoff thresholds. The analysis
of local statistical parameters, such as contact anal-
ysis, also demonstrated that the proposed method,
stepwise co-simulation, is effective in managing both
soft and hard boundaries. In contrast, the stepwise
estimation method yielded only soft boundaries,
regardless of whether the specified boundary con-
ditions were soft or hard. To obtain the estimation
geo-domains, an alternative factor-based technique
is proposed in this study, involving the use of FAMD
with the K-means classic machine learning algo-
rithm. This approach incorporates both continuous
(e.g., ore grades) and categorical (e.g., geological
data) variables to obtain decorrelated factors. The
effectiveness of the proposed technique showed that
dimension reduction using FAMD can enhance the
results of the clustering step.

In summary, while both stepwise estimation and
stepwise cosimulation exhibit similar performances
in certain aspects, such as original proportion
reproduction and probability maps, the latter
method proves superior in reproducing the correla-
tion, original distribution, and tonnage estimates
across various cutoff thresholds. These findings af-
firm the efficacy of stepwise cosimulation as a more
robust and accurate approach for the estimation of
spatial phenomena. The identified methodological
differences between stepwise estimation and step-
wise cosimulation have significant implications for
resource estimation in practical mining scenarios.
The observed improvements in the reproductions of
the correlation, original distribution, and tonnage
estimates with stepwise cosimulation suggest that
this approach may offer a more accurate represen-
tation of the spatial characteristics of ore deposits. In
practical mining applications, where precision in
estimating resource quantities is paramount for
decision-making, the enhanced performance of
cosimulation is particularly valuable. These findings
prompt a re-evaluation of current resource estima-
tion practices, encouraging the adoption of cosimu-
lation methodologies to potentially improve the
reliability and accuracy of estimates. Furthermore,
considering the generalizability of these results to
other ore deposit types is crucial. While this study
specifically addresses certain conditions, the
demonstrated benefits of stepwise cosimulation may
translate to diverse geological settings, warranting
exploration and application in a broader range of

mining contexts. This exploration of broader impli-
cations underscores the potential for methodological
advancements to positively impact resource estima-
tion practices across the mining industry.

The proposed methodology may be tedious
when inferring the linear model of coregionaliza-
tions when the number of ore grades is high. In this
case, factorial simulation methods can be used as an
alternative.
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Figure 18.. Madogram of indicators of geo-domains, Cu, and Co, Li, Mo, Ni (in

estimation geo-domains 1 and 2) with the following long azimuths: 0 (blue dashed line),

45 (red dashed line), 90 (green dashed line), 135 (black dashed line), and vertical (cyan

dashed line).
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