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In geospatial data interpolation, as in mapping, mineral resource estimation, modeling and
numerical modeling in geosciences, kriging has been a central technique since the advent of
geostatistics. Here, we introduce a new method for spatial interpolation in 2D and 3D using
a block discretization technique (i.e., microblocking) using purely machine-learning algo-
rithms and workflow design. This paper addresses the challenges of modeling spatial patterns
and regularities in nature, and how different approaches have been used to cope with these
challenges. We specifically explore the advantages and drawbacks of kriging while high-
lighting the long and complex sequence of procedures associated with block kriging. We
argue that machine-learning techniques offer opportunities to simplify and streamline the
process of mapping and mineral resource estimation, especially in cases of strong spatial
relationships between sample location and resource concentration. To test the new method,
synthetic 2D and 3D data were used for both 2D block modeling and geometallurgical
modeling of a synthetic porphyry Cu deposit. The synthetic porphyry Cu data were very
useful in validating the performance of the proposed microblocking technique as we were
able to reproduce known values at unsampled locations. Our proposed method delivers the
benefits of a machine learning-based block modeling approach, which includes its simplicity
(a minimum of 2 hyperparameters), speed and familiarity to data scientists. This enables
data scientists working on spatial data to employ workflows familiar to their training, to
tackle problems that were previously solely in the domain of geoscience. In exchange, we
expect that our method will be a gateway to attract more data scientist to become geodata
scientists, benefitting the modern data-driven mineral value chain.

KEY WORDS: Geostatistics, Block model, Kriging, Mineral resources estimation, Machine learning,
Patterns.

INTRODUCTION

Patterns and regularities are common phe-
nomena in nature and represent a state of order and
structure, and rational principles that govern nature
(Good, 1983; Washburn et al., 1988; Dennett, 1991;
Goertzel, 2006; Uddin & Hamiduzzaman, 2009;
Kuipers, 2001; Steiner, 2009). They have been
studied in a variety of fields, such as physics, math-
ematics, statistics, chemistry, biology, philosophy
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and geosciences. In geosciences, spatial patterns are
evident in the repetitive and consistent characteris-
tics of rock types, mineral deposits and their for-
mation processes (Groves et al., 2005). Spatial
characteristics are of paramount importance in
exploring for, and comprehending, the genesis of
mineral deposits and can be leveraged to improve
spatial data modeling from mapping to mineral re-
source estimation. The study of spatial patterns has
been a focus of research in geosciences for hundreds
of years and has led to the development of theories
that propose that the repetitive and consistent
characteristics of mineral deposits can be used to
locate, decipher ore-forming processes and facilitate
mineral resource estimations (Carranza, 2009).

In geosciences, spatial patterns are important to
both knowledge and data-driven inquiries. Methods
to model and study spatial patterns have resulted in
the birth and development of many disciplines, such
as geostatistics and remote sensing. Compared to
traditional geostatistics, machine learning (ML), as a
field, is more recent and presents pathways toward
leveraging data that describe mineral deposits and
their signatures (Samson, 2020; Dumakor-Dupey &
Arya, 2021). ML algorithms have been employed in
the study and exploration of mineral deposits to
identify and model patterns and regularities that are
unobvious (Srinivasan & Fisher, 1995; Galetakis
et al., 2022; Mery & Marcotte, 2022). This has been
demonstrated in studies such as applying ML algo-
rithms to satellite imagery to locate and study min-
eral deposits, and to improve mineral exploration
(Maxwell et al., 2018; Cevik et al., 2021; Diaz-Gon-
zalez et al., 2022; Liu et al., 2022; Nwaila et al.,
2022). Particularly related to this study is the use of
ML to perform geodomain boundary delineation
(Zhang et al., 2023), which is a task that is required
in the geostatistical treatment of mapping to re-
source estimation. Similarly, ML algorithms that
could model spatial patterns are a powerful tool to
improve or provide alternatives to geostatistical
spatial modeling. The rigor of resource estimation
(e.g., a need for reconciliation) implies that differ-
ences in spatial modeling are the most impactful and
appreciable at this scale, although any benefits of a
new approach would apply across all spatial scales.

In this paper, we propose a new method to
perform spatial interpolation using ML algorithms in
a manner similar to that of geostatistical block
modeling. A key recognition in our method is that
ML algorithms are generally unable to perform a
change-of-support. Although this seems like a

drawback of ML, we demonstrate that this property
could be exploited, in combination of a re-exami-
nation of the assumption of support punctuality to
perform a rigorous change-of-support. We compare
and contrast the results using ML and typical geo-
statistical modeling using a large ensemble of syn-
thetically generated datasets. We explore the
differences between the traditional geostatistical
approach and our proposed method in a variety of
scenarios, using a combination of quantitative and
qualitative comparisons through modulating a few
key parameters: (1) sampling type – regular and
biased random sampling; (2) sampling rate (both
regular and biased random sampling); (3) strength of
spatial correlation (through controlling the nugget
effect); and (4) anisotropy. The results indicate that
qualitatively and quantitatively, our method pro-
duces results that are competitive with block kriging
across a wide range of conditions. A key benefit of
our approach is that it requires a substantially re-
duced set of parameters to tune relative to block
kriging to produce similar results, and their tuning
process is fully metric-based and automated, capi-
talizing on the ML framework, which offers a
workflow of inter-compatible and automat-
able methods (e.g., cross-validation and model
selection). Other benefits include: (1) freely avail-
able and mostly open-source libraries that are tuned
for high performance computation across a range of
platforms; and (2) lower barrier of entry into spatial
modeling for practitioners of artificial intelligence,
ML and data science by reformulating block mod-
eling into ML workflows. Hence, in addition to sat-
isfactory performance characteristics, our method is
more reproducible, less subjective and more acces-
sible. Thereafter, we deploy our method to a simu-
lated porphyry Cu deposit (Garrido et al., 2018,
2020) to create three dimensional (3D) geometal-
lurgical block models.

SYNOPTIC REVIEW OF GEOSTATISTICS
AND COMMON CHALLENGES

Geostatistics is a well-developed domain of
geosciences with an extensive and impressive his-
tory, as well as a large variety of known applications
(primarily in solid-earth science and related fields)
that include mapping, resource modeling, spatial
prediction, and interpolation and change of resolu-
tion (Krige, 1997; Ortiz & Emery, 2006; Talebi et al.,
2019). Its fundamental premise is that many natu-

130 Nwaila, Zhang, Bourdeau, Frimmel, and Ghorbani



rally occurring spatial phenomena that are not sub-
jected to a high driving rate of mixing and transport
processes exhibit a spatial variability (essentially
pseudo-equilibrium spatial distributions; Matheron,
1967). These spatial patterns can be quantified to
produce models of the variability structure, which, in
turn, becomes useful for estimation, mapping, gen-
eral interpolation and other purposes (Isaaks &
Srivastava, 1989; Isaaks, 2005). In other words, the
statistics of sampled data of many solid-earth pro-
cesses are expected to exhibit a general spatial
variability, and therefore, correlatability. A partic-
ular task that is commonly performed using geo-
statistics is block modeling. Although block
modeling is often used for resource estimation
within the context of the mineral value chain, it is
implicitly used for other purposes as well. This is
because block modeling is a solution to the �change-
of-support problem� (Gelfand et al., 2001; Gotway &
Young, 2002). The idea of a geostatistical support
refers to the ideal dimensionality of a geospatial
measurement, which could be 1D (a point sample),
2D (a surface response) and 3D (a volumetric re-
sponse). Changing support refers to changing the
representation of the geospatial phenomena from
one type of support to another. Creating maps, for
example, requires that a 1D support be changed into
a 2D or even 3D support to represent an areal or
volumetric distribution of some quantity. Change of
support is an unsolved problem in the general sense,
because there is no unique and universally applica-
ble solution, and various disciplines such as geo-
statistics, produce a type of solution based on its
capabilities and prior assumptions (Gelfand et al.,
2001; Gotway & Young, 2002). The change-of-sup-
port problem is commonly encountered in geo-
sciences due to two key characteristics: (1) native-
support sampling, in which case data are collected at
the exact spatial resolution at which the natural
phenomenon occurs, is often hindered by sampling
opportunity constraints and resource limitations;
and (2) the necessity for scientific reduction and
associated analysis techniques has been a significant
driving factor in shaping data-engineering methods
(Cressie, 1990; Carvalho and Deutsch, 2017). Al-
though data-generation methods are currently
evolving, primarily driven by an evolution in guiding
scientific philosophy (from reductionism to system
considerations) brought forth by the change in the
purpose of geoscientific data (toward increasing use
of transdisciplinary techniques, such as artificial
intelligence, ML and data science).

A particular solution to the change-of-support
problem for the purpose of block modeling is block
kriging, although this concept is also relied upon
across the broader geostatistics. Within the domain
of geostatistics and for the purpose of resource
estimation, this is the most commonly used method.
Although block models are often visualized as
quantized (discretized) representations of a physical
phenomenon (e.g., a portion of an orebody), a range
of discretization exists such that the perception of
discretization is not always apparent (Vann et al.,
2003). For example, in the use of geostatistical
interpolation methods to create regional maps from
geochemical concentrations, the effect of quantiza-
tion can be either masked by large pixel sizes or
post-hoc smoothing, and hence, block-level quanti-
zation is not always obvious (Abzalov & Hum-
phreys, 2002). For resource estimation, quantization
is usually visually obvious because absolute dis-
tances involved are typically much smaller than re-
gional maps and discretized blocks favor extraction
sequencing and reconciliation, for which smoothing
is also undesirable (Sarma, 2009). Block kriging is
therefore capable of creating 2D or 3D models of
inferred reality at a range of quantization using
typically 1D data. This process is followed under
implicit or explicit assumptions: (1) that the 1D
samples are infinitesimally small, such that their
internal structure is omitted at the scale of obser-
vation (or effectively a 0-dimensional, punctual
support); and (2) that samples are representative of
spatial variability at the scale of observation. How-
ever, in practice, the correctness of the approxima-
tion of punctual support is a continuum and depends
on the volume of the block versus the volume of the
sample, and in the extreme case that the two quan-
tities are comparable, punctual support assumptions
are clearly violated (Matheron, 1967; David, 1976).
While sample-points-to-block or block-to-block
kriging is the industry-preferred method of mineral
resource estimation, it is not without drawbacks. In
many cases, poor implementation of kriging or
subjective configuration of kriging parameters have
led to the under- or over-valuation of regionalized
variables (e.g., resources, Krige, 1997; Isaaks, 2005).
One of the primary issues in point and block kriging
is the number of (usually manual) steps involved,
which can result in a time-consuming and challeng-
ing implementation process, even with some of the
sub-tasks automated. Furthermore, point or block
kriging often requires an expert-based tuning of
various parameters, which is manual and can involve
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subjectivity, in turn decreasing reproducibility.
However, geostatistical modeling is not irrepro-
ducible. In practice, reproducibility is usually en-
sured via thorough rigorous training, documentation
of the parameters and methodology. Moreover,
advancements in geostatistical software and the
establishment of guidelines for parameter calibra-
tion have contributed to standardizing and facilitat-
ing the parameter tuning process.

Despite substantial progress toward standardiz-
ing resource estimation workflows, there is still no
universal protocol, and resource assessment remains a
discipline in which only a few practitioners are con-
sidered ‘‘Competent and Qualified Persons1’’ due to
the technical and mathematical difficulties involved.
This is less of an issue for typical mapping uses of
geostatistics because the knowledge required to esti-
mate resources exceed merely spatial interpolation,
although rigorous geostatistics is an entire discipline
and is not typically within the training of modern data
talents (e.g., data scientists). This is a solvable prob-
lem toward attracting data talents into geosciences, as
we seek to demonstrate with our proposed method.
The solution requires a geostatistical examination of
ML algorithms. ML algorithms are used by data sci-
entists but are incapable, in general, of a rigorous
change-of-support in the manner of geostatistics
(Veronesi & Schillaci, 2019). This is because ML
algorithms (including many deep learning architec-
tures) are unable to constrain local spatial structures.
Hence, relationships between features and data labels
generally do not capture changes in support, even if
spatial coordinates were used as features. Indeed, for
the activity of mineral prospectivity mapping, al-
though many ML and deep learning algorithms have
been used, all evidence layers (e.g., geochemical and
geophysical data) are interpolated before modeling
using non-ML approaches (e.g., Lawley et al., 2021,
2022; Parsa et al., 2023). Hence, predictions made
using ML algorithms occur almost exclusively in the
same support as features in data. This unfortunately
means that in cases where input data points are con-
sidered punctual, but the output is intended for vol-
umetric representation, ML is not expected to yield
rigorous results and would generally not be able to
change output resolution without retraining (e.g., re-

learning relationships at a different resolution).
However, this view is over-simplified and ignores that
the punctuality of support is an approximation nec-
essary for geostatistical methods and that no physical
sample can, in the strictest sense, become punctual. In
effect, all physical samples are finite in volume and
this fact can be exploited to assist ML algorithms to
perform a rigorous change-of-support. Themanner in
which this could be performed is not unique, but a
straightforward method is to also exploit the lack of
support awareness in ML algorithms. The process
consists of: (1) determination of an approximate
support size; (2) making an at-scale prediction of a
grid, which is sized such that each grid spacing is
roughly the volume of the support (microblocks); and
(3) down-sampling of microblocks to macroblocks to
achieve thedesiredblock size (integer down-sampling
incurs zero re-sampling error). Our proposedmethod
recognizes properties of geospatial data beyond the
data-driven realm, because the representativity of the
data in terms of sample volume and geostatistical
considerations are clearly required and neither are
strictly transdisciplinary knowledge by origin. This is
also a generalmethod, because anyMLalgorithmand
geospatial data could be leveraged in this manner to
directly produce block models at any desirable reso-
lution. The punctuality assumption of geostatistics is
transformed into a microblock assumption in our
approach – that the size of microblocks must be suf-
ficiently small compared to the size ofmacroblocks. In
the case where the macroblock size is much larger
than the support volume, it is not necessary that the
microblocks are sized to roughly the support volume,
because averages over an area of a large ensemble of
predicted microblocks would still converge to the
macroblockmean. In this manner, the approximation
of punctuality carries over into the ML-based meth-
od, but the implications are different to those of
geostatistics. Our approach is independently con-
ceived but is mechanistically similar to some imple-
mentations of block kriging, which eschews the ML
framework for geostatistical algorithms andworkflow
designs.

DATA AND METHODS

Synthetic Data Generation

The synthetic data were generated using the
sequential Gaussian simulation function in GSLIB
(Deutsch & Journel, 1992), via the GeoStatsPy

1 A Competent Person is a minerals industry professional (i.e.,

registered as a professional of appropriate membership class and

organisation including recognised professional organisations) with

enforceable disciplinary processes including the powers to sus-

pend or expel a member. Rules and regulations vary across

countries.
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interface in Python (Pyrcz et al., 2021). The gener-
ation process consisted of: (1) creating a parameter
grid that included the sample rate, nugget effect and
anisotropy; (2) holding all parameters but one as
experimental control and varying the single param-
eter as the experimental variable to produce a var-
iogram model; (3) generating a realization using
sequential Gaussian simulation; and (4) sampling
the realization at a specific grid-sampling interval.
This procedure allowed us to perform a controlled
exploration of the parameter space by isolating the
effects of each parameter on our proposed approach
versus that of block kriging within the parameter
space. The anisotropy parameter was defined as the
ratio of the minor and major ranges, such that if the
anisotropy parameter were set to 1, the major and
minor ranges would be equal. In this context, �sam-
ple rate� refers to the density or frequency of data
points or samples collected in the spatial domain. It
represents how closely spaced the data points are
within the area being sampled. A higher sample rate
corresponds to more closely spaced data points,
whereas a lower sample rate indicates more widely
spaced data points. Two types of sampling methods
were explored – regular sampling, which used a fixed
spacing to designate sample sites, and biased ran-
dom sampling, which used a smaller combination of
a fixed spacing and an additional number of sample
sites that are randomly scattered. The nugget effect
was explored by varying the nugget parameter.
Modulating the nugget effect of the synthetically
generated data allowed us to capture physically
realistic microscale variability and/or measurement
error, which permitted us to understand the capa-
bility of our proposed method with increasing nug-
get effect. The entire parameter grid is given in
Table 1. The other key fixed parameters included
minimum and maximum grid values (� 3.0, 3.0);
grid size (100 cells by 100 cells); grid spacing (10
cells); sill (1.0); azimuth (135�); major range (800
cells); and variogram model (spherical). As the grid
exploration was performed via single parameter
sweeps, the default (fixed) nugget effect was 0.1 and
the anisotropy was 0.625 during the sample rate
sweeps. During the nugget effect sweep, the fixed
sample rate was a spacing of 30 cells and the ani-
sotropy was 0.625. Lastly, during the anisotropy
sweep, the fixed sample rate was a spacing of 30 cells
and the nugget effect was 0.1. This was repeated for
biased random sampling method with the sample
spacing replaced by its corresponding value (see
Table 1) for the number of random samples.

Machine Learning-Based Block Modeling

Formulating the block modeling problem into a
ML task requires two key considerations. First,
predictions must be made at data label-volumes that
are substantially smaller than the desired block size,
such that they approximate the condition of a static
support. This satisfies the constraint that almost all
ML algorithms are unable to perform dynamic
changes-of-support. Second, spatial coordinates are
to be used as the sole features for spatial estimation
tasks. No model deployment would occur beyond
sampled areas (hence no spatially transferred
learning) because the models would be used solely
for interpolation. To satisfy the first condition, the
desired block size must be re-discretized into smaller
blocks, which we call �microblocks�. After predicting
all microblocks, they are averaged (via spatial down-
sampling) to produce a macroblock model, which is
specified at the desired block size to perform a
change-of-support. This type of down-sampling is
known as a type of spatial signal compression
(Crochiere and Rabiner, 1983). Additional knowl-
edge of signal processing is useful in our approach
but is not a critical component. The key signal pro-
cessing consideration is that the down-sampling
should ideally be of an integer factor to incur no re-
gridding error.

For microblock grid spacing, we adopted a lin-
ear spacing of 1/10 of that of the block model pro-
duced by the synthetic data generation process (e.g.,
each macroblock comprises 100 microblocks). This
is a heuristic setting in our case to satisfy the
approximation that the size of microblocks is much
smaller than that of macroblocks, because there is
no effective volume associated with synthetic data.
Based on our synthetic data, there was no evidence
of increasing accuracy of macroblocks with finer
microblocks. In general, documentation of actual
data generation processes would indicate the sample
volume (e.g., Armstrong & Champigny, 1989;
Cressie, 1990; Annels, 1991). The microblocks were
then predicted using a ML algorithm and subse-
quently, macroblocks were produced by down-sam-
pling the microblocks by an integer factor of 10,
retrieving the original block configuration of the
synthetic data (100 cells by 100 cells grid size with 10
cell blocks).

In a strict technical sense, ML algorithms, as a
whole, are not generally intended for spatial mod-
eling, because they were originally designed for
feature space characteristics that encompass essen-
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tially all types of data. Of the entire superset of data
characteristics, very few are typical of spatial data,
which makes ML, in general, unspecific to spatial
learning tasks. For spatial data, some common
characteristics include: (1) generally low feature
space dimensionality (usually 2 to 3 dimensions in
non-temporal data); (2) explicit connotations of
spatial feature interactions, e.g., in the form of spa-
tial (linear) correlation; (3) primarily linearly inde-
pendent feature coordinates (e.g., the Cartesian
coordinate system and the use of the Euclidean
metric to measure distance); (4) low sample rate
(resulting in sparse samples) in the case of manual
data generation; and (5) potentially noisy data with a
spatial noise distribution (e.g., high nugget effect). In
particular, although characteristics (1), (2), (3) and
(4) do not preclude a variety of ML algorithms, they
ameliorate the advantage of many algorithms by
design. For example, by design and usage, tree-
based methods and artificial neural networks are
intended to better model data with high-dimen-
sional, complex, and nonlinear feature interactions.
If they are used with trivial data, such as those that
would warrant a linear regression, then their algo-
rithmic complexity would not translate into realiz-
able performance benefits. In addition, the increase
in model parameters would render the models and
results difficult to interpret, and extrapolations likely
unreliable. The desire to extrapolate is also a
stronger consideration in geostatistics than in ML,
especially since spatial correlation permits some
extent of knowledge outside of sampled areas and
many ML algorithms extrapolate poorly or not at all
(e.g., tree-based methods). These characteristics
imply that a relatively small variety of known and
common ML algorithms may be useful for block
modeling without algorithmic modifications.

Based on intuition from geostatistics, there are
two classes of common ML algorithms that are
theoretically appropriate for this task: neighbor-
based (e.g., k-nearest neighbors or kNN; see Fix &
Hodges, 1951; Cover & Hart, 1967; Witten & Frank,

2005; Kotsiantis et al., 2007) and Gaussian processes
(Rasmussen & Williams, 2006; Kotsiantis et al.,
2007). This is because neighbor-based methods use
averages of neighbors, which is similar to inverse
distance modeling, and the Gaussian process is a ML
generalization of kriging, although without as many
hyperparameters, and hence, somewhat less flexible.
Other methods include a variety of tree-based
methods, such as random forest and boosted meth-
ods (e.g., Ho, 1995; Breiman, 1996a, b; Freund &
Schapire, 1997; Kotsiantis, 2014; Sagi & Rokach,
2018). These methods are not suitable for block
modeling in the traditional sense, because they do
not include geometric characteristics in the feature
space, and in the presence of sparse samples (which
is the case of most geoscientific sampling), they
create orthogonal decision boundaries in lower
number of dimensions and, therefore, result in cross-
hatched patterns in block models that are unrealistic
for our purpose, at least without post-processing
(e.g., Zhang et al., 2023). Additionally, tree-based
methods excel at leveraging nonlinear feature
interactions in high-dimensional feature space,
which is a benefit that would not be easily realizable
for spatial modeling in 2 or 3 dimensions and in
cases in which the variability is dominantly linear
(e.g., as modeled through a variogram or correlation
matrix and because sampling through volumetric
averaging over space introduces linearity through
the central limit theorem, see e.g., Hsieh, 2002). The
kNN algorithm uses a variably weighted and aver-
aged value of the nearest ‘‘k’’ neighbors (a model
hyperparameter) to determine the value of an un-
known data point. This is very different to inverse
distance modeling because distance is not a fixed
parameter for kNN. In this paper, we focus on the
systematic evaluation of the kNN algorithm for
block modeling as a proof-of-concept. The hyper-
parameter grid for the kNN algorithm was k = (2 to
30 in intervals of 1) and the weighting method was
based on the inverse neighbor distance. During
model selection, 20% of the sampled data was re-

Table 1. Parameter ranges for the explored parameters and their interval construction methods

Parameter Parameter range Interval construction

Sample rate – regular sampling 1 per 23 cells to 40 cells 1 cell intervals

Sample rate – biased random sampling 625 to 1736 cells total Area of grid divided by the square of the regular sampling rate

Nugget 0 to 0.70 Intervals of 0.05 (out of a total sill of 1.00)

Anisotropy 0.1 to 1.0 20 evenly divided intervals
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served for testing and the remainder was used for
model training. During hyperparameter tuning, 4-
fold cross-validation combined with the coefficient
of determination (CoD or R2) metric was used to
select the best model. The implementation was in
Python using the Scikit-Learn library (Buitinck
et al., 2013).

Geostatistical Block Modeling

Geostatistical block modeling is a very mature
task in spatial data modeling. Here, we provide a
simplified outline of the process for brevity. To
perform geostatistical block modeling, we used a
standard geostatistical spatial estimation approach
based on ordinary kriging (OK), which was imple-
mented in GSLIB (Deutsch & Journel, 1992) and
Gestates (Pyrcz et al., 2021). OK is a method of
spatial interpolation that uses a weighted linear
combination of sample values at nearby locations to
estimate the value at an unsampled location. The
kriging process begins by defining a set of sample
locations, known in geostatistics as the �neighbor-
hood� or �search neighborhood�, and the corre-
sponding values of the variable at those locations
(Krige, 1951). It is worth noting that the vernacular
from various geoscientific disciplines overlap and
sometimes conflict with those of artificial intelli-
gence, ML and data science. Neighborhood in the
sense of the ML algorithms does not refer to a
spatially constrained neighborhood, in general, and
its context depends on the definitions of the features.
The kriging estimate at an unsampled location is
then calculated as a weighted average of the values
at the sample locations within the neighborhood
(Goovaerts, 1997). The weights are calculated such
that they minimize the estimation error, which is
measured by the variance of the residuals (Krige &
Magri, 1982). In the case of OK, the sum of the
weights for the individual samples is constrained to
unity and a Lagrange multiplier method is used to
find a solution. Thus, the known mean of samples is
not required in OK. There are also underlying
assumptions, such as the stationarity of domains and
some extent of subjectivity in the form of modeling
choices. These can greatly impact the results and the
interpretation of the kriging estimates.

There are a number of standard metrics in krig-
ing to profile resulting model performance. These
include: (1) kriging variance, which is a measurement
of the precision of an estimate at a given location

(Krige, 1997); (2) kriging efficiency (KE; Krige 1997;
Deutsch & Deutsch, 2012), which is a metric of the
effectiveness of kriging estimates; (3) kriging slope of
regression (e.g., Deutsch et al., 2014), which is
a metric used to estimate the local slope of a variable
of interest in spatial interpolation. Based on a number
of case studies, there is a correlation between the KE
and the kriging slope of regression (Krige, 1997).
However, these metrics are strictly within the disci-
pline of geostatistics and no direct counterpart of
themexist inML.Hence, they cannot beused to cross-
compare ML- and OK-based models. In addition,
these metrics also cannot be used to compare models
with the synthetic ground truth. For this reason, we
did not employ standard kriging metrics in this study.
Instead, we made use of metrics fromML to compare
models against ground truth.

In this study, we employed block OK with block
parameters that matched with the synthetic data
generation, and also, notably, the use of a spherical
model (Krige, 1997; Olea, 1999). This helped to
maximize the performance of block OK in a syn-
thetic study setting, because the data were synthet-
ically generated using a spherical variogram model;
choosing a spherical variogram model during block
modeling maximizes the accuracy of the resulting
block models. However, in general, no ground truth
is available and the choice of the variogram model is
heuristic. The variogram model is a key subjective
choice in a typical geostatistical workflow for inter-
polation because its structure cannot generally be
deduced unambiguously from data alone and no
general knowledge is universally reliable. Maximiz-
ing the performance of block OK is important to
fully appreciate performance contrasts between the
traditional OK approach and our proposed ML-
based approach. The tuning of model hyperparam-
eters is automated and includes optimization of the
number of neighbors to use and fitting the variogram
following Zhang et al. (2023). In particular, the
number of neighbors was selected using the elbow
method combined with the mean absolute error
metric, and the variogram was fitted using an auto-
mated least-squares method with a linear bias to-
ward shorter distances to favor better fitting of the
pre-range portion of the spherical model.

Performance Assessment

To assess the performance of both ML-derived
and geostatistical block models by comparing the
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resulting block models against the synthetic ground
truth, we used a variety of metrics that included the
coefficient of determination (CoD or R2), the mean
absolute percentage error (MAPE, although it is
expressed as a fraction by default, which was the
case in this study as well; see https://scikit-learn.org/
stable/modules/generated/sklearn.metrics.mean_abs
olute_percentage_error.html), and the median
absolute error (MedAE; see https://scikit-learn.org/
stable/modules/generated/sklearn.metrics.median_a
bsolute_error.html). In addition, we examined key
statistical moments that included the mean and
standard deviation (STD) of all models. Lastly, to
assess the degree of smoothing in block models, we
used a linear version of the dynamic range metric,
which is defined as the difference between the
highest and the lowest block values. The dynamic
range metric is usually used in sensor engineering,
acoustic and image processing to measure sensor
and digital processing capability (https://www.electr
opedia.org/iev/iev.nsf/display?openform&ievref=72
3-03-11). In our case, we can treat the resulting block
models as images. Hence, the dynamic range metric
captured the maximum contrast of block models,
which is a useful metric of the level of smoothing
because smoothing reduces intra-model contrast. To
ensure that the results were robust, we performed 50
runs for each combination of parameters and aver-
aged the results, with 50 synthetic datasets being
generated by varying the random number gen-
erator�s seed. During each run, a single workflow
was used, which created reproducible synthetic data
conditions, including the random number seed and
sampling pattern. The samples were then used to
perform block modeling and performance assess-
ment. Metric results were thereafter averaged over
the 50 runs to produce a statistically robust outcome.

Method Deployment Case and Data Description

Geometallurgy is the integration of geological,
mineralogical, financial and metallurgical data
(especially extractive metallurgy) in (usually) 3D
space to create a spatially-aware predictive model of
mineral processing. The benefits of geometallurgy in
mining engineering are significant, including
improvements in ore quality, mine planning, plant
performance, cost reduction and product quality
improvement (Jackson et al., 2011; Ortiz et al., 2015;
Dominy et al., 2018; Garrido et al., 2019). To
incorporate these benefits into the mining value

chain, metallurgical responses and proxy variables
need to be included in the block model, which is
essential for optimizing mine planning and down-
stream mineral processing. This enriched block
model, known as the �geometallurgical block model�
(GMBM), is based on the transfer of simulated at-
tributes (Deutsch et al., 2016; Garrido et al., 2017,
2020). As there is now a general awareness of the
lengthy exploration-to-extraction timelines and that
a majority of the energy cost lies in beneficiation for
many commodities and deposit types, there is a
corresponding desire to drastically integrate the
mineral value chain and enhance its agility. An early
availability of GMBM is likely to be key to mineral
value chain integration and enhanced agility because
it permits downstream metallurgical process designs
early and, therefore, design of industrial processes
and construction of facilities could be implemented
early. However, access to large mining exploration
and geometallurgical databases for method devel-
opment and academic purposes is difficult due to
confidentiality restrictions or budget limitations. To
address this issue and for the purpose of an academic
study, we used a synthetic geometallurgical database
of a typical porphyry Cu deposit (Garrido et al.,
2020) for a prototype deployment of our method.
This database contains geological and spatial coor-
dinates, mineralogical data, chemical assays and
geometallurgical responses, such as rougher recov-
ery and Bond work index (BWI). The BWI is a
measure of the resistance of the ore to grinding
using a laboratory ball mill. It is a widely accepted
measure of ore grindability, indicating the energy
required to grind the ore to a specified size. The
BWI is expressed in units of kilowatt-hours per ton
of crushed material (kWh/tc). The mineralogical
data include the proportions of chalcopyrite, bor-
nite, grouped clay minerals and pyrite in volume
percentage (vol.%), whereas chemical data include
Cu grade in weight percent (wt.%). Boreholes at
various angles and lengths were extracted from the
simulated deposit and processed for further model-
ing, such as the spatial distribution of minerals,
elements, and geometallurgical responses. Figure 1
shows the configuration of boreholes used for sub-
sequent modeling. It is important to note that many
geometallurgical variables are non-additive, such as
comminution indices, and combinations of compo-
sitional and non-compositional data (Deutsch et al.,
2016). Directly interpolating non-additive variables
can result in misleading interpretations, although
non-additive variables may not have the same im-
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pact on all ML algorithms. However, for the
deployment portion of this study, the focus was not
to validate our method for non-additive variables in
general, but to provide a quantitative comparison
and examine the feasibility of our method in 3D
using physically realistic data.

RESULTS

Regular Sampling

Qualitatively, under regular sampling condi-
tions, block OK produces models that are generally
higher in contrast (Figs. 2, 3, 4, 5). However, there is
a visually discernible loss of fine-scale detail (e.g.,
Fig. 3) in the kriged models as compared with that of
kNN models. The difference is noticeable in Fig-
ure 2 (compare the hotspot in the lower left cor-
ners). However, it was not obvious whether the
increased detail retrieval resulted in overall more
accurate models, as it may be accompanied by a
proportionate increase in noise as well. An observ-
able qualitative difference was that block OK mod-

els were visibly smoother in the interiors of high and
low concentration regions, as compared with the
ground truth and the macroblocks (e.g., blue and red
zones in Figure 2). The qualitative differences be-
came larger between block kriging and kNN results
at higher nugget effects (e.g., Fig. 4). Increasing le-
vels of anisotropy did not appear to exhibit a sys-
tematic qualitative effect (e.g., Fig. 5).

Quantitatively, with increasing sample spacing,
there was an appreciable performance loss in both
kNN and kriged models, although the CoD, MAPE
and MedAE metrics indicated that, on average, the
kNN models were closer to the synthetic data
(Fig. 6). The dynamic range was systematically
higher in the kriged models, which was consistent
with the departure of STD scores from those of the
samples (Fig. 6). This observation was consistent
with the qualitative finding that kNN models exhibit
less contrast compared to kriged models. In general,
with increasing nugget effect, there is a gradual loss
in performance of both kriged and kNN models,
although the losses in CoD and MedAE are more
extensive with the kNN models (Fig. 7). The dy-
namic range and STD scores also degraded slightly

Figure 1. Graphical visualization of oriented boreholes with pyrite (vol.%) depicted (n = 153) with

variable azimuth and dip.
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more rapidly with the kNN models as compared to
the kriged models (Fig. 7). There seemed to be no
robust systematic patterns of either the kNN or
kriged models in the metric scores with changes in
anisotropy (Fig. 8). These findings indicate that un-
der regular sampling conditions, block OK yields
generally more accurate models but at the expense
of a loss of fine detail. For other applications, it
would be possible to tune the kriging neighborhood
to emphasize local detail, although this is not gen-
erally automatable. In contrast, the kNN-based

block modeling method was less accurate at the
distribution mean and median but it was capable of
retrieving more fine-scale detail, although it seemed
to suffer from more smoothing despite increased
levels of fine detail.

Biased Random Sampling

The results of the kNN and kriged modeling
under biased random sampling conditions were lar-

Figure 2. Ground truth (synthetic 2D block model) and results of the kNN (ML microblocks and macroblocks) and kriged

modeling under regular sampling conditions. Spacing between samples is 40 cells.
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gely similar to those of regular sampling (Figs. 9, 10,
11, 12, 13 compared with Figs. 2, 3, 4, 5). In some
cases, with strong anisotropy, the kNN models
visually outperformed the kriged models qualita-
tively in the sense that they reproduced variability
better across all azimuths (e.g., Fig. 13 but also less
pronounced in Fig. 12). This effect was not as
obvious under regular sampling conditions. Quanti-
tative results were interesting in the sense that they
were the reverse of those under regular sampling

conditions. In particular, with changes in the number
of random samples, the kNN models were able to
retrieve a greater dynamic range and more accurate
STD values, at the expense of lower CoD, MAPE
and MedAE scores (Fig. 14). This was generally true
as well for the nugget effect sweep, although at very
low nugget values (< 0.1), the dynamic range per-
formance of the kNN and kriged models were re-
versed in ranking but similar (Fig. 15). Although
qualitatively obvious differences were noticeable

Figure 3. Ground truth (synthetic 2D block model) and results of the kNN (ML microblocks and macroblocks) and kriged

modeling under regular sampling conditions. Spacing between samples is 24 cells.
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with high anisotropy (e.g., Fig. 13), the metric scores
did not indicate a substantial or measurable differ-
ence (Fig. 16). These findings indicate that under
biased random sampling conditions, the kNN-based
block modeling method is able to generally retrieve
more detail but at the expense of also more noise.
However, unlike the quantitative results under the
condition of regular sampling, the dynamic range
and STD scores of the kNN models were systemat-
ically better than those of the kriged models.

Method Deployment

The synthetic data used in this study had a clear
distinction between the different ore minerals, such
as bornite and chalcopyrite, enabling block model-
ing of each mineral volume proportion. The pro-
posed microblocking approach demonstrated its
capability to reproduce the data composition at the
sampled and block location during the method
development stage. During the visualization of the

Figure 4. Ground truth (synthetic 2D block model) and results of the kNN (ML microblocks and macroblocks) and kriged

modeling under regular sampling conditions. Here, the nugget effect corresponds to 0.65.
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3D models, a �moiré pattern� or �moiré fringes�,
which are large-scale interference patterns that can
occur when a partially opaque ruled pattern with
transparent gaps is overlaid on another similar pat-
tern, were observed. This was not related to the
modeling methods prior to visualization and it was
strictly related to visualization of repeated or
stacking patterns of 3D models when viewed in 2D
with transparency. To mitigate this effect, we em-
ployed a scale-factor-based visualization technique

that allowed higher material concentration to have
larger cubes and lower concentration material to
have smaller and more transparent cubes. Figure 17
illustrates the predicted synthetic chalcopyrite pro-
portion (vol.%) and its distribution in the studied
porphyry Cu deposit. The results of the prediction
indicate that chalcopyrite is heavily concentrated
toward the center of the deposit and on the surficial
frontier of the deposit. The average chalcopyrite
content of the samples was 0.736 vol.% and it was

Figure 5. Ground truth (synthetic 2D block model) and results of the kNN (ML microblocks and macroblocks) and kriged

modeling under regular sampling conditions. Anisotropy corresponds to 0.1.
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comparable to the ML estimate of 0.739 vol.%
(Table 2). These findings are consistent with the
simulated boreholes and ore deposit. The faint col-
ors at the margins of the exploration area clearly
illustrate the extent of mineralization (Fig. 17).

The microblock modeling approach employed
in this study also allowed us to investigate the dis-

tribution and concentration of bornite in the por-
phyry Cu deposit. Our analysis revealed that bornite
exhibits similar spatial patterns to chalcopyrite, al-
beit with different grade distribution regularities
(Fig. 18). The average bornite content of sampled
boreholes was 0.124 vol.% and the value was
reproduced to 0.124 vol.% in the ML estimates, with

Figure 6. Parameter sweep of spacing (in cells) of regular sampling and impacts on (a) dynamic range, (b) CoD, (c) mean,

(d), MAPE, (e) standard deviation, and (f) MedAE.
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the highest content clusters co-located in areas
where the content of chalcopyrite is high (Table 2).
These findings are consistent with the known dis-
tribution of the ore minerals governed by changing
physico-chemical conditions during mineralization
and can be explained by a sequential paragenetic
sequence. In porphyry Cu deposits, chalcopyrite and
bornite form by magmatic-hydrothermal processes

(Tosdal and Richards, 2001; Richards, 2003). These
processes involve a phase separation in the fluid
following a pressure-release caused by hydraulic
fracturing of the country rock. During this process,
the Cu-rich fluids are generated by fractional crys-
tallization of the magma, and subsequent migration
through fractures and faults in the surrounding rocks
deposit chalcopyrite and bornite. The formation of

Figure 7. Parameter sweep of nugget effect of regular sampling and impacts on (a) dynamic range, (b) CoD, (c) mean, (d),

MAPE, (e) standard deviation, and (f) MedAE.
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chalcopyrite typically occurs earlier in the parage-
netic sequence, followed by the formation of bor-
nite. As such, bornite content in a given area can be
linked to chalcopyrite content in that same area
(Fig. 18).

The Cu grade in a porphyry Cu deposit is
strongly related to the presence and concentration of
Cu-bearing minerals. In the simulated porphyry Cu

deposit, 3D modeling of the Cu grade (wt.%)
showed that the host rock is enriched in Cu. The
average Cu content in the sampled boreholes was
0.369 wt.% and it was comparable to the predicted
estimate of 0.371 wt.% (Table 2). The distribution of
Cu appears to follow a typical porphyry-style dis-
tribution pattern (Fig. 19). Porphyry Cu deposits
typically contain Cu minerals such as chalcocite,

Figure 8. Parameter sweep of anisotropy of regular sampling and impacts on (a) dynamic range, (b) CoD, (c) mean, (d),
MAPE, (e) standard deviation, and (f) MedAE.
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bornite, chalcopyrite and tennantite. Among these
minerals, chalcopyrite and bornite are considered
the primary Cu-bearing minerals, and their concen-
tration is critical for Cu recovery during metallur-
gical processing. These minerals typically occur as
disseminations or veinlets within the host rock.
Understanding Cu deportment to different ore
minerals is essential in processing of porphyry Cu
deposits. Bornite is considered a significant con-
tributor to Cu recovery due to its high Cu grade and

amenability to separation using froth flotation. The
deportment of Cu to different ore minerals is an
important consideration in metallurgical processing.
For example, Cu minerals such as chalcopyrite are
often associated with pyrite, which can create
problems during processing due to the need for
selective flotation. Chalcopyrite is also more difficult
to recover due to its low natural floatability, high
reactivity to oxidizing agents, and association with
pyrite and other gangue minerals. Additionally,

Figure 9. Ground truth (synthetic 2D block model) and results of the kNN (ML microblocks and macroblocks) and kriged

modeling under biased random sampling conditions. The number of samples equals 625.
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other minerals such as molybdenite can also impact
the metallurgical behavior of Cu in the ore. There-
fore, understanding the distribution of minerals and
deportment of Cu is essential for optimizing metal-
lurgical processing and maximizing Cu recovery.

Clay group minerals are known to adversely
affect mineral processing, particularly flotation, due
to their ability to adsorb reagents and reduce min-
eral recovery. In the simulated porphyry Cu deposit,

clay minerals are present, accounting for up to
15 vol.% of the total mineralogy of the sampled
drillcores. The clay content in sampled boreholes
averaged 3.797 vol.% – a value that is similar to the
synthetic orebody composition and comparable to
our ML estimated clay content of 3.849 vol.% in this
study. These minerals are variably distributed, and
some are in contact with Cu-bearing minerals, which
could further complicate mineral processing. Pre-

Figure 10. Ground truth (synthetic 2D block model) and results of the kNN (ML microblocks and macroblocks) and kriged

modeling under biased random sampling conditions. Number of samples equals 1736.
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dictive geometallurgy of clay minerals can help
understand their distribution and possible effects on
mineral processing (Fig. 20). By incorporating min-
eralogical data into a block model, process engineers
can identify areas with higher clay contents and
modify their flotation reagent schemes accordingly.
In practical geometallurgical studies, it is more
important to model individual clay mineral contents
(i.e., how much kaolinite, sericite, montmorillonite,
etc.) as opposed to total clay content. This approach

can also help the design of targeted testing programs
to optimize flotation recovery in the presence of clay
minerals. Mitigating clay mineral factors regarding
flotation includes the use of dispersants and
depressants to minimize clay interactions (i.e., this
depends strongly on the clay mineralogy) with re-
agents and minerals, respectively. Also, modifica-
tions to the flotation circuit design, such as
increasing the residence time or improving the froth
stability, can help to mitigate the adverse effects of

Figure 11. Ground truth (synthetic 2D block model) and results of the kNN (ML microblocks and macroblocks) and kriged

modeling under biased random sampling conditions. Here, the nugget corresponds to 0.65.
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clay minerals on flotation recovery. The use of pre-
dictive geometallurgy to identify areas with high clay
content can facilitate the design of targeted testing
programs to optimize flotation recovery in the
presence of these minerals (Fig. 20). For practical
geometallurgical studies, a much higher resolution
to capture the textural relationship between clays
and sulfides will be required.

The BWI for the simulated porphyry Cu deposit
ranged from 5 to 25 kWh/tc. The average BWI of the

sampled boreholes was 13.264 kWh/tc, whereas the
ML modeled value was 13.432 kWh/tc and for the
synthetic deposit, 13.210 kWh/tc (Table 2). The BWI
is affected by the mineralogical composition of the
ore, as different minerals have different strengths,
and therefore, responses to grinding (Fig. 21). For
example, the presence of hard minerals such as
quartz or pyrite can increase the BWI. In contrast,
the presence of softer minerals such as clay minerals
can decrease it. The BWI has important implications

Figure 12. Ground truth (synthetic 2D block model) and results of the kNN (ML microblocks and macroblocks) and kriged

modeling under biased random sampling conditions. Here, the nugget corresponds to 0.1.
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for the ore processing, as it affects the amount of
energy required for grinding, which is a major con-
tributor to the cost of ore processing. It also affects
the durability of grinding equipment, as higher BWI
values can result in greater wear on the grinding
media and equipment. Predictive geometallurgy of
the BWI is an important tool for understanding the
properties of the ore and predicting expected energy
costs. Through incorporating the BWI into a

geometallurgical block model, it is possible to opti-
mize the grinding circuit and reduce energy costs.
Additionally, the BWI can be used to identify areas
of the deposit with higher or lower energy require-
ments, allowing for more efficient mine planning and
improved processing.

The rougher recovery of a porphyry Cu deposit
is a critical metallurgical response variable that can
significantly impact the economics of mining and

Figure 13. Ground truth (synthetic 2D block model) and results of the kNN (ML microblocks and macroblocks) and kriged

modeling under biased random sampling conditions. Anisotropy corresponds to 0.1.
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processing operations. In the present study, the
rougher recovery results of the simulated porphyry
Cu deposit indicated that the ore was amenable to
metallurgical treatment with rougher recovery
ranging from 75 to 95%. The range of recovery
values was considered to be quite good for this type
of deposit, which is primarily due to the favorable

mineralogy of the deposit. Average rougher recov-
ery of sampled boreholes was 83.384% while the
actual recovery was 83.361%. These values are clo-
sely approximated in the estimate and average at
84.538% (Table 2). However, some areas of the
deposit have lower recovery rates, i.e., less than
70%, which is attributed to the complex mineralogy

Figure 14. Parameter sweep of number of samples of biased sampling and impacts on (a) dynamic range, (b) CoD, (c) mean,

(d), MAPE, (e) standard deviation, and (f) MedAE.
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and alteration of the host rocks by clay minerals
(Fig. 22). This indicates that the presence of clay
minerals can negatively impact the recovery of
valuable minerals during metallurgical processing.
This underscores the importance of predictive
geometallurgy in understanding the mineralogical

composition and distribution of clay minerals in the
ore, which can help in designing appropriate pro-
cessing strategies to mitigate the adverse effects of
such minerals. In addition, the rougher recovery
response variable can also be used to predict ore
properties and expected recoveries, which can, in

Figure 15. Parameter sweep of nugget effect of samples of biased sampling and impacts on (a) dynamic range, (b) CoD, (c)

mean, (d), MAPE, (e) standard deviation, and (f) MedAE.
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turn, impact the selection of processing equipment,
as well as the energy and cost requirements of pro-
cessing. Therefore, incorporating a rougher recovery
response variable into the block model can help
optimize the entire mining value chain from explo-
ration to processing.

DISCUSSION

Performance Summary and Implications

Block modeling is a common and important
task in a variety of geoscientific, mining and related

Figure 16. Parameter sweep of anisotropy of biased sampling and impacts on (a) dynamic range, (b) CoD, (c) mean, (d),

MAPE, (e) standard deviation, and (f) MedAE.
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engineering activities. Block kriging is the dominant
solution of the change-of-support problem by pop-
ularity in mapping and resource estimation. It uses a

parametric model of the spatial variability structure
to produce a weighted average. In comparison,
current varieties of ML algorithms and, in particular,

Figure 17. Predicted 3D block model showing the distribution of chalcopyrite (vol.%).

Table 2. Statistical quantities of the samples, predicted and actual 3D block models. The units for all minerals are in vol.% and for Cu, in

wt.%

Materials Mean STD Min 25% 50% 75% Max

Chalcopyrite (samples) 0.736 0.541 0 0.411 0.648 0.917 7.430

Chalcopyrite (actual block model) 0.728 0.528 0 0.414 0.645 0.906 7.583

Chalcopyrite (predicted block model) 0.739 0.461 0 0.478 0.674 0.896 6.016

Bornite (samples) 0.124 0.151 0 0.023 0.084 0.166 2.292

Bornite (actual block model) 0.122 0.149 0 0.023 0.083 0.163 3.445

Bornite (predicted block model) 0.124 0.111 0 0.053 0.100 0.160 1.548

Cu (samples) 0.369 0.240 0 0.225 0.341 0.470 3.698

Cu (Actual block model) 0.364 0.236 0 0.225 0.338 0.462 4.060

Cu (predicted block model) 0.371 0.198 0 0.262 0.357 0.457 2.777

Clay minerals (samples) 3.797 2.897 0 1.827 3.087 5.078 40.670

Clay minerals (actual block model) 3.797 2.888 0 1.836 3.092 5.072 40.670

Clay minerals (predicted block model) 3.849 2.155 0 2.371 3.480 4.947 30.232

BWI (samples) 13.264 3.734 0 12.600 12.921 13.335 28.524

BWI (actual block model) 13.210 3.669 0 12.602 12.920 13.323 28.567

BWI (predicted block model) 13.432 2.888 0 12.650 12.914 13.324 27.896

Rougher recovery (samples) 83.384 16.947 0 84.197 87.358 89.399 94.368

Rougher recovery (actual block model) 83.361 17.008 0 84.178 87.343 89.383 94.857

Rougher recovery (predicted block model) 84.538 11.139 0 84.735 86.915 88.524 93.356
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the kNN algorithm do not explicitly model spatial
variability. Empirically, it is clear that under the
conditions that were used for synthetic data gener-
ation and sampling, the performance of the kNN
algorithm in our microblock-to-macroblock method
varies depending on the specifics of the sampling
practice and the metrics considered. Under regular
sampling conditions, the kNN algorithm was more
accurate at the mean to median level, as evidenced
by the generally higher CoD, lower MAPE and
MedAE scores (Figs. 6, 7, 8). However, the level of
smoothing was generally lower for block kriging in
comparison with the kNN algorithm (Figs. 6, 7, 8).
This trend is reversed for results under biased sam-
pling conditions (Figs. 14, 15, 16). This implies that
under realistic conditions that are somewhere be-
tween completely regular and completely random
sampling, there is no strong rationale to pick one
method over the other for the purpose of block
modeling. Within the explored conditions in this
study, the performance differences as measured by
the CoD, MAPE and MedAE metrics are generally
small (typically on the order of 10-2 or a few percent
absolute difference). To further understand the

performance differences and implications, it is nec-
essary to venture beyond empirical results and
examine the algorithm architecture. As the present
applicative overlap between ML and geostatistics is
still small, we provide a discussion from two per-
spectives. The first perspective examines the algo-
rithms in context of geostatistics, while the second
perspective examines the algorithms in the context
of ML.

The architecture of the kNN algorithm can be
effectively examined through the perspective of
geostatistics to understand the observed perfor-
mance differences. The kNN algorithm uses the
average of multiple neighbors, which in the case of
prediction of each block within the microblock grid,
means that the closest k-members of each micro-
block is used to derive an average. The idea of a
neighborhood in ML is a generic one and only under
the special circumstance that spatial coordinates are
the sole features, is the concept of neighborhood
identical to that in geostatistics. This implies that the
support for each microblock is a fixed number of
neighbors, which in the case of regular sampling, is a
spatial neighborhood of fixed radius. In the case of

Figure 18. Predicted 3D block model showing the distribution of bornite (vol.%).
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biased random sampling, this changes completely
because the nearest neighbors do not occur at fixed
distance intervals, and, therefore, the support is not
a spatially consistent concept, and no fixed spatial
neighborhood is applicable. In our experience, the
biased random sampling is more representative of
actual data, and hence, the concept of a fixed
‘‘search’’ radius in the case of block kriging does not
generally have an equivalent in most ML algorithms.
The way in which averaging of neighboring points is
employed in kNN can technically be either un-
weighted or weighted. In this study, we used dis-
tance-weighting, which implies that contributions of
points are inversely related to their distance. This is
mechanistically similar to inverse distance weight-
ing, which is a type of spatial modeling algorithm
that is simpler than kriging. However, a key differ-
ence between kNN and inverse distance weighting is
that kNN uses explicit control on the notion of the
size of neighborhood through a single hyperparam-
eter – the number of neighbors. This means that the
delineation of the boundary of neighborhood is
sharp in the case of kNN, which his generally not the

case in inverse distance weighting. In other words,
setting the hyperparameter ‘‘k’’ is equivalent to
optimizing the number of neighbors to use in krig-
ing, although in the latter, the model-tuning process
is not necessarily cross-validation based. Fixing the
number of neighbors through cross-validation im-
plies that relative to inverse distance modeling, kNN
is more resistant to over-smoothing (because of ex-
plicit controls on model bias and variance). In fact,
the retrieval of fine-scale detail, particularly under
more challenging conditions of biased random
sampling, higher nugget effect and anisotropy (e.g.,
Figs. 11 and 13) is indicative of a reduction of re-
liance on distal supports.

The proposed microblocking approach using
ML has demonstrated its effectiveness in reproduc-
ing ore distribution patterns and regularities in the
simulated porphyry Cu deposit (Figs. 18 and 22).
This approach was then used to create 3D predictive
geometallurgical models that incorporate mineral-
ogy, chemistry and metallurgical response variables,
which can be used to improve mining, mine plan-
ning, grade control and mineral processing and

Figure 19. Predicted 3D block model showing the distribution of Cu (wt.%).
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metallurgical extraction (e.g., Fig. 22). Using the
microblocking approach, it was possible to accu-
rately reproduce the concentration of the ore at
sampled and block locations of the synthetic data
during the deployment testing stages (Table 2). The
predictive geometallurgical models generated using
the microblocking approach provided valuable in-
sights into the distribution of Cu, bornite, chal-
copyrite and other minerals in the selected porphyry
Cu deposit. These models also allowed for the
identification of areas with complex mineralogy and
alteration by clay minerals, which could result in
lower recovery rates during metallurgical treatment.
This information can be used to optimize mining,
mine planning and grade control strategies to max-
imize the recovery of valuable minerals while mini-
mizing costs. Moreover, the predictive
geometallurgical models created using the
microblocking approach can be used to optimize
mineral processing and metallurgical extraction
processes. By incorporating information about the
mineralogy, chemistry and metallurgical response of
the deposit, it is possible to design optimal process-

ing circuits that maximize recovery while minimizing
energy consumption and equipment wear.

From the ML perspective, the main task of a
ML model is to capture as much information as
possible that is contained within the given data.
Block modeling is a highly specific application of
ML in this sense, because in this case, the spatial
information is captured by a ML model and repli-
cated onto a fine microblock grid. This is similar to
the classification application of domain boundary
delineation using ML (Zhang et al., 2023). The
performance of a ML model depends on its ability to
model the relationships between the features and
the data label contained within the data. In this
sense, an appropriate choice of a ML algorithm
should yield a minimum of bias and variance, such
that the performance of the resulting models is
maximized. For spatial learning tasks, the concept of
local continuity of the spatial variability, or spatial
correlation, is not explicitly addressed in known ML
algorithms. In the case of the kNN algorithm, spatial
learning is possible because the algorithm uses a
notion of a local and weighted neighborhood com-
bined with the use of distance metrics and spatial

Figure 20. Predicted 3D block model showing the distribution of clay minerals (vol.%).
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dimensions as features. Perfect replication of data is
theoretically possible to within the constraints
placed by sampling (e.g., resolution). As the data
noise increases, for example, through increase of the
nugget effect, the performance of models decreases
(e.g., Figs. 7 and 15). This is best understood from
the error decomposition into model bias, variance
and irreducible error. Increasing the nugget effect
increases irreducible error.

Despite the advantages of block kriging,
including a very mature workflow and many appli-
cation examples, there are some undesirable aspects
of block kriging. One of the main challenges is its
complicated and long sequence of procedures
(Cressie, 1990). Furthermore, both ML-based and
block kriging methods still require large amounts of
data to produce accurate and reliable results, which
can be a challenge in areas with sparse or limited
data (Deutsch et al., 2014). Additionally, block
kriging of various forms assumes some spatial sta-
tistical properties in the data (either global or at
least satisfiable within geodomains, see Zhang et al.,
2023), including that the geological variable being
modeled is stationary. This assumption may not al-
ways hold true in practice, particularly in heteroge-
neous geological environments. Theoretically, this

implies that methods that do not assume global data
properties or require geodomaining could be gen-
erally more applicable, in that they require less
considerations and treatise of the data prior to block
modeling. Although this remains to be verified
empirically. This is the case for the kNN algorithm
at least in the realm of data science because we are
unaware of any requirement to segment training
data prior to the use of kNN-based classification or
regression, although in specific cases (e.g., where
there are highly heterogeneous clusters and predic-
tion occurs within clusters), this is likely to be ben-
eficial. Additionally, fitting of variograms and
trimming of data tend to require expert judgment
and substantial disciplinary experience. It is unclear
what the net uncertainty across this sequence of
procedures is because a systematic study has not
been conducted. However, block models must al-
ways be used with grade control and metal recon-
ciliation, which are feedback mechanisms to address
model uncertainty (Chiles & Delfiner, 2012). The
impacts of this type of uncertainty on mapping (e.g.,
for exploration, including prospectivity mapping) is
wholly unknown, as reconciliation is not possible at
this scale and for this type of activity. Consequently,
the ability to minimize the length and complexity of

Figure 21. Predicted 3D block model of bond work index (BWI; kwh/tc).
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the sequence of procedures toward usable block
models will likely increase model reproducibility
and objectivity. In our case, the microblock-to-
macroblock approach using the kNN algorithm
makes use of a minimum of 2 key hyperparameters –
the size of microblocks and the number of neigh-
bors. The microblock size parameter is not as
impactful on the outcome, as it can be set as small as
computationally practical (e.g., as large grids con-
sume more memory) and, in general, decreasing the
parameter value results in increasingly diminishing
returns. The tuning of the number of neighbors in
kNN is straightforward and fully data-driven and
automated using the ML workflow, which means no
subjectivity is involved beyond data pre-processing
(which was not employed in our study). This means
that in comparison with block kriging, our method is
essentially equally applicable to within the extent of
data explored but is substantially simpler and
essentially requires no manual contribution, aside
from coding a workflow. This is an intended benefit
of our approach, which enables data scientists to
interpolate geospatial data using a machine learn-

ing-based workflow, which is consistent with their
training. This benefit is likely to become more
prominent with the rise of geodata science and
higher-than-traditional velocity (ungridded)
geospatial data.

CONCLUSIONS

Directly producing block models for a variety of
purposes that include mapping and mineral resource
estimation is challenging with ML algorithms be-
cause this task involves a change of support. ML
algorithms implicitly assume that the prediction is
made at the same size of support as the input and
training data, and hence, unlike block kriging,
changing support requires additional consideration.
In this paper, we purposefully exploited the constant
support property of ML algorithms and, in particu-
lar, explored the use of the simple kNN algorithm
for the purpose of block modeling. We demon-
strated that under the conditions of regular and
biased random sampling, the kNN and microblock-

Figure 22. Predicted 3D block model of rougher recovery (%).
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to-macroblock method yields results that are quali-
tatively and quantitatively similar to those of block
kriging. In addition, detailed differences are
nuanced in terms of qualitative and quantitative
performance. We expect that our approach will be
useful under a range of typical conditions, especially
when highly reproducible and objective outcomes
are expected, because our method requires tuning of
a substantially reduced set of parameters as com-
pared with the geostatistical approach. Our ap-
proach recognizes that the idea of punctual support
is a mathematical approximation, which serves
geostatistics well but is inconsequential to detri-
mental to ML in spatial tasks. Reconsidering this
assumption and, therefore, undoing the punctual
approximation enables the construction of a micro-
block grid, such that the individual predictions can
be made at a scale that is much smaller than that of
the final macroblock grid size and in a manner that is
closer to the finite size of support as represented by
the data. The two key recognitions are: (1) that the
solution requires significant multidisciplinary
knowledge at the geoscientific level (as in outside of
the data science realm); and (2) modifying existing
assumptions as necessary (notion of punctual sup-
port) to fit with ML algorithms. Formulating a fully
automatable spatial interpolation method, with a
workflow implemented in the ML framework would
imply that our method should be highly accessible to
data scientists, who may wish to venture into geo-
sciences and perhaps, eventually become geodata
scientists.
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Garrido, M., Sepúlveda, E., Ortiz, J., & Townley, B. (2020).
Simulation of synthetic exploration and geometallurgical
database of porphyry copper deposits for educational pur-
poses. Natural Resources Research, 29, 3527–3545.

Gelfand, A. E., Zhu, L., & Carlin, B. P. (2001). On the change of
support problem for spatio-temporal data. Biostatistics, 2(1),
31–45.

Goertzel, B. (2006). The hidden pattern: A patternist philosophy of
mind. BrownWalker Press.

Good, I. J. (1983). The philosophy of exploratory data analysis.
Philosophy of Science, 50(2), 283–295.

Goovaerts, P. (1997). Geostatistics for natural resources evalua-
tion. Oxford University Press.

Gotway, C. A., & Young, L. J. (2002). Combining incompatible
spatial data. Journal of the American Statistical Association,
97(458), 632–648.

Groves, D. I., Vielreicher, R. M., Goldfarb, R. J., & Condie, K. C.
(2005). Controls on the heterogeneous distribution of mineral
deposits through time. Geological Society, London, Special
Publications, 248, 71–101.

Ho, T. K. (1995). Random decision forests. In Proceedings of the
3rd International Conference on Document Analysis and
Recognition (Vol. 1, pp. 278–282). IEEE, Montréal, Canada.
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