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Lithology identification is a crucial step in geological research. In recent years, the devel-
opment of artificial intelligence technologies has provided new insights into solving problems
associated with subjectivity and labor intensity of traditional manual identification. How-
ever, when rocks are identified in situ, existing algorithms cannot accurately identify them if
the image features of different types of rocks are similar or the rock textures are varied. In
this regard, the study of lithology identification for the rock images captured from the field
was carried out. First, the object detection algorithm of single shot multibox detector was
improved by adding residual net and adaptive moment estimation, and a lithology identi-
fication model was constructed. Second, based on the above improved algorithm, the tech-
nologies of database and geographic information system were combined to develop an
integrated identification method. Third, the proposed methods were applied to 12 types of
rocks in Xingcheng area, China, for testing their validity, and feasibility in field geological
surveys. Finally, the effects of learning rate and batch size on the identification were dis-
cussed, as the epoch number was increased. We found that the average accuracies of the
improved single shot multibox detector and integrated method were 89.4% and 98.4%,
respectively. The maximum accuracy could even reach 100%. The identification results were
evaluated based on accuracy, precision, recall, F1-score, and mean average precision. It was
demonstrated that the integrated method has a strong identification ability compared with
other neural network methods. Generally, a small learning rate can lead to low loss and high
accuracy, whereas a small batch size can lead to high loss and high accuracy. Moreover, the
newly proposed methods helped to improve the lithology identification accuracy in the field
and support the study of intelligent in situ identification for rock images.
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INTRODUCTION

Lithology identification and classification al-
ways play important roles in regional geological
surveys, geotechnical engineering, and resource
exploration (Pour et al., 2018; Kumar et al., 2019; Xu
et al., 2021). Lithology identification can be imple-
mented through the visual observation of rock
specimens and thin or polished sections. Method-
ologies associated with geophysics (Bosch and
McGaughey, 2001; Asfahani et al., 2015) and geo-
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chemistry (Han et al., 2018; Gleeson et al., 2020;
Cheng et al., 2022) can also be used for lithology
identification. However, specialized geological
knowledge and experience are indispensable for
traditional identification. When the number of rock
samples is large, the accuracy is inevitably decreased
due to human subjectivity. Hence, the study of
automated and intelligent methods is important for
effective lithology identification and classification.
This study also makes it more convenient for
scholars and technicians without petrology back-
ground to conduct lithology identification.

Artificial intelligence (AI) has developed ra-
pidly in recent years. Image recognition technologies
using artificial neural network (ANN) are among the
hotspots in AI and they have been applied widely in
various fields, such as monitoring cultivated land
changes (Song et al., 2018), biological image classi-
fication (Qin et al., 2020), three-dimensional face
recognition (Li et al., 2022), and skin attribute
detection (Nguyen et al., 2022). In this regard, some
studies on intelligent lithology identification have
been conducted. For instance, Marmo et al. (2005)
used a multi-layer perceptron neural network to
develop a textural identification method for car-
bonate rocks. Singh and Rao (2005) implemented
ore sorting and classification using a radial basis
neural network. Singh et al. (2010) proposed an
approach to identify textures of basaltic rock based
on image processing and neural network. Chatterjee
(2013) applied a multi-class support vector machine
for rock-type classification of limestone, and an
accuracy of 96.2% was obtained. Młynarczuk et al.
(2013) conducted automatic classification of micro-
scopic images for nine types of rocks with four pat-
tern recognition methods. Izadi et al. (2017)
proposed an intelligent system for mineral identifi-
cation in thin sections based on ANN. Sun et al.
(2019) optimized the logging method while drilling
using machine learning algorithms for rapid lithol-
ogy identification. Xie et al. (2021) developed a
coarse-to-fine approach with extremely randomized
trees for logging lithology identification. Xu et al.
(2022) proposed an on-site identification method of
rock images and elemental data using deep learning.
Among the above studies, some methods success-
fully implemented lithology identification using rock
images; however, methods for in situ lithology
identification in the field are few and have yet to be
improved. Moreover, as deep learning has great
ability in object detection and identification, meth-

ods using deep learning show potential for rapid and
accurate lithology identification.

Convolutional neural network (CNN) is an
important and widely used part of deep learning. At
present, CNN types used commonly in object
detection include region-based CNN (R-CNN)
(Girshick et al., 2014), fast R-CNN (Girshick, 2015),
faster R-CNN (Ren et al., 2015), you only look once
(YOLO) (Redmon et al., 2016), and single shot
multibox detector (SSD) (Liu et al., 2016). Fast R-
CNN and faster R-CNN were developed based on
R-CNN, and R-CNN-based methods can make
accurate but slow identification. Meanwhile, the
methods using YOLO are fast; however, their
accuracy needs to be improved. SSD combines the
ideas of the grid in YOLO and the anchor in faster
R-CNN; moreover, it is faster and more accurate
than YOLO and faster R-CNN. SSD has thus been
applied for electronic component recognition (Sun
et al., 2020), remote sensing (Lu et al., 2021), and
automatic driving (Chen et al., 2022). Hence, SSD
can help improve the accuracy of lithology identifi-
cation in the field.

In this study, SSD was improved first and an
intelligent lithology identification method based on
improved SSD for rock images was proposed. Then,
database (DB) and geographic information science
(GIS) technologies were introduced to construct an
integrated identification method. The proposed
methods were applied to the rocks in Xingcheng
area, China. Finally, the influencing factors of the
identification results were discussed.

METHODS

Aiming at the problem associated with low
in situ lithology identification accuracy for rocks in
the field caused by complicated image features, two
methods are proposed in this section: improved SSD
and integrated method based on DB, GIS, and im-
proved SSD (DGS).

Building Datasets

The prerequisite for intelligent lithology iden-
tification is building datasets, which is important for
training models. During training, large amounts of
labeled samples are provided to improve the accu-
racy and generalization ability of a network. How-
ever, limited by the manual capturing of
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photographs, the number of rock images from the
field cannot meet the training demands. Hence, the
image number is increased through data augmenta-
tion. The method of building datasets is as follows.

(1) Data acquisition: All photos of rock outcrops
were captured from the field, and this method
was different from a study that utilized images
of rock samples (Xu et al., 2022); meanwhile,
only one lithology was shot in one image to
reduce the effect of non-rock objects, such as
vegetation, and water.

(2) Preprocessing: The parts with contents irrele-
vant to the rock, such as references in the
images, were removed.

(3) Labeling: The images captured from the field
were labeled (Fig. 1) according to the features
of the rock images, and the files with the suffix
‘‘.xml’’ were saved in the format of PASCAL
Visual Object Classes.

(4) Augmentation: The files with the suffix ‘‘.xml’’
and images were augmented through (hori-
zontal or vertical) flipping, changing the
brightness (increasing to 120–150% of the
original image), random fuzzification, transla-
tion, scaling, and rotation (Fig. 2). More ima-
ges were obtained through augmentation.
Moreover, the robustness of the model and the
accuracy of the results can be improved by
augmentation.

(5) Filtering: The augmented images were filtered
by removing images that had very few or even
no target rocks so that the features could be
more accurately captured and extracted.

(6) Dividing: 80% of the filtered images were used
to build a training dataset, and the remaining
20% served as the testing dataset.

Improved SSD

Network Structure

In SSD, visual geometry group network with 16
weight layers (VGG16) (Simonyan and Zisserman,
2014) is used commonly to extract image features.
However, the vanishing gradient problem is caused
by the increased depth of VGG16. Residual net
(ResNet) helps solve this problem using the residual
function (He et al., 2016). Thus, ResNet with 50

layers (ResNet50) was applied as a basic network
instead of VGG16.

There were three parts in the structure of im-
proved SSD (Fig. 3): ResNet50, extra feature layers,
and prediction layer. ResNet50 was used for feature
extraction. Each feature map had default boxes in
different sizes. Among these default boxes, the
highest layer had a scale of 0.85, the lowest layer had
a scale of 0.10, and the layers in between had scales
of 0.25, 0.40, 0.55, and 0.70. Extra feature layers
were added to the end of ResNet50 for predictions
at multiple scales, and the sizes of the layers de-
creased progressively. Prediction layer was used to
obtain the location, confidence, and classification of
the bounding boxes.

Loss Function

During identification, the loss function loss was
used to indicate the difference between prediction
and ground truth. The higher the value of loss, the
lower the precision. The equation for loss (Liu et al.,
2016) is:

loss ¼ 1

N
ðLconf þ aLlocÞ ð1Þ

where N is the number of positives, Lconf is the
confidence loss, Lloc is the localization loss, and a is a
weight factor, which was set to 1. The equation for
Lconf is:

Lconf ¼ �
XN

i2Pos
x
p
ij logðbcpi Þ �

X

i2Neg

logðbc0
i Þ; bc

p
i

¼ expðcpi ÞP
p expðcpi Þ

ð2Þ

where Pos represents positives, which are samples
belonging to the target lithology; Neg represents
negatives, which are samples that do not belong to

the target; x
p
ij is the indicator for matching the ith

default box to the jth ground truth box of category p;

and c
p
i is the confidence of lithology p for the ith

default box.
The equations for Lloc are:

Lloc ¼
XN

i2Pos

X

m2fcx;cy;w;hg
xkijsmoothL1

ðlmi � gmo;jÞ ð3Þ
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gcxo;j ¼ ðgcxj � dcxi Þ=dwi ; g
cy
o;j ¼ ðgcyj � d

cy
i Þ=dhi ; gwo;j

¼ logð
gwj

dwi
Þ; gho;j ¼ logð

ghj

dhi
Þ ð4Þ

smoothL1
¼ 0:5 � ðxi � yiÞ2=b ; if xi � yij j\b

xi � yij j � 0:5 � b ; otherwise

(
ð5Þ

where l is the predicted box, g is the ground truth
box; (cx, cy) is the center coordinate of the default

Figure 1. Comparison of unlabeled and labeled images with amphibolite as an example: (a) original image; (b)

image after labeling. Red rectangular boxes represent the ground truth boxes.

Figure 2. Comparison of images of conglomeratic feldspathic quartz sandstone before and after augmentation: (a) original image; (b)

horizontally flipped image; (c) brightened image; (d) fuzzy image; (e) rotated image.
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box d; w and h are the width and height of d,
respectively; lmi , gmj , and dmi are the parameters m of

the ith predicted box, the jth ground truth box, and
the ith default box, respectively; gmo;j is the offset of

gmj ; smoothL1
is the robust L1 loss function (Gir-

shick, 2015); xi and yi are the values of the target and
output, respectively; and b specifies the threshold at
which to change between L1 and L2 loss, which is a
constant set to 1 in this study.

Optimization Strategy

The adaptive moment estimation (Adam)
algorithm (Kingma and Ba, 2014) was adopted in-
stead of stochastic gradient descent as the opti-
mization strategy. Adam combines the advantages
of adaptive gradient (Duchi et al., 2011) and root
mean square propagation (Tieleman and Hinton,
2012). Hence, it can deal with sparse gradients and

non-stationary objects. The equations of Adam are
as follows:

gt ¼ rhftðht�1Þ; ht ¼ ht�1 �
affiffiffiffiffiffiffiffiffiffiffiffi

v̂t þ e
p m̂t ð6Þ

m̂t ¼
mt

1 � bt1
; v̂t ¼

vt

1 � bt2
ð7Þ

mt ¼ b1mt�1 þ ð1 � b1Þgt; vt ¼ b2vt�1 þ ð1 � b2Þg2
t

ð8Þ
where gt is the gradient of loss function f with

respect to parameter h at time step t; mt is the biased
first moment estimate at time step t; vt is the biased
second raw moment estimate at time step t; m̂t and v̂t
are the bias-corrected first moment estimate, and
bias-corrected second raw moment estimate,
respectively; a is the step size; b1 and b2 are the
exponential decay rates for the moment estimates;

Figure 3. Network structure of improved SSD.
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and e is a small positive number to avoid generating
a singular value.

Integrated Identification Method

DGS, a method based on improved SSD, and
using the constraint provided by DB and GIS, is
proposed to further improve lithology identification
in the field.

Rocks of different lithology can have similar
appearances. Therefore, identification using only
rock images can lead to misclassifications. In most
cases, historical work can provide rock information,
such as location and lithology, which can be the basis
for identification. Once imported into the database,
the known rock information provides constraints for
in situ identification for further improved accuracy.
Specifically, after the preliminary identification
using improved SSD, the lithology with maximum
confidence was not output as an identification result.
Instead, a set of lithology candidates was output as
the preliminary result. According to rock location,
the known lithology information in the area was
obtained from the database, which was regarded as a
constraint to compare with the preliminary identifi-
cation result. Based on this comparison, the lithol-
ogy candidate that was not in the set of known
lithology was removed from the preliminary result.
Then, the lithology with maximum confidence in the
rest was considered the final result. If the lithology in
the constraints were quite different from the candi-
dates, only improved SSD was used and the con-
straints did not affect the lithology identification.
Information on newly identified rocks could be im-
ported into the database to provide the constraints
for future works. In DGS, the DB technique was
used to provide the constraints, the GIS technique
was used to provide spatial information, and the
improved SSD was used for identification. The
combination of DB, GIS, and improved SSD con-
tributed to high-accuracy in situ identification.

It should be noted that there is a prerequisite
for this integrated method: the historical work has
been performed in the study area (i.e., the geological
background, including the lithology, is known). If no
geological information was collected, only improved
SSD was used. It could be inferred from the above
that DGS could be adopted in many application
scenarios of lithology identification. For example,
exposed rocks can be identified in situ using DGS
during mine production, so that the ore body can be

distinguished from the surroundings and a database
of lithology distribution could be built, supporting
high-efficiency mining.

Compared with the improved SSD, DGS
apparently helped obtain optimal identification,
build the lithology database, and provide new in-
sights into the in situ identification in the field. The
steps of DGS are as follows (Fig. 4):

(1) Build the database for known lithology using
MySQL.

(2) Import rock information, including location
and lithology, collected from different ways
into the database.

(3) Capture images of the rocks in the field and
obtain the coordinates using a positioning tool,
such as, the GPS module in cameras or
smartphones.

(4) Import the rock images into improved SSD
and simultaneously search the lithology infor-
mation from the database according to the
coordinates.

(5) Implement lithology identification using im-
proved SSD to produce candidates and the
constraints are provided by the database.

(6) Obtain the final result by integrating the
information of the candidates and constraints
and import it into the database.

(7) Evaluate the results with the metrics after
identification (for details, see section of
Assessment Methodology).

TESTS AND RESULTS

The proposed methods were applied to rock
images obtained from Xingcheng area, China. The
tests were implemented to verify the effectiveness
and feasibility of the methods.

Geological Setting and Rock Images

Xingcheng area is in the southwestern part of
Liaoning Province. In terms of regional geomor-
phology, it is located in a coastal hilly area on the
eastern margin of Heishan Hills in the West Liaon-
ing Mountainous Region. In terms of regional tec-
tonics, it is located north of the North China Craton.
In this area, the strata are well-developed, with
various types of rocks (Liang et al., 2015).
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The rock images were captured from Diaoyutai,
Jiashan, Longhuitou, Heiyugou, and Taili in Xing-
cheng area. Well-exposed rocks with distinguishing
lithologic features were considered typical rocks and
used for identification. Among the rock images
(Fig. 5), those of biotite monzonitic granite, mon-
zonitic granite, quartz syenite, amphibolite, diabase,
and granite pegmatite were captured from Diaoyu-
tai, those of conglomeratic feldspathic quartz sand-
stone and quartz conglomerate were captured from
Jiashan, those of polymictic conglomerate, quartz
sandstone, quartz conglomerate, and diabase were
captured from Longhuitou, those of oolitic lime-
stone were captured from Heiyugou, and those of
granite pegmatite, diabase, and mylonite were cap-
tured from Taili.

In total, 1187 raw images were captured from
the field using the smartphone OnePlus 6, and one
target lithology was captured in one image. The
location information of the rocks was acquired using
the smartphone�s GPS synchronously when the
photographs were captured. According to the sec-
tion Building Datasets, 11870 images were finally
obtained after preprocessing, labeling, augmenta-
tion, and filtering. Of these images, 80% were used
to build a training dataset, and 20% served as the
testing dataset.

Lithology Identification Tests

In the tests, all of the codes were written in
Python language. Python tool boxes were used,
including LabelImg for labeling the images, imgaug
and PIL for data augmentation, and PyTorch for
designing the network and calling graphics process-
ing unit (GPU). The tests were implemented on the
GPU node of the supercomputer TianHe HPC4.
The node had 2 9 Intel Xeon Gold 6354 18-core
processors with 3.00 GHz, 2 9 NVIDIA HGX A100
GPU, and 256 GB memory. The operating system
was RedHat Enterprise Linux 8.4.

The built dataset was adopted to test the trained
improved SSD, and the constraints were introduced
by DB and GIS. The results obtained from improved
SSD and DGS were compared. In Figure 6,
polymictic conglomerate, quartz conglomerate, and
mylonite were taken as examples to show the iden-
tification results of DGS. When the epoch number
was 200, learning rate was 1 9 10�4, and batch size
was 4. The identification accuracies of the improved
SSD and DGS were recorded (Table 1).

As shown in Table 1, the average accuracies of
the improved SSD and DGS were 89.4% and 98.4%,
respectively. After introducing the constraints, the
lithology candidates were removed, that might have
had high confidence but did not exist in the area
where the target rock was located. Hence, the

Figure 4. Flow of DGS.
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accuracy could be improved and could even reach
100% for some types of rocks. Compared with the
improved SSD, DGS resulted in varying degrees of
accuracy improvement. However, the accuracies for
biotite monzonitic granite, diabase, granite peg-
matite, and polymictic conglomerate were not im-

proved by DGS. Moreover, the accuracies for these
four rocks were more than 90%. This shows that, in
most cases, DGS can improve the accuracy for rocks
exposed in only one area; for widely distributed
rocks, the accuracy may not be improved consider-
ably by DGS; however, DGS at least does not pro-

Figure 5. Raw images of typical rocks: (a) biotite monzonitic granite; (b) monzonitic granite; (c) quartz syenite; (d) amphibolite; (e)

diabase; (f) granite pegmatite; (g) conglomeratic feldspathic quartz sandstone; (h) quartz conglomerate; (i) polymictic conglomerate; (j)

quartz sandstone; (k) oolitic limestone; (l) mylonite.

Figure 6. Identification results of typical rocks: (a) polymictic conglomerate; (b) quartz conglomerate; (c) mylonite.
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duce negative effects. This indicates that the pro-
posed methods are effective and feasible. The
identification ability of the improved SSD was pro-
ven to be unaffected by location, but that of DGS
was related to the lithology distribution.

DISCUSSIONS

As DB and GIS only provided the constraints,
and the basis of DGS was the improved SSD, ana-
lyzing the factors that impact on training was
important to DGS as well as the improved SSD. The
identification results obtained through the training
with different parameters are discussed in the fol-
lowing tests. The effects of parameter variations on
the identification performance are analyzed.

Assessment Methodology

Assessments of identification performance were
implemented during the tests.

The first was the assessment of the predicted
boxes when outputting the identification result of a
single image. For each image in the dataset, non-
maximum suppression (NMS) was adopted for the
filtering (Fig. 7). The maximum confidence of all the
predicted boxes was found, and the identification
result of the corresponding box was output. Hence,
confidence was used as the metric to judge which
box to output.

The second one was the assessment with loss for
model training. The values of loss during training
and testing were used typically as the metric for

evaluating the network. However, as this evaluation
was conducted only for training during the test, only
the values of loss in the training were used.

The third assessment was made for the results
of the methods. Based on the section of Building
Datasets, only one type of rock was captured in each
image when acquiring data. Therefore, for the im-
proved SSD and DGS, the candidate with maximum
confidence was considered the prediction result, and
accuracy was equal to the ratio of correctly identi-
fied image numbers to the total image numbers,
which was different from the common way. Accu-
racy (Acc), precision (Pre), recall (Rec), F1-score
(F), and mean average precision (mAP) were used
to evaluate the identification. Their equations are,
respectively, as follows:

Acc ¼ NC

N
ð9Þ

Pre ¼ TP

TPþ FP
ð10Þ

Rec ¼ TP

TPþ FN
ð11Þ

F ¼ 2 � Pre� Rec

Preþ Rec
ð12Þ

mAP ¼
PK

i¼1 APi

K
ð13Þ

where Nc is the number of images identified
correctly, N is the total number of images, mAP is
the mean average precision, APi is the average

Table 1. Identification accuracies of improved SSD and DGS for the studied rocks

Lithology Improved SSD (%) DGS (%)

Biotite monzonitic granite 90.0 90.0

Monzonitic granite 96.2 100.0

Quartz syenite 86.1 97.2

Amphibolite 75.0 100.0

Diabase 93.3 93.3

Granite pegmatite 90.9 90.9

Conglomeratic feldspathic quartz Sandstone 93.1 100.0

Quartz conglomerate 93.1 100.0

Polymictic conglomerate 96.9 96.9

Quartz sandstone 92.9 100.0

Oolitic limestone 76.5 100.0

Mylonite 94.4 100.0

Average Accuracy 89.4 98.4
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accuracy of lithology i, and K is the total number of
lithology.

Performance Analysis

Different learning rates and batch sizes were
used for the model training. In the methods, learning
rate is the stride in epochs during the training, and
batch size is the sample number utilized in one
iteration. The effects of parameter variation on
identification performance were discussed and ana-
lyzed. The epoch number was set to 200.

First, we set batch size to 16 and learning rates
to 5 9 10�2, 1 9 10�2, 5 9 10�3, 1 9 10 -3,
5 9 10�4, 1 9 10�4, and 5 9 10�5. The effect of
learning rate on identification was discussed. All the
other parameters and dataset were the same in the
training. The values of loss (Fig. 8) and accuracies
(Fig. 9) were recorded during the training with dif-
ferent learning rates. When the learning rate was
5 9 10�2, loss was too high, and its curve had a

different shape from those of the others; therefore, it
was plotted separately.

In the loss figure (Fig. 8a), as the epoch number
increased, the values of loss decreased quickly and
tended to stabilize, except when the learning rates
were 1 9 10�2 and 5 9 10�3. Based on this test, an
extremely large learning rate led to the case where
loss could not decrease to a low level, such as when
learning rate was 1 9 10�2. Similarly, when the
learning rate was 5 9 10�3, loss had a faster con-
vergence and smaller final value than loss obtained
when the learning rate was 1 9 10�2; however, this
was still unexpected. The final values of loss were
1.445 and 0.370 when the learning rates were
1 9 10�2 and 5 9 10�3, respectively, which were
much higher than the values obtained when using
other learning rates. When the learning rates were
1 9 10�3, 5 9 10�4, 1 9 10�4, and 5 9 10�5, the fi-
nal values of loss were 0.023, 0.015, 0.005, and 0.004,
respectively. These indicated that the smaller the
learning rate, the smaller the values of loss. More-
over, in the first 25 epochs, the smaller the learning
rate, the faster the convergence rate. However, the

Figure 7. Evaluation with NMS. Blue boxes represent predicted boxes, and the red box represents the ground

truth box.
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convergence rate was faster when learning rate was
1 9 10�4 than when the learning rate was 5 9 10�5.
Figure 8b shows that when the learning rate was
5 9 10�2, loss increased and decreased repeatedly,
which could even be larger than the initial value.
The value of loss finally reached a large value
(33.407). This proved that learning rate had a major
effect on the convergence and fitting of loss, and the
learning rate should not be larger than 1 9 10�3.

Based on the accuracies of the improved SSD
(Fig. 9a), the final accuracies increased to varying
degrees compared with the initial values. When the
learning rates were 5 9 10�2, 1 9 10�2, 5 9 10�3,
1 9 10�3, 5 9 10�4, 1 9 10�4, and 5 9 10�5, the fi-
nal accuracies were 9.0%, 11.9%, 27.1%, 30.6%,
24.5%, 38.1%, and 43.5%, respectively. The corre-

sponding final accuracies of DGS were 31.9%,
34.8%, 55.5%, 57.4%, 55.8%, 67.4%, and 73.5%,
respectively (Fig. 9b). These indicated that, gener-
ally, the smaller the learning rate, the higher the
final accuracy. This is because large lr may have
difficulty converging (Buduma and Locascio, 2017),
and small lr can approximate optimal solution. In
addition, the accuracies of DGS were higher than
those of the improved SSD. It was demonstrated
that introducing DB and GIS technologies can
greatly improve accuracy. The curve shapes of the
accuracies of the improved SSD and DGS were
similar and showed a small tendency to increase
because the improved SSD was used for identifica-
tion in DGS. Moreover, how learning rate affects
the values of loss, accuracy, and convergence rate

Figure 8. Values of loss obtained during the training with different learning rates: (a) learning rate = 5 9 10�5 –

1 9 10�2; (b) learning rate = 5 9 10�2.
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should be considered for the optimal solution.
Hence, 1 9 10�4 was regarded as the learning rate
used for the best identification results.

Next, we set the learning rate to 1 9 10�4 and
batch sizes to 4, 8, 16, 32, 64, and 128, whereas the
data and other parameters were the same. The effect
of batch size on identification was discussed. The
results are shown in Figures 10 and 11.

As shown in Figure 10, in the first 25 epochs, the
values of all the curves showed a fast convergence.
As the epoch number increased, loss fluctuated. The
larger the batch size, the larger the amplitude of the
fluctuation. When batch sizes were 4, 8, 16, 32, 64,
and 128, the final values of loss were 0.016, 0.010,
0.005, 0.004, 0.003, and 0.004, respectively. These
indicated that the final values of loss decreased ini-
tially and then increased as batch size increased.

Therefore, batch size should be more than 32 if a
small value of loss is desired.

When analyzing the effect of batch size on
accuracy, we still found that the accuracies of DGS
were higher than those of the improved SSD
(Fig. 11). When batch sizes were 4, 8, 16, 32, 64, and
128, the accuracies of the improved SSD were
89.4%, 59.0%, 38.1%, 24.5%, 22.3%, and 16.8%,
respectively. The corresponding accuracies of DGS
were 98.4%, 84.2%, 67.4%, 56.8%, 49.0%, and
50.6%, respectively. Generally, the accuracies de-
creased as batch size increased. For all batch sizes,
the accuracy tended to be stable after training within
25 epochs. When batch size was 4, the highest
accuracy was obtained and the curve had the fastest
ascending rate. Because the methods with large
batch sizes tended to converge to sharp minimizers

Figure 9. Accuracies with different learning rates using (a) improved SSD and (b) DGS.
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and led to poor generalization, the methods with
small batch sizes converged to flat minimizers
(Keskar et al., 2016). In addition, a small batch size
can result in more trainings so that more image
features can be extracted. Although small batch size
caused a large value of loss, it had better general-
ization for identifications of testing dataset. A
proper batch size should provide high accuracy in-
stead of a low value of loss. Hence, 4 was regarded
as the optimal batch size. In Figure 11, the curve
shapes of the accuracies of the improved SSD and
DGS were similar. This also appears in Figure 9.
Overall, although the learning rate of 1 9 10�4 and
batch size of 4 could not provide minimum loss and
maximum accuracy simultaneously, they were still
considered the optimal parameters for the training
of the improved SSD and DGS.

Finally, the improved SSD and DGS were
compared with YOLOv5s to further verify the pro-
posed methods� superiority in in situ lithology
identification. The dataset and training parameters
were the same for the improved SSD, DGS and
YOLOv5s. The metrics in the section of Assessment
Methodology were used for evaluation (Table 2),
where the values behind @ represent the thresholds
of intersection over union when computing mAP. As
shown in Table 2, compared with YOLOv5s, the
improved SSD had higher accuracy, precision, F1-
score, mAP@0.5:0.95, and close recall and
mAP@0.5. The metrics of DGS showed that identi-
fication was improved to varying degrees compared
with the improved SSD. As DGS was developed by
adding constraints based on the improved SSD, their

recalls were the same. Except for the recall, the
accuracy, precision, F1-score, and mAP of DGS
were superior to those of YOLOv5s. YOLOv5s has
the advantage of a shorter identification time; how-
ever, the identification times of DGS and the im-
proved SSD were also fast. Faster-RCNN was also
chosen for comparison, but its metrics were very low
regardless of the identification speed. Hence, Faster-
RCNN was considered unsuitable for identification
in this study, and its metrics are thus not shown. We
demonstrated that DGS and the improved SSD were
very effective in in situ lithology identification
compared with other methods.

CONCLUSIONS

Aiming at solving low-accuracy problems of
in situ lithology identification in the field, an im-
proved SSD was proposed and was combined with
DB and GIS to propose a method called DGS. The
methods were applied to the images of typical rocks
in Xingcheng area. The average accuracies of the
improved SSD and DGS were 89.4% and 98.4%,
respectively, and the maximum accuracies could
reach 100%. The two proposed methods could
identify lithology accurately. Moreover, DGS with
constraints helped improve the accuracy based on
the improved SSD and support future identifications
by building a lithology database. A series of tests
were designed and implemented to discuss the ef-
fects of various parameters on identification. Dif-
ferent learning rates and batch sizes were used to

Figure 10. Values of loss obtained during the training with different batch sizes.
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train the model, and the values of loss and accuracies
were recorded and analyzed. Generally, the smaller
the learning rate, the smaller the value of loss, the

faster the convergence rate, and the higher final
accuracy; the smaller the batch size, the larger the
value of loss and the higher final accuracy. Fur-

Figure 11. Accuracies with different batch sizes using (a) improved SSD and (b) DGS.

Table 2. Evaluation records of different identification methods

Metrics Improved SSD DGS YOLOv5s

Accuracy (%) 89.4 98.4 87.6

Precision (%) 66.2 84.5 63.7

Recall (%) 96.8 96.8 98.0

F1-score 0.786 0.902 0.772

mAP@0.5 0.780 0.883 0.788

mAP@0.5:0.95 0.762 0.847 0.713

Identification time per image (Unit: ms) 64.7 67.8 20.2
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thermore, learning rate had a small impact on the
ascending rate of accuracy, whereas batch size had a
small impact on the convergence rate. The values of
learning rate and batch size should be determined
correctly, or else loss increased. Hence, the appro-
priate parameter combination was provided for the
optimal model. In this study, the optimal parameters
were a learning rate of 1 9 10�4 and batch size of 4.
The superiority of the proposed methods was further
proven based on various metrics, including accuracy,
precision, recall, F1-score, and mAP. Compared with
YOLOv5s, DGS had a stronger identification abil-
ity; however, the former had a faster identification
speed. Moreover, the improved SSD and DGS were
effective and feasible, and could provide new in-
sights into and support for in situ lithology identifi-
cation in the field.
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