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This paper describes mineral prospectivity research conducted in Finland to predict favor-
able areas for cobalt exploration using the ‘‘fuzzy logic overlay’’ method in a GIS platform
and public geodata of the Geological Survey of Finland. Cobalt occurs infrequently as a core
product in mineral deposits. Therefore, we decided to construct separate conceptual mineral
prospectivity models within the Northern Fennoscandian Shield, Finland, for four deposit
types: (1) ‘‘Orthomagmatic Ni–Cu–Co sulfide deposits,’’ (2) ‘‘Outokumpu-type mantle peri-

dotite-associated volcanogenic massive sulfide (VMS)-style Cu–Co–Zn–Ni–Ag–Au deposits,’’
(3) ‘‘Talvivaara black shale-hosted Ni–Zn–Cu–Co-type deposits’’ and (4) ‘‘Kuusamo-type
(orogenic gold with atypical metal association) Au–Co–Cu–U–LREE deposits’’. In addition,
we created a model combining till geochemical data with data derived from bedrock drilling
and mineral indications, including boulders and outcrops. The mineral prospectivity models
were statistically tested with the ‘‘receiver operating characteristics’’ method using explo-
ration drilling data from known mineral deposits as validation sites. In addition, the pre-
dictive performance of the models was evaluated by using success rate curves, where the
number of previously identified deposits was compared with the area coverage of the pre-
dicted highly favorable areas. These results indicate that the knowledge-driven mineral
prospectivity method using parameters derived from mineral systems models is effective in
defining favorable exploration target areas at the regional scale. This study’s innovation lies
in its comprehension of the process of evaluating mineral prospectivity when the commodity
of interest is not the primary commodity within the mineral system.
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INTRODUCTION

The vocabulary of mineral prospectivity map-
ping (MPM) varies in the scientific literature, and it
has also been referred to as ‘‘mineral prospectivity
analysis,’’ ‘‘spatial predictive modeling,’’ ‘‘mineral
potential modeling’’ and ‘‘exploration targeting’’
(e.g., Bonham-Carter, 1994; Pan & Harris, 2000;

Carranza, 2008; Porwal & Kreuzer, 2010; Yousefi &
Nykänen, 2017; Hronsky & Kreuzer, 2019; Yousefi
et al., 2019). Whatever the method is called, its aim
is to delineate or highlight areas favorable for min-
eral exploration using a geographic information
system (GIS). By incorporating the ‘‘mineral systems
method’’ (Knox-Robinson & Wyborn, 1997;
McCuaig et al., 2010; Joly et al., 2015; Hagemann
et al., 2016) into the modeling, we can include crit-
ical parameters related to the formation of mineral
deposits in the targeting model by creating map-
pable proxies for these parameters derived from
various exploration-related spatially referenced da-
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tasets. Finally, this information can be integrated
into one map emphasizing the most prospective re-
gions for the commodity of importance (Fig. 1). A
classical mineral systems model would include: (1)
sources for metallic elements or fluids and heat
sources; (2) transportation channels or conduits for
metalliferous fluids; (3) physical, chemical,
mechanical or other types of traps for fluids; (4)
deposition of the ore; and (5) the preservation
component (McCuaig et al., 2010). In this work, we
used a mixture of the derivatives from a classical
mineral systems modeling project and a hands-on
mineral exploration project. Hronsky and Groves
(2008) divided the approaches to target identifica-
tion into two end-member classes: the hierarchical
and Venn diagram systems. We used the Venn dia-
gram approach, in which we recognized zones where
several critical constraining factors in the targeting
model interconnect. This approach has been applied,
for example, by Nykänen et al. (2017) and in most
studies using a GIS platform for MPM.

The motivation for conducting mineral
prospectivity mapping for cobalt within the whole
area of Finland arises from the increasing need for
battery metals in the European Union (Horn et al.,
2021). Finland refines around 10% of the global re-
fined cobalt output (IEA, 2021) and is the only
country within the EU that produces cobalt from
domestic mines. According to Horn et al. (2021), the
largest cobalt resource in Europe is situated in the
Sotkamo (Talvivaara) polymetallic nickel–copper–
zinc–cobalt sulfide deposit in Finland. With this
study, we aimed to indicate areas where new cobalt-
bearing ore deposits have the potential to be found.
Exploration activity for cobalt is increasing, and the
Fennoscandian Shield has been considered as high-
priority terrain for different deposit types also hav-
ing significant quantities of cobalt (Horn et al.,
2021).

As cobalt is rarely the main commodity in an
ore deposit, there is no single mineral systems model
that could be used to define the critical parameters
needed to build the targeting elements for mappable
criteria that are used for mineral prospectivity
mapping (MPM). It has been estimated that up to
90% of cobalt is manufactured as a by-product of
other metals such as nickel and copper, and although
some mines produce cobalt as a primary product, the
volumes are smaller than for those mines that pro-
duce it as a by-product (IEA, 2021). Therefore, we
decided to construct four separate mineral systems-
based mineral prospectivity maps favorable for dif-

ferent cobalt-bearing mineral deposit types and then
finally to combine these into a single cobalt
prospectivity map of Finland. We consider this a
novel and unique approach that has not previously
been used. A traditional mineral systems-based
MPM exercise (McCuaig et al., 2010; Hagemann
et al., 2016) would concentrate on a single mineral
systems model rather than a multiple model comb-
ing several different deposit types. For comparison
with the mineral systems-based approach, we also
constructed a ‘‘Co-indications-based’’ model, which
was constructed on exploration drilling and field
observations. This is discussed separately below and
compared with the combined mineral systems-based
mineral prospectivity map. The mineral systems-
based models were validated by using the locations
of deposits with cobalt resources indicated in the
mineral deposit database (Geological Survey of
Finland, 2022a). The combined model was validated
using exploration drilling sites with assayed samples
containing over 500 ppm cobalt. The anomaly model
was also validated using assayed samples containing
over 500 ppm cobalt, but these were a randomly
selected subset from the full dataset, as the same
data were also used to build the model.

MINERAL PROSPECTIVITY MAPPING
METHOD

State-of-the-art Methods for Mineral Prospectivity
Mapping

Mineral prospectivity mapping plays a crucial
role in the identification and evaluation of areas with
potential mineral resources. Over the years,
advancements in technology and data availability
have revolutionized the field, leading to the devel-
opment of state-of-the-art methods for mineral
prospectivity mapping.

One key aspect of modern mineral prospectivity
mapping is the integration of diverse datasets,
including geological, geochemical, geophysical and
remote sensing data (Carranza, 2008). Advanced
data integration techniques, such as geographic
information system (GIS), enable the combination
and analysis of heterogeneous data sources (Bon-
ham-Carter, 1994). These methods facilitate the
identification of mineralization indicators and the
generation of comprehensive prospectivity models.

The application of machine learning (ML) and
artificial intelligence (AI) techniques has signifi-
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cantly enhanced mineral prospectivity mapping
(Rodriguez-Galiano et al., 2015). ML algorithms,
such as random forests (Carranza & Laborte, 2015;
Harris & Grunsky, 2015; Carranza & Laborte, 2016),
support vector machines (Zuo & Carranza, 2011)
and neural networks (Porwal et al., 2003b; Nykänen,
2008), can effectively analyze large datasets and
identify complex patterns. These methods enable
the extraction of valuable information from geo-
logical and geospatial data, leading to accurate
mineral potential predictions and the identification
of previously unknown mineralization targets.

Geospatial analysis and spatial statistics tech-
niques are powerful tools for mineral prospectivity
mapping. These methods incorporate spatial rela-
tionships and statistical analyses to identify favor-
able mineralization environments. Approaches like
weights of evidence (Bonham-Carter et al., 1989)
and logistic regression (Carranza & Hale, 2001a;
Nykänen et al., 2008b) have demonstrated their
effectiveness in delineating areas with high mineral
potential and assisting in decision-making processes
related to exploration targeting.

Recent advancements in geophysical and re-
mote sensing technologies have provided valuable
data for mineral prospectivity mapping. Remote
sensing techniques, including hyperspectral imaging

and multispectral analysis, can detect mineral sig-
natures, alteration zones and surface expressions of
mineral deposits (Wang et al., 2017). Additionally,
geophysical methods like airborne and ground-
based surveys offer insights into subsurface struc-
tures and aid in the identification of potential min-
eral resources (Airo, 2007).

Three-dimensional (3D) geological modeling
and visualization techniques have become indis-
pensable tools for mineral prospectivity mapping.
These methods integrate geological, geophysical and
geochemical data into a unified 3D framework, en-
abling detailed visualization and interpretation of
the subsurface. By providing a realistic representa-
tion of the geological architecture, 3D models
facilitate the identification of prospective mineral-
ization zones and guide exploration efforts (Li et al.,
2015; Zhang et al., 2020).

The state-of-the-art methods for mineral
prospectivity mapping leverage advanced technolo-
gies, data integration, machine learning, geospatial
analysis, and visualization techniques. These ap-
proaches offer improved accuracy, efficiency, and
exploration targeting capabilities. However, chal-
lenges remain, such as the need for high-quality
data, addressing biases in training datasets and
improving the interpretability of AI-driven models.

Figure 1. Flowchart describing the components involved in mineral prospectivity mapping (MPM) (Pan & Harris, 2000; Harris &

Sanborn-Barrie, 2006; Nykänen et al., 2008a) and mineral systems modeling (MSM) (Knox-Robinson & Wyborn, 1997). MSM is used as

input to MPM by providing information on which data are useful for each mineral deposit type.
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Continued research and development in these areas
will further enhance the effectiveness of mineral
prospectivity mapping and contribute to sustainable
mineral resource exploration (Yousefi et al., 2021).

Selection of Mineral Prospectivity Mapping Method

Based on Bonham-Carter (1994), mineral
prospectivity mapping methodologies have two
dominant end members: empirical modeling meth-
ods (data-driven approach) and conceptual model-
ing methods (knowledge-driven approach). The first
category includes procedures that require known
mineral deposits that are used as prior knowledge to
train the models (e.g., Bonham-Carter et al., 1989;
Bonham-Carter, 1994; Pan & Harris, 2000; Carranza
& Hale, 2001a; Mihalasky & Bonham-Carter, 2001;
Carranza & Hale, 2002; Harris et al., 2003; Porwal
et al. 2003a, 2003b; Carranza et al., 2005; Carranza,
2008; Nykänen, 2008; Nykänen et al., 2008b; Car-
ranza, 2009; Porwal et al., 2010; Zuo & Carranza,
2011; Abedi & Norouzi, 2012; Harris & Grunsky,
2015; Carranza & Laborte, 2016; Zuo & Wang,
2020). Empirical models are especially suitable for
areas with large amounts of data, such as brownfield
exploration terrains, that have many previously
recognized mineral occurrences or deposits to be
used for training the models and gaining information
about the mineral systems (Yousefi et al., 2021). The
second category includes methods that are based on
expert subjective judgment on the importance of
each evidence data layer describing the critical
parameters of the mineral system in question (e.g.,
Bonham-Carter, 1994; Carranza & Hale, 2001b;
Porwal et al., 2003c; Carranza, 2008; Nykänen et al.,
2008a; González-Álvarez et al., 2010; Lusty et al.,
2012; Lisitsin et al., 2013; Lindsay et al., 2016; Ny-
känen et al., 2017; Elyasi et al., 2019). It has also
been noticed that hybrid models are more com-
monly used than purely empirical or purely con-
ceptual models (Porwal et al., 2004, 2006; Hronsky
& Groves, 2008; Nykänen et al., 2008b).

As previously noted by Nykänen et al. (2008a),
the fuzzy logic overlay method is a useful method to
translate and simulate expert knowledge for
numerical assessment in a GIS platform using a step-
by-step practice, as we describe later in Figures 8, 9,
10, 11, 12 and 13 and Tables 2, 3, 4 and 5. Therefore,
this technique was selected for the present study.

Mineral Prospectivity Mapping Workflow

Figure 1 describes the main steps of the mineral
prospectivity mapping workflow used in this study
and by the Geological Survey of Finland in general.
It is roughly based on Pan and Harris (2000), Harris
and Sanborn-Barrie (2006), Nykänen et al. (2008a)
and Knox-Robinson and Wyborn (1997). In this
study, we applied fuzzy logic overlay tools in the
ArcGIS platform for data integration and in-house-
built Python code (Nykänen et al., 2017) for ROC
validation. The mineral prospectivity mapping
workflow includes the following steps:

1. Development of a mineral systems model for the
deposit type in question, and definition of the
theoretical criteria for ore formation and related
geological processes;

2. Selection of primary data based on the theoret-
ical background and definition of the critical
parameters of the mineral systems model;

3. Creation of proxies for the mappable critical
parameters, i.e., preprocessing of the primary
data into meaningful map patterns. This phase
includes rescaling of the data to a common scale
from 0 to 1 in fuzzy logic modeling and the
application of fuzzy membership functions;

4. Data integration using appropriate methods. In
the current study, we chose to use a combination
of fuzzy operators (Table 1); and

5. Model validation using known deposits not di-
rectly applied in the analysis. In the current
study, we used ROC validation and success rate
curves.

Fuzzy Logic Overlay

The fuzzy logic overlay method is an adapt-
able mineral prospectivity mapping method that
simulates the decision-making procedure of an
exploration team. Consequently, the method is
appropriate for testing wide-scale mineral systems
model-based prospectivity models, as in the present
study. A similar approach has recently also been
used, for example, for the IOCG deposit type by
Skirrow et al. (2019). The fuzzy logic overlay
method that we applied was derived from fuzzy-set
theory (Zadeh, 1965), and the method used in this
study has previously been described by Nykänen
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et al. (2015, 2017). The parameters used in this study
are listed in Tables 1, 2, 3 and 4.

The fuzzy operators used to combine various
data layers to form the final mineral prospectivity
map were ‘‘fuzzy AND,’’ ‘‘fuzzy OR’’ and ‘‘fuzzy
gamma’’ (Table 1). The first of these is a minimum
operator that yields the minimum cell value of each
evidence layer at each location. The second is a
maximum operator that yields the maximum cell
value, respectively. ‘‘Fuzzy gamma’’ is a combined
operator of ‘‘fuzzy algebraic sum’’ and ‘‘fuzzy
algebraic product.’’ These ‘‘fuzzy operators’’ have
previously been well explained by An et al. (1991),
Bonham-Carter (1994) and Carranza and Hale
(2001b).

To conduct these GIS operations, we used the
ArcGISTM (Esri Inc.) platform with the Spatial
AnalystTM extension and the SDM5 toolbox (Geo-
logical Survey of Finland, 2022b).

ROC Validation

The ‘‘receiver operating characteristics’’ (ROC)
technique (Obuchowski, 2003; Fawcett, 2006; Ny-
känen et al., 2017) was used to statistically validate
the final prospectivity models and intermediate
modeling results.

A binary classifier determines whether the va-
lue evaluated by some test belongs to a positive or
negative group based on a threshold value. Binary
classifiers do not always work perfectly, because the
distributions of test values sampled by the positive
and negative groups overlap for real-life problems.
Therefore, some cases will be classified correctly and
others will be classified incorrectly. The names of
these classes are the following:

1. True negative (TN) (the classifier indicates a
negative group, and the real group is negative);

2. False negative (FN) (the classifier indicates a
negative group, but the real group is positive);

3. False positive (FP) (the classifier indicates a
positive group, but the real group is negative);
and

4. True positive (TP) (the classifier indicates a
positive group, and the real group is positive).

The ROC validation method used in this study is
described by Nykänen et al. (2015, 2017). This
method is a graphic validation technique for assessing
the performance of binary classifiers. An ROC curve
graph displays in a graphical plot the ‘‘true positive
rate’’ (‘‘sensitivity’’) on the vertical axis and ‘‘false
positive rate’’ (‘‘1-specificity’’) on the horizontal axis.
A critical metric that we use in ROC validation is the
area under an ROC curve (AUC), which we use to
assess the accuracy of a problem-solving experiment.
The AUC rate evaluates the predictive performance
of a spatial prognostic model, and it ranges from 0 to
1. A perfectly correct validation result would give an
AUC rate of 1, with a ‘‘sensitivity’’ rate of 1 and a ‘‘1-
specificity’’ rate of 0. When the predictive model is
totally random, the AUC rate would be 0.5 and the
curve in the ROC graph would follow the chance
diagonal. We used an open-source code for ROC
validation (Geological Survey of Finland, 2022b).

To test the results using the ROC method, it is
required to have two sets of test data covering the region
under exploration containing both true negative and
true positive sets. The choice of true negative sets is
difficult for spatial prospectivity models of this type,
except if confirmed sites are available where it can be
guaranteed that no target, i.e., mineral occurrence or
deposit, is located within the area. We tested two dis-

Table 1. Fuzzy operators (An et al., 1991; Bonham-Carter, (1994; Carranza & Hale 2001b)

Operator Equationa Description

Fuzzy AND lcombination ¼ Min lA; lB;lC _sð Þ Min. operator, equivalent to Boolean AND (logical intersection)

Fuzzy OR lcombination ¼ Max lA;lB;lC _sð Þ Max. operator, equivalent to Boolean OR (logical union)

Fuzzy algebraic

product

lcombination ¼
Qn

i¼1li The output results are always smaller than or equal to the smallest

contributing fuzzy membership value

Fuzzy algebraic

sum

lcombination ¼
Qn

i¼1 1 � lið Þ The output results are always larger than or equal to the largest con-

tributing fuzzy membership value.

Fuzzy Gamma

ðcÞ
lcombination ¼Qn

i¼1li

� �1�y
1 �

Qn
i¼1 1 � lið Þ

� �c
This is a combination of the fuzzy algebraic product and the fuzzy

algebraic sum.

a lA defines a grade of membership for a map A at a given location, lB is the fuzzy membership value for map B, and so on, and li defines

the fuzzy membership values for the ith (i = 1, 2, …, n) maps to be combined.
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similar ‘‘negative’’ sets: (1) arbitrary positions as true
negative sets, as, for example, in Nykänen et al. (2017)
and (2) selected industrial mineral deposits plus lithium
pegmatites taken from the mineral deposit database
(Geological Survey of Finland, 2016). Another possi-
bility would be to use drilling data with barren drillholes
that have not intersected relevant mineralization as
negative training sites, but we envision that these would
also introduce a bias due to selection of the target area
for drilling in many cases. Therefore, we consider the
usage of other, non-sulfidic deposit types as a robust
method for selecting true negative sites for validation.
True positive sets were characterized by previously
identified Co-bearing mineral occurrences and drilling
sites. Graphs and AUC values derived from both op-
tions for true negative sets are presented in Figures 8, 9,
10, 11, 12 and 13 for comparison.

Success Rate Curves

Success rate curves showing the efficiency of
prediction were defined by comparing the modeling
results (i.e., the mineral prospectivity map) and the
known mineral deposits or drilling sites exceeding a

certain assay threshold. We followed the methods
previously used, for example, by Chung and Fabbri
(2003), Harris et al. (2001) and Harris et al. (2015).
We plotted the cumulative percentage area ordered
from high to low prospectivity values on the x-axis
and the cumulative number of Au sites captured in
this area on the y-axis. In our case, the validation sites
were known mineral deposits (Geological Survey of
Finland, 2016) for the four different deposit models
and drilling sites with assayed samples containing
over 500 ppm Co for the combined model. From the
1266 qualified drilling sites, we selected drilling sites
more than 1 km apart from each other, ending up with
221 validation points within the study area. From
these graphs, one can observe how large a predictive
area is needed to capture the Co-bearing drilling sites.
The smaller the area containing more drilling sites,
the more efficient the model is. Another way to verify
model efficiency is to derive the area under this suc-
cess rate curve. This value relates to model efficiency
in correctly classifying training points, with higher
AUC values indicating better performance. The
success rate curves for this study are plotted together
with the ROC curves in Figures 8, 9, 10, 11, 12 and 13,
showing the prospectivity models.

Table 2. Summary of the proxies to the critical parameters of the mineral system.

Mineral system component Theoretical criteria Mappable criteria Dataset Model

Direct detection Dispersal Sulfidic rocks Till geochemistry All

Direct detection Conductors Apparent resistivity Airborne EM All

Pathways Crustal architecture Proximity to gravity worms Gravity All

Pathways Deep architecture Proximity to major boundaries Bedrock map Magmatic

Pathways Crustal architecture Proximity to thrusts Bedrock map Ophiolite

Sources Mantle sources Mafic to ultramafic rocks Till geochemistry Magmatic

Sources Mantle sources Proximity to mafic-ultramafic

intrusions

Bedrock map Magmatic

Sources Mantle sources Proximity to komatiites Bedrock map Magmatic

Sources Mantle sources Proximity to layered intrusions Bedrock map Magmatic

Sources Mantle sources Proximity to volcanic rocks and

serpentinites

Bedrock map Ophiolite

Traps Favorable host rock Magnetic field total intensity Airborne magnetics All

Traps Radiometric anomaly Uranium radiation anomaly Airborne Gamma

radiation

Black shale,

Kuusamo

Traps Favorable host rock Proximity to black shales Bedrock map Black shale

Traps Favorable host rock Permissive tracts (favorable lithology) Bedrock map Kuusamo

Traps Favorable host rock Proximity to albite rocks Bedrock map Kuusamo

Model names: magmatic = orthomagmatic deposits, ophiolites = ophiolite-related deposits, black shale = black shale-related deposits,

Kuusamo = Kuusamo-type deposits
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Table 3. Orthomagmatic fuzzy model

Layer no. Input layer name Fuzzy membership function/operator parameters ROC AUC

1 Till Ti Large, MP = 1298, S = 2

2 Till Cr Large, MP = 28, S = 1

3 Till Mg Large, MP = 4933, S = 2

4 Till Ni Large, MP = 20, S = 1

5 Till Co Large, MP = 9, S = 2

6 Till Cu Large, MP = 26, S = 2

7 Magnetics Large, MP = 7000, S = 8

8 Apparent resistivity Small, MP = 1752, S = 5

9 Proximity to gravity worms Small, MP = 3000, S = 1

10 Proximity to mafic-ultramafic intrusions Small, MP = 10000, S = 1

11 Proximity to komatiites Small, MP = 10000, S = 1

12 Proximity to layered intrusions (2400 Ma) Small, MP = 10000, S = 1

13 Proximity to gravity worms over 10 km depth Small, MP = 20000, S = 5

14 Proximity to major boundaries Small, MP = 50000, S = 1

Intermediate fuzzy overlays

15 Till Rocks Gamma Gamma = 0.55 (layers 1, 2 and 3) 0.598

16 Till Sulf Gamma Gamma = 0.55 (layers 4, 5 and 6) 0.645

17 Geochem AND AND (layers 15 and 16) 0.632

18 Geophysics Gamma Gamma = 0.6 (layers 7, 8 and 9) 0.6

19 Geol OR OR (layers 10, 11 and 12) 0.91

20 Gamma major boundaries/worms Gamma = 0.65 (layers 13 and 14) 0.626

21 Geol AND AND (layers 19 and 20) 0.797

Final prospectivity map

22 Orthomagmatic Co Gamma Gamma = 0.75 (17, 18 and 21) 0.773

Number of validation sites = 210

MP midpoint, S spread

Table 4. Ophiolite-related fuzzy model

Layer no. Input layer name Fuzzy membership function/operator parameters ROC AUC

1 Till Ti Large, MP = 1298, S = 2

2 Till Cr Large, MP = 28, S = 1

3 Till Mg Large, MP = 4933, S = 2

4 Till Ni Large, MP = 20, S = 1

5 Till Co Large, MP = 9, S = 2

6 Till Cu Large, MP = 26, S = 2

7 Till Zn Large, MP = 32, S = 2

8 Magnetics Large, MP = 7000, S = 8

9 Apparent resistivity Small, MP = 737, S = 2

10 Proximity to gravity worms Small, MP = 3000, S = 1

11 Proximity to thrusts Small, MP = 10000, S = 1

12 Proximity to volcanic rocks and serpentinites Small, MP = 10000, S = 1

Intermediate fuzzy overlays

16 Till Rocks Gamma Gamma = 0.75 (layers 1, 2 and 3) 0.741

17 Till Sulf Gamma Gamma = 0.75 (layers 4, 5, 6 and 7) 0.861

18 Geochem AND AND (layers 16 and 17) 0.831

19 Geophysics Gamma Gamma = 0.6 (layers 8, 9 and 10) 0.832

20 AND ophiolites AND (11 and 12) 0.971

Final prospectivity map

23 OKU type Gamma Gamma = 0.5 (18, 19 and 20) 0.99

Number of validation sites = 10.

MP midpoint, S spread
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STUDY AREA

Fennoscandian Shield

This study was conducted within the north-
westernmost part of the East European Craton, and
more specifically within the northern Fennoscandian
Shield (Fig. 2). The Archaean basement within this
area is split into three cratonic centers: the Nor-
rbotten, Karelian and Kola cratons. These cratonic
areas were possibly created separately from each
other, were fragmented into pieces from 2.51 to
2.4 Ga, and finally merged together roughly 1.9 Ga
ago (Lahtinen et al., 2014). Between 1.9 and 1.8 Ga,
several juvenile volcanic arcs and microcontinents
were accreted predominantly on the southwest
boundary of the Archaean craton. This finally
formed the present-day Fennoscandian Shield by
carbonization by 1.77 Ga (Lahtinen et al., 2014).
Neoproterozoic and Phanerozoic cover sequences
overlie and unconformably bound the Fennoscan-
dian Shield to the east and south. The Early Paleo-
zoic Caledonian orogen bounds the Fennoscandian
Shield to the north and west.

Co-Enriched Mineral Systems in Finland

Based on work by Mudd et al. (2013), three
deposit categories cover the majority (roughly 85%)
of world-wide cobalt resources, and these mineral
deposit types include magmatic Ni–Cu–Co (+-
PGE), Ni–Co laterite deposits and stratiform sedi-
ment-hosted deposits. It is quite often possible that
there are local variations in terms of the deposit
types that are dominant, and in Finland, for exam-
ple, four main cobalt-bearing deposit types are rec-
ognized (Horn et al., 2021): (1) orthomagmatic
sulfide deposits, (2) ophiolite-related VMS deposits
(Outokumpu type), (3) black shale-related deposits
(Talvivaara type) and (4) supracrustal rock-hosted
deposits (Kuusamo type). All of these are drilling
indicated, and we used the mineral deposit database
(Geological Survey of Finland, 2016) for model
validation and model performance assessment.
Various deposit types are described in detail below.

Orthomagmatic Sulfide Ore Deposits

According to Horn et al. (2021), magmatic sul-
fide ore deposits are globally the most important

source of nickel and copper, with cobalt being a by-
product of these types of ore deposits. Deposits in this
category are associated with upper mantle-derived
mafic to ultramafic rocks (Eckstrand & Hulbert, 2007;
Naldrett, 2011). The formation of sulfide ore bodies is
possible when nickel, copper and cobalt are separated
in an immiscible sulfide melt, when the magma turns
out to be saturated with sulfur, normally because of
contact with crustal rocks (e.g., Naldrett, 2011). Un-
der perfect physical conditions, these may form an
economic deposit. Pyrrhotite, pentlandite and chal-
copyrite are the dominant ore minerals in these ore
deposits, but pentlandite mainly hosts cobalt in these
ores (Schulz et al., 2014; Barnes et al., 2018).
According to Naldrett (2004), the globally most sig-
nificant deposits are in the Norilsk-Talnakh area of
Russia, in Voisey�s Bay in Labrador, Canada, and in
the Sudbury area of Ontario, Canada. Norilsk-Tal-
nakh deposits occur in chonolith- to sill-type intru-
sions produced by rifting-related magmatism forming
the Siberian traps, as described by Eckstrand and
Hulbert (2007), while deposits of the Voisey�s Bay
type are accommodated in high-Al basaltic rock types
based on Scoates and Mitchell (2000). According to
Eckstrand and Hulbert (2007), the Sudbury area can
be considered as exceptional, as within this region,
magmatic sulfide deposits are associated with magma
that resulted from a huge meteorite impact, and it is
not therefore easily comparable with other areas.
There are also examples of cobalt-bearing nickel ores
that are associated with komatiitic lava flows and sills,
such as Kambalda in Australia and Raglan in Canada
(Eckstrand and Hulbert, 2007; Naldrett, 2011).
Within our study area, there are 210 deposits in this
orthomagmatic category (Figs. 3 and 8) when com-
bining three different deposit types, so this is the most
widespread and dominant deposit type in this study.
These deposits were combined from the following
deposit types: (1) deposits related to Svecofennian
(1.9–1.75 Ga age) and other (Archaean to Paleopro-
terozoic) mafic to ultramafic intrusions (Weihed et al.,
2005; Makkonen, 2015), (2) deposits related to mafic–
ultramafic layered intrusions of 2.44 Ga age (Lahti-
nen et al., 2011) and (3) deposits related to komatiitic
rocks of 3.5–2.06 Ga age (Konnunaho et al., 2015;
Makkonen et al., 2017).

Ophiolite-Related Deposits (Outokumpu Type)

Outokumpu-type mineral deposits are currently
limited to the region of Outokumpu in the North
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Karelian Schist Belt in eastern Finland and repre-
sent volcanogenic massive sulfide deposit (VMS)
type. We classified the 10 deposits (Figs. 3 and 9)
occurring in this area as ‘‘ophiolite-related deposits’’
(Peltonen et al., 2008). They occur as ruler-shaped
forms or lenses of massive to semi-massive sulfides,
of which the Outokumpu deposit was the most sig-
nificant, with 28 Mt containing 3.8% Cu, 1.1% Zn,
0.24% Co and 0.12% Ni (Parkkinen, 1997). Cobalt
and nickel enriched VMS deposits are relatively
rare, the closest analogue being southern Urals VMS
deposits, some of which also contain both Co and Ni
e.g., Ishkinino and Ivanovka (Nimis et al., 2008).

Peltonen et al. (2008) proposed a two-phase
formation model for the polymetallic Cu–Co–Zn–
Ni–Ag–Au deposits of the Outokumpu ore district:
the original ore type of VMS Cu–Zn was formed by
hydrothermal sulfide accumulation on the ultra-
mafic-dominant ocean floor during a late rifting
event (1.95 Ga) (Peltonen et al., 2008). During later
events, the ultramafic seafloor together with the
sulfide-bearing ore bodies were obducted along the
edges of the Karelian Craton, forming the Out-
okumpu Allochthon (Peltonen et al., 2008). At the
same time, the Cu–Co–Zn–Ni–Ag–Au deposits were
formed through syntectonic mixing of the Cu proto-
ore and disseminated Ni(–Co) sulfides in quartz–

carbonate rocks (highly altered mantle peridotites)
by fluid-assisted mobilization of the proto-ore into
the quartz–carbonate rocks. Alternatively, the unu-
sual Co and Ni enrichment could be a primary fea-
ture of the hydrothermal system, related to fluid
temperature and chemistry and the ultramafic nat-
ure of the paleo sea floor. In these deposit types,
cobalt is mainly hosted by pyrite and cobalt pent-
landite, and in more arsenic-rich parts, but less fre-
quently, the host can be cobaltite (e.g., Peltola, 1978;
Reino, 1980; Huhtelin and Sotka, 1994; Peltonen
et al., 2008)

Black Shale-Related Deposits (Talvivaara Type)

In eastern Finland, there are 25 black shale-
hosted deposits and occurrences associated with the
Paleoproterozoic Kainuu Schist Belt, which is lo-
cated adjacent to the Archaean-Proterozoic border
(Figs. 3 and 10). These occurrences incorporate the
Sotkamo deposit (1458 Mt with 0.25% Ni, 0.52%
Zn, 0.14% Cu and 0.019% Co), currently producing
nickel, copper, zinc and cobalt and also being the
main cobalt source in Europe, with a known re-
source of � 300,000 tons of contained cobalt (Ter-
rafame, 2021). Organic-rich mud and sand were

Figure 2. Location of the study area. Drilling targets represent exploration drilling with Co> 500 ppm. The generalized geological map is

modified from Koistinen et al. (2001). Major tectonic boundaries, including the approximate craton boundary and micro-continent

boundaries, from Lahtinen et al. (2014) and Lahtinen and Huhma (2019).

2395Cobalt Prospectivity Using a Conceptual Fuzzy Logic Overlay Method



deposited in a stratified, anoxic-euxinic marine basin
between 2.1 and 1.9 Ga, forming carbon- and sulfur-
rich black shales, which host the deposits (Loukola-
Ruskeeniemi and Lahtinen, 2013; Kontinen and
Hanski, 2015). The current thick succession (up to
300 m) of highly metalliferous black shales is
thought to be a combination of resedimentation
processes such as turbidity currents and tectonic
repetition due to the Svecofennian orogeny (ca.
1.91–1.78 Ga), which also resulted in variable sulfide
mobilization and grain coarsening (Loukola-Rus-
keeniemi & Lahtinen, 2013; Kontinen & Hanski,
2015).

Supracrustal Rock-Hosted Deposits (Kuusamo
Type)

There are several cobalt-bearing epigenetic
deposits in volcano-sedimentary belts of northern
Finland (Central Lapland Greenstone Belt, the
Peräpohja Belt and the Kuusamo Belt), where these
deposits are related to supracrustal sequences
dominated by mafic to ultramafic volcanic rocks,
quartzites, meta-arkoses and mica schists, which
were deformed during the Svecofennian orogeny.
Cobalt is related to gold and copper in these de-
posits, occurring as discrete cobalt minerals (co-
baltite, Co-pentlandite, and also as linnaeite at

Figure 3. Generalized geological map of the study area at scale 1:1,000,000 (Bedrock of Finland - DigiKP, 2018). Drilling targets with

Co> 500 ppm were used as validation sites for the combined prospectivity model. Major tectonic boundaries, including the approximate

craton boundary and micro-continent boundaries, from Lahtinen et al. (2014) and Lahtinen and Huhma (2019), are the same as in Fig. 1.

Thrusts and black shales are from Bedrock of Finland—DigiKP (2018).
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Rajapalot), as well as minor constituents in pyrite
and pyrrhotite (Vanhanen, 2001; Eilu, 2015; Molnár
et al., 2017a; Pohjolainen et al., 2017; Köykkä et al.,
2019; Raic et al., 2022). The deposits display features
typical of orogenic Au deposits with an atypical
metal association (Groves et al., 1998; Groves et al.,
2018) and share similarities with Co-enriched gold
deposits in the Idaho Cobalt Belt (Slack et al., 2010).
The deposits occur within a particular stratigraphic
level within the Paleoproterozoic sequence (Van-
hanen, 2001; Molnár et al., 2016; Vasilopoulos et al.,
2021). The enrichment of Co and Cu in the deposits
is suggested to be related to elevated salinities in the
mineralizing fluids, the source for the chlorine being
evaporites within the ore-hosting sequence (Ranta
et al., 2020; Tapio et al., 2021; Vasilopoulos et al.,
2021). All these areas are under active exploration,
e.g., the Juomasuo and Sivakkaharju deposits in
Kuusamo (Latitude 66 Cobalt, 2019) and the Raja-
palot Au–Co development in the Peräpohja Belt
(Ranta et al., 2018). The number of known deposits
of this type in the mineral deposit database is 23
(Figs. 3 and 11).

PRIMARY DATA USED TO DEFINE
PROXIES FOR CRITICAL PARAMETERS
OF THE MINERAL SYSTEM MODELS

Geological Map

The bedrock map used in this study was derived
from the Bedrock of Finland 1:200,000 (Bedrock of
Finland - DigiKP, 2018), which can be described as a
unified bedrock map of Finland. It has been com-
piled over the years by generalizing the scale-free
bedrock map feature dataset to the scale 1:200,000.
The data have not been generalized within those
parts where the source data are at a poorer scale
than 1:200,000. Furthermore, this digital map dataset
is composed of lithological and stratigraphical geo-
logical polygon and linear layers, representing faults,
various other structural lines and dykes (Fig. 3). The
stratigraphic geological unit polygon map layer
consists of lithological coding, the geological time
period and hierarchical lithostratigraphic or litho-
demic classification as attributes. The line layers
have their own hierarchical classification. The faults
have been classified based on the size and type of the

faults. The dataset also has adequate metadata, fol-
lowing ISO 19115:2005 standard.

Geophysics

Finland has total coverage of a high-resolution
aerogeophysical survey data, including concurrent
magnetic, radiometric and electromagnetic surveys
(Airo, 2005). These surveys were typically flown at
40 m altitude and 200 m line spacing, and the flight
direction varied between flight areas depending on
the local geology. The usage of these surveys in the
mineral prospectivity mapping is described by Ny-
känen et al. (2017). We interpolated the airborne
geophysical line data with a 50 9 50 m grid cell size
using the minimum curvature interpolation tech-
nique and re-sampled to a 100 9 100 grid cell size so
that we had an equal cell size to all the other input
data.

A Bouguer anomaly map at 1:2M scale covering
the entire Fennoscandian Shield, compiled by
Korhonen et al. (2002), was used in this study, as it is
the only available gravity dataset covering the entire
study area. For the mineral prospectivity analysis,
we performed proximity analysis for the detected
gravity gradient maxima zones or worms, as fault-
related gradients can be relevant to mineral deposits
(Murphy, 2010). The resulting grids had a cell size of
100 9 100 m. The geophysical maps used in the
modeling are presented in Figure 4.

Geochemistry

A county-wide till geochemical sampling pro-
gram was organized in Finland from 1982 to 1994
(Salminen, 1995) and was used in this study, as de-
scribed in more detail, for example, by Nykänen
et al. (2017). For this study, we interpolated grids
using the inverse distance weighting (IDW) method
with a 100 9 100 m cell size. We used a variable
search radius and included 12 samples to perform
each interpolation. With this method, we were able
to control the number of samples used for interpo-
lation. The elements interpolated are discussed in
the results chapter below, where the models are also
described. The geochemical maps used in the mod-
eling are presented in Figures 5, 6 and 7.
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Figure 4. Geophysical data used for mineral prospectivity assessment in this study: (a) apparent resistivity, (b)

gravity gradient maxima (worms) calculated from the upward-continued regional Bouguer anomaly maps, (c)

airborne gamma radiation (uranium channel) and (d) airborne magnetic field total intensity.
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RESULTS OF COBALT PROSPECTIVITY
MAPPING

Orthomagmatic Deposits

The summary of the mineral system compo-
nents and the fuzzy overlay model describing the
orthomagmatic cobalt-bearing deposits are pre-
sented in Tables 2 and 3, respectively. From the

geochemical data, we first combined titanium,
chromium and magnesium using the ‘‘fuzzy gamma’’
operator to represent mafic to ultramafic lithological
rock units and then nickel, cobalt and copper using
the ‘‘fuzzy gamma’’ operator to represent sulfides.
Then, these were combined into an intermediate
geochemical layer using the ‘‘fuzzy AND’’ operator.
Following this, we combined airborne magnetic
anomalies and low resistivity zones with gravity

Figure 5. Inverse-distance interpolated till geochemistry grids: (a) Cu, (b) Co, (c) Fe, (d) Ni and (e) Zn.
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worms using the ‘‘fuzzy gamma’’ operator to create
the geophysical response. Finally, the geological
layers, namely mafic to ultramafic intrusions, layered
intrusions and komatiitic rocks, were integrated
using the ‘‘fuzzy OR’’ operator, major boundaries
and gravity worms were combined with the ‘‘fuzzy
gamma’’ operator, and these two intermediate layers
were then combined with the ‘‘fuzzy AND’’ opera-
tor to generate a geological response layer. As
mentioned earlier, we had 210 deposits within these
categories when we combined the three different
deposit types. These deposits were used for valida-
tion of the intermediate layers and the final
prospectivity map (Fig. 8), which was created
applying the ‘‘fuzzy gamma’’ operator. The AUC
values are moderate and the AUC value of the final
prospectivity map is 0.773 when using random neg-
ative sites and 0.726 when using true negative sites.
The efficiency curve illustrates that within 10% of
the area, the model captures 40% of the known
deposits. The area under the efficiency curve is 77%.

This model performs relatively well in classify-
ing the known orthomagmatic Ni–Cu occurrences
and also indicates new potential exploration areas,
especially within the central Lapland area and the
Ostrobothnia area within the Hitura region (Fig. 8).

In addition, southern Finland and the Outokumpu
region appear to have high prospectivity for this
deposit type.

Ophiolite-Related Deposits

The summary of the mineral system compo-
nents and the fuzzy overlay model describing ophi-
olite-related cobalt-bearing deposits are presented
in Tables 2 and 4, respectively. From the geochem-
ical data, we first combined titanium, chromium and
magnesium using the ‘‘fuzzy gamma’’ operator to
represent mafic to ultramafic lithological rock units,
and then nickel, cobalt and copper using the ‘‘fuzzy
gamma’’ operator to represent sulfides. These were
then combined into an intermediate geochemical
layer using the ‘‘fuzzy AND’’ operator. Airborne
magnetic anomalies and low resistivity zones were
combined with gravity worms using the ‘‘fuzzy
gamma’’ operator to create the intermediate geo-
physical response. To define the zones with potential
for ophiolites, we combined proximity to thrusts and
proximity to serpentinites and volcanic rocks with
the ‘‘fuzzy AND’’ operator. The final prospectivity
map (Fig. 9) was created by using the ‘‘fuzzy gam-

Figure 6. Inverse-distance interpolated till geochemistry grids: (a) Ti, (b) Cr and (c) Mg.
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ma’’ operator. We only had 10 known deposits
belonging to this category, so the relatively high
AUC values of 0.99 and 0.945 can be considered
very uncertain. The efficiency curve also has a high
AUC value (97%), and the model captures 100% of
the known deposits within 10% of the area.

The Outokumpu region, where the type de-
posits are located, is the most favorable area based
on the modeling results (Fig. 9), but the central
Lapland region also appears to have potential. All
other regions are only moderately favorable.

Figure 7. Inverse-distance interpolated till geochemistry grids: (a) Mn, (b) V and (c) Sc, (d) La and (e) Au.
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Figure 8. Orthomagmatic Co fuzzy overlay mineral prospectivity model.
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Figure 9. Outokumpu-type fuzzy overlay mineral prospectivity model.

2403Cobalt Prospectivity Using a Conceptual Fuzzy Logic Overlay Method



Black Shale-Related Deposits

The summary of the mineral system compo-
nents and the fuzzy overlay model describing cobalt-
bearing black shale-related deposits are presented in
Tables 2 and 5, respectively. From the geochemical
data, we first combined cobalt, nickel, zinc and
copper using the ‘‘fuzzy gamma’’ operator to rep-
resent sulfides. Then, we combined manganese, iron,
vanadium and scandium to represent oxides using
the ‘‘fuzzy gamma’’ operator. These two geochem-
ical layers were combined using the ‘‘fuzzy gamma’’
operator. Geophysical data were combined by inte-
grating uranium radiation, magnetics and apparent
resistivity using the ‘‘fuzzy gamma’’ operator. The
final prospectivity map (Fig. 10) was created by
applying the ‘‘fuzzy gamma’’ operator. ROC vali-
dation was performed by using 25 known deposits,
and the AUC value of 0.959 for the final prospec-
tivity map is relatively high. With true negative sites,
the AUC value is clearly lower, being 0.895. The
efficiency curve indicates that the model captures
90% of the known deposits within 10% of the area.
The AUC value of the efficiency curve for this
model is 95%. According to statistical validation,
this model performs well in classifying the known
black shale-related deposits in the Kainuu region,

but also indicates new potential areas in southern
Finland and in the central Lapland area.

Kuusamo-Type Deposits

The summary of the mineral system compo-
nents and the fuzzy overlay model describing Kuu-
samo-type cobalt-bearing deposits are presented in
Tables 2 and 6, respectively. From geochemistry, we
integrated gold, copper, cobalt and lanthanum,
applying the ‘‘fuzzy gamma’’ operator. Proximity to
gravity worms and permissive lithological units
(Rasilainen et al., 2020) were merged using the
‘‘fuzzy AND’’ operator. The final prospectivity map
(Fig. 11) was created by integrating all the inter-
mediate layers with the ‘‘fuzzy gamma’’ operator.
ROC validation was performed using 23 known
deposits, and the AUC value of the final prospec-
tivity map is 0.972 with random negative sites. When
using industrial mineral sites as true negative sites,
the AUC value is 0.945. Based on the efficiency
curve, the model captures 90% of the known de-
posits within 10% of the area. The AUC value of the
efficiency curve is also relatively high, being 97%.

This model performs well in classifying the
known deposits within the Kuusamo Belt and

Table 5. Black shale-related fuzzy model

Layer no. Input layer name Fuzzy membership function/operator parameters ROC AUC

1 Till Co Large, MP = 9, S = 2

2 Till Ni Large, MP = 20, S = 1

3 Till Zn Large, MP = 32, S = 2

4 Till Cu Large, MP = 26, S = 2

5 Till Mn Large, MP = 111, S = 2

6 Till Fe Large, MP = 18289, S = 2

7 Till V Large, MP = 42, S = 2

8 Till Sc Large, MP = 4, S = 2

9 Uranium radiation Large, MP = 7, S = 8

10 Magnetics Large, MP = 7000, S = 8

11 Apparent resistivity Small, MP = 1858, S = 2

12 Proximity to gravity worms Small, MP = 3000, S = 1

13 Proximity to black shales Small, MP = 2500, S = 1 0.989

Intermediate Fuzzy overlays

14 Till Sulf Gamma Gamma = 0.75 (layers 1, 2, 3 and 4) 0.734

15 Till Oxides Gamma Gamma = 0.75 (layers 4, 5, 6, 7 and 8) 0.559

16 Geochem GAMMA Gamma = 0.5 (layers 14 and 15) 0.665

17 Geophysics Gamma Gamma = 0.75 (layers 9, 10, 11 and 12) 0.842

Final prospectivity map

18 Black Shale-related Co Gamma = 0.45 (13, 16 and 17) 0.959

Number of validation sites = 25.

MP midpoint, S spread
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Figure 10. Black shale-related Co fuzzy overlay mineral prospectivity model.
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Peräpohja Belt and also predicts potential new areas
for this deposit type within the central Lapland area,
where some atypical orogenic gold occurrences with
enriched cobalt have only rarely been found (e.g.,
Holma & Keinänen, 2007; Vasilopoulos et al., 2021).
Other orogenic gold deposits with an atypical metal
association have also been recognized within the
central Lapland area (e.g., Molnár, 2019).

Combined Model

The combined model (Fig. 12) integrates all the
previous models into a total cobalt endowment map
for Finland, delineating all the favorable areas for
cobalt exploration. We used the ‘‘fuzzy OR’’ oper-
ator, which returns the maximum value of each input
layer. This model provides an overview of all the
separate models at the same time. For ROC vali-
dation, we used 221 drilling sites with assayed sam-
ples containing over 500 ppm cobalt as true positive
sites and two sets of true negative sites: random sites
and sites with industrial minerals. The AUC values
of the ROC validations are almost identical for
random and industrial mineral sites, being 0.786 and
0.763, respectively. The efficiency curve of the model
indicates that it captures almost 50% of the drilling
sites within 10% of the area. The AUC value of the
efficiency curve is 80%.

According to the statistical validation above,
this combined model performs well in classifying the

known exploration targets for cobalt and also pre-
dicts new exploration areas in all six identified target
areas, i.e., in central Lapland, the Peräpohja Belt,
the Kuusamo Belt, the Hitura region, the Out-
okumpu region and southern Finland. These are the
main target areas, but there are other areas with
high favorability.

Co-Indications-Based Model

We also created a model that was solely based
on till geochemical anomalies, exploration drilling
and field observations (cobalt-bearing boulders). We
first combined zinc, nickel, iron, cobalt, copper and
gold from a till geochemical survey, applying the
‘‘fuzzy gamma’’ operator. Then, we used the ‘‘fuzzy
gamma’’ operator to combine proximity to cobalt-
bearing boulders and proximity to drilling sites with
assayed samples containing over 500 ppm cobalt.
We formed a random subset of the drill core dataset
so that we had 80% of the data for the training and
20% left for validation. Finally, these two interme-
diate results were combined using the ‘‘fuzzy gam-
ma’’ operator into a prospectivity map (Fig. 13). The
AUC values of ROC validations using random and
drilling sites are 0.801 and 0.766, respectively. The
model captures almost 50% of the drilling sites
within 10% of the area.

This model also performs well in classifying the
validation sites and predicts targets especially in

Table 6. Kuusamo type fuzzy model.

Layer no. Input layer name Fuzzy membership function/operator parameters ROC AUC

1 Till Au Large, MP = 0.002, S = 2

2 Till Cu Large, MP = 26, S = 2

3 Till Co Large, MP = 9, S = 2

4 Till La Large, MP = 25, S = 2

5 Uranium radiation Median 4 km Large, MP = 2, S = 3

6 Apparent resistivity Small, MP = 1600, S = 5

7 Magnetic Large, MP = 6600, S = 5

8 Proximity to gravity worms Small, MP = 10000, S = 2

9 Proximity to favorable lithology (permissive tracts) Small, MP = 3000, S = 1

10 Proximity to albite rocks Small, MP = 10000, S = 2

Intermediate Fuzzy overlays

11 Sulf Gamma Gamma = 0.5 (2 and 3) 0.508

12 Geochem AND AND (layers 1, 4 and 11) 0.657

13 Geol AND AND (layers 8, 9 and 10) 0.982

14 Geoph Gamma Gamma = 0.75 (layers 5, 6 and 7) 0.517

Final prospectivity map

15 Kuusamo Gamma Gamma = 0.75 (12, 13 and 14) 0.973

Number of validation sites = 29

MP midpoint, S spread
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Figure 11. Kuusamo-type Co fuzzy overlay mineral prospectivity model.
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central Lapland, the Peräpohja Belt, the Hitura re-
gion, the Outokumpu region and southern Finland
(Fig. 13). Furthermore, this model indicates some
areas outside of these main target areas.

Comparison of Models

Comparison between the individual mineral
systems-based models (Figs. 8, 9, 10 and 11) is not
meaningful, but we briefly compared the combined

Figure 12. Combined Co fuzzy overlay mineral prospectivity model.
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Figure 13. Anomaly-based fuzzy overlay mineral prospectivity model.
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model (Fig. 12) with the anomaly model (Fig. 13).
The comparison was performed by calculating the
mean prospectivity value (i.e., the fuzzy membership
value of the final prospectivity map for both models)
within the exploration permit areas using the zonal
statistics function in ArcGIS. This function extracts
cell values from the value raster for all cells that fall
within each zone within the exploration permit
areas. We were then able to calculate statistics
within these areas. The results of these measure-
ments indicate that these models have an almost
identical correlation with the current exploration
activity. The mean prospectivity score is 0.52 for
both, and the range is roughly from 0.3 to 0.9. The
exploration permit areas thus also cover low
prospectivity areas, but as can be seen from the
frequency distribution graphs (Fig. 14A and B), the
combined model is slightly more focused on classes
above 0.5, whereas in the anomaly model, the
exploration permits cover a much wider range of
classes. The five black open circles in Figure 14
highlight the areas that have active exploration for
cobalt based on exploration permits. All these
exploration areas fall within the high favorability
areas in both the combined model and the anomaly
model. These areas are the Central Lapland Belt,
Peräpohja Belt, Kuusamo Belt, Hitura region and
Outokumpu region. When we compare these maps
with the individual mineral systems-based prospec-
tivity maps, we can see that within the Central
Lapland Belt, most of the mineral occurrences
containing significant amounts of cobalt are
orthomagmatic, but all the models indicate that this
area is highly favorable for cobalt exploration.

DISCUSSION

Prospectivity modeling for cobalt is challenging,
as this commodity tends to be a by-product and not
the main commodity of ‘‘specific’’ mineral deposits
(Mudd et al., 2013). However, as several deposit
types carry significant amounts of cobalt, we con-
sidered it feasible to conduct an analysis in which we
first constructed separate mineral systems-based
mineral prospectivity models and then finally com-
bined these models instead of trying to construct a
single model for cobalt prospectivity. In this way, we
were able to incorporate to a certain degree the
‘‘mineral systems approach’’ (Wyborn et al., 1994;
McCuaig et al., 2010) into prospectivity modeling
when we used proxies for critical parameters from

each of these different systems. The use and com-
bination of several mineral systems with a restricted
number of known mineral deposits available for
model training forced us to apply a knowledge-dri-
ven approach, and we selected the fuzzy logic
overlay, which is indeed a flexible way to conduct
this type of exercise. Previous attempts to model
cobalt prospectivity within Europe, including our
study area, have been conducted by Bertrand et al.
(2021) using the cell-based association (CBA)
method with 10 by 10 km cells covering the whole of
Europe, and the data source was the 1:1.5 million
scale geological map of Europe. The spatial resolu-
tion in the current study was significantly higher, as
we used high-resolution airborne geophysics and
several products derived from the 1:200,000 scale
geological map. As noted by Lindsay et al. (2016),
the use of the generalized mineral systems approach
also aims to reduce the level of subjectivity in
knowledge-driven mineral prospectivity modeling
by including mineral systems modeling in the
prospectivity modeling procedure. Lindsay et al.
(2022) constructed multiple separate conceptual
prospectivity models and concluded that although
the five models produced in their study yielded
implicitly diverse estimates for mineral potential,
after combining these prospectivity models into a
‘‘cumulative’’ estimate of favorability, a robust
prospectivity model for Fe ore mineralization was
created.

The central Lapland area was found to be
favorable for all the mineral deposit types modeled
in this study (Figs. 8, 9, 10, 11 and 12) and was also
favorable in the anomaly model (Fig. 13). Based on
the Finnish mining registry, it is also currently one of
the most active exploration areas. Within central
Lapland, there are known orthomagmatic deposits,
such as the Kevitsa mine (Santaguida et al., 2015)
and Sakatti deposit (Brownscombe et al., 2015).
There are no known Outokumpu-type deposits, but
the area appears to be favorable for this deposit
type, and there are indications of ophiolite se-
quences within the Central Lapland Greenstone
Belt (Hanski, 1997). Several known atypical oro-
genic gold deposits with an elevated Co content
have been found within the central Lapland area
(Holma and Keinänen, 2007; Vasilopoulos et al.,
2021), as well as other atypical orogenic gold de-
posits without enriched cobalt (Molnár et al., 2017b;
Molnár, 2019). Based on these and other observa-
tions (Eilu et al., 2007; Patten et al., 2022) on cobalt
enrichment within orogenic gold deposits in central
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Lapland, we consider this area to also be potential
for this deposit type.

The Peräpoja Belt is potential for the
orthomagmatic type (Fig. 8) and Kuusamo type of
deposits (Fig. 11), and it appears to also be potential
in the anomaly model (Fig. 13). So far, the most
advanced exploration project has been conducted by
Mawson Finland Oy on an atypical orogenic gold
deposit in the Rajapalot target area (Mawson Gold

Ltd., 2022). The Kuusamo Belt appears to be
potential solely for atypical orogenic gold deposits,
i.e., Kuusamo-type deposits carrying cobalt.

Further south, in the Hitura region, the most
common deposit type is orthomagmatic (Fig. 8), and
it is the only type that becomes favorable in the
models constructed in this study, in addition to the
anomaly model (Fig. 13). The closed Ni–Cu Hitura
mine produced 544 t of cobalt during its mining

Figure 14. Comparison of the combined model (A) and the anomaly model (B).
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history from the 1960s to 2013 (Törmänen and
Tuomela, 2021).

The Outokumpu region appears favorable for
orthomagmatic-type deposits (Fig. 8) and in the
Outokumpu-type model (Fig. 9) and the anomaly
model. Within this area, there are many closed Ni–
Cu–Co mines, and active exploration is ongoing.

The southern Finland area is favorable for all
other deposit types except the Kuusamo type
examined in this study. It is also the only area that is
not currently under active cobalt exploration
(Fig. 14).

We used ROC validation and success rate curve
diagrams to estimate the predictive performance of
the prospectivity models and their ability to capture
known deposits or cobalt occurrences within the
study area. This provides a realistic measure of the
quality of the modeling and the reliability of the
results. Validation of spatial models is an essential
task and often involves the selection of ‘‘true nega-
tive’’ sites that represent locations known to be
barren. In this study, we tested this by comparing the
results using random locations, as suggested by Ny-
känen et al. (2017), vs. when using another deposit
type as a ‘‘true negative’’ (Nykänen, 2008), which in
our case was a combination of industrial mineral
deposits and lithium pegmatites. It appeared that the
‘‘true negative’’ sets resulted in somewhat more
conservative AUC scores compared to the use of
random locations. The difference was not always
huge and some of the models yielded almost iden-
tical results. However, it is advisable to use ‘‘true
negative’’ sites whenever they are available, as ran-
dom negatives appear to return AUC values that are
slightly too optimistic. In cases where ‘‘true nega-
tive’’ sites are unavailable, one can still safely use the
random negatives, because the difference between
these two is only marginal, as can been seen in the
validation graphs in Figures 8, 9, 10, 11, 12 and 13.

SUMMARY AND CONCLUSIONS

This study combined four separate mineral
systems-based prospectivity models into a single
prospectivity model for cobalt within Finland. We
also constructed an anomaly-based prospectivity
model using till geochemical anomalies, field
observations of cobalt-bearing boulders and out-
crops, and assayed drill cores containing over 500
ppm cobalt.

The main conclusions of this study are:

1. The combination of various mineral systems
models for cobalt prospectivity mapping is a
valid approach;

2. A mineral systems-based model yields more fo-
cused targets compared to an anomaly-based
model; and

3. ROC validation using true negative sites (e.g.,
other mineral deposits) results in more conser-
vative AUC values than random negative sites.
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Á., O�Brien, H., Pakkanen, L., Johanson, B., & Wirth, R.
(2016). Association of gold with uraninite and pyrobitumen
in the metavolcanic rock hosted hydrothermal Au–U min-
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