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In this study, the elastic characteristics of reservoir rocks and their relationship to porosity
and pore fluid were predicted using the fluid substitution method in combination with ma-
chine learning techniques. We first discarded the data at gas points to remove the erroneous
effect of gas on the prediction process of Poisson�s ratio using the three proposed machine
learning models. Then, the prediction was carried out after substituting the gas zones by oil
and by water. As a result, the prediction was enhanced and showed stronger correlation
coefficient values. The integration of fluid substitution and machine learning methods was
applied in the reservoir of Scarab field as a case study from the Eastern Mediterranean to
detect the effect of different pore fluids (gas, oil, and water) on Poisson’s ratio estimation.
The main objective of the study was to analyze the seismic and well log data to estimate and
predict the Poisson�s ratio in four fluid-content cases; these are gas-bearing reservoir,
reservoir after removal of log data of gas-bearing zones, and reservoirs after gas-substitution
with oil and with water. These four cases were dealt with directly and by using the machine
learning algorithms based on the proposed model of random vector functional link (RVFL),
which was enhanced by the Cheetah optimizer (CO). This study shows how the performance
of RVFL is affected by the presence or absence of gas zones. It is shown that the Poisson�s
ratio value increases when gas is substituted with water more than when gas is substituted
with oil. For validation of these results, regression analysis technique was used and the
correlation coefficient of the CO–RVFL model increased after removing well log data of gas
zones and was more enhanced after fluid substitution from gas to oil or to water.

KEY WORDS: Random vector functional link (RVFL), Cheetah optimizer (CO), Fluid substitution,
Petrophysics, Poisson�s ratio, Machine learning.

INTRODUCTION

One of the primary goals of petroleum explo-
ration using seismic data is to differentiate whether a
water-saturated rock or a hydrocarbon-saturated
rock produced the reflection of interest. This may be
accomplished by estimating the difference in rock
properties between the fluid-saturated states, either
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water or hydrocarbon (Hilterman, 2001), based on
basic relationships of rock physics between seismic
rock properties and elastic constants.

Rock physics is a way to establish the relation-
ships between qualitative geological parameters and
quantitative geophysical measurements (Simm &
Bacon, 2014). In the last few years, rock physics has
played an essential role in quantitative seismic
interpretation and emerged as a main tool in pet-
roleum geophysical exploration. In addition, the use
of elastic properties such as velocity, density,
acoustic impedance, Poisson�s ratio, and velocity
ratio (Vp/Vs) and their relations to reservoir prop-
erties play an important role in reservoir character-
ization studies. Among the reservoir, properties are
porosity, shale content, water saturation, and
hydrocarbon saturation. In the same manner, rock-
physics modeling was used to create templates for
characterizing an efficient reservoir (Avseth &
Odegaard, 2004; Avseth et al., 2006; Andersen &
van Wijngaarden, 2007).

The Poisson�s ratio is an important property
that is usually used to predict the geo-mechanical
behavior of wells as they are drilled and during the
subsequent recovery processes. Strength parameters
have a significant impact on hydraulic fracturing,
well instability, and sand production and may be
correlated with its magnitude (Zhang & Bentley,
2005). The Poisson�s ratio is one of the vital rock-
physics parameters that is affected by the presence
of gas zones. Therefore, in this study, the fluid sub-

stitution method was used to measure the different
saturation behavior to predict the Poisson’s ratio
parameter in the presence of different types of flu-
ids.

Fluid substitution has a vital role for the seismic
rock-physics analysis, e.g., amplitude versus offset
(AVO), which offers a tool for fluid discrimination
and quantification in a reservoir. This is generally
made using Gassmann�s equation (Gassmann, 1951).
The fluid substitution method is a crucial technique
for forecasting the elastic characteristics of reservoir
rocks and their relationship to pore fluid and
porosity (Wang et al., 2022). With the use of this
technique, it is feasible to forecast changes in a
rock’s elastic response to various fluids (Gommesen
et al., 2002). Several authors have studied the use of
fluid substitution for reservoir characterization (e.g.,
Batzle & Wang, 1992; Berryman, 1999; Wang, 2001;
Russell et al., 2003; Smith et al., 2003; Han & Batzle,
2004; Adam et al., 2006; Misaghi et al., 2010; Abe
et al., 2018; Magoba & Opuwari, 2019).

Fluid substitution alters the pore fluid type in
reservoir intervals to examine how a new fluid type
affects the AVO response (El-Bahiry et al., 2017).
The aim of fluid substitution is to make a simulation
for seismic properties (seismic velocities) and den-
sity of the reservoir at a certain reservoir condition
(e.g., temperature, pressure, mineral type, water
salinity and porosity) and pore fluid saturation
whether it is mixed saturation or only one fluid
saturation case. Among the various significant ideas

Figure 1. WDDM concession location map, containing the Scarab field (left) and the well data and seismic survey (right). (Universal

Transverse Mercator (UTM) WGS-84 zone 36 N).
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relating to rock physics, the Gassmann�s model is
probably the most well-known. P- and S-wave
velocities are predicted using the Biot and Gass-
mann theories as saturation changes; the basic pre-
sumptions of them were covered by Misaghi et al.
(2010).

Machine learning (ML) techniques have proven
outstanding routine in diverse disciplines of geo-
science. For instance, in Dorrington and Link
(2004), a ML model merged a genetic algorithm with
artificial neural network (ANN) for predicting
reservoirs in the Stratton field using seismic data.
Chakiet et al. (2018) used an ANN and a neuro–
fuzzy system for reservoir evaluation. In Priezzhev
et al. (2019), several ML models such as random
forest, linear regression, and ANN were used to
integrate well logs and seismic data for identifying
the petrophysical parameters. Farsi et al. (2021)
predicted pore pressure using a three-hybrid ML
optimization with multi-layer perceptron (MLP)
neural network. Random forest has been realized by
Feng (2021) as a ML technique to overcome

uncertainty in well log classification. Zahmatkesh
et al. (2021) recognized seismic facies using ANN in
the Iranian Mansuri field. Moreover, several ML
techniques have been accomplished for well logs
(e.g., Ali et al., 2021; Garia et al., 2021; Iturrarán-
Viveros et al., 2021; Yasin et al., 2021; Abd Elaziz
et al., 2022; Nabih et al., 2022).

MATERIALS

The study area is in the Scarab field in the
concession of the Western Delta Deep Marine
(WDDM) (Fig. 1). This area covers 6150 km2 (Sa-
muel et al., 2003). At depths of 1600–1900 m, the
field consists of a sequence of deep marine slope
channels as revealed from the four wells in the study
area. The main hydrocarbon-bearing zone is the
Late Pliocene El-Wastani Formation. The main
reservoirs are located in two channels (Ch-1, Ch-2)
in El-Wastani Formation (Abd El-Gawad et al.,
2019; Ghoneimi et al., 2021; Nabih et al., 2022).

Figure 2. Correlation of the studied wells in the Scarab field illustrating the gamma ray log (left), the channel surfaces, and their main

lithology.
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Figure 3. Scarab (1, Db, Da, Dd) wells, respectively, input data (from left, GR, resistivity,

neutron-density, DTCO, seismic trace) and output (Vsh, PHIE, Sw, Sh, and net pay thickness).
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The main structures in the WDDM concession
are attributed to the Rosetta fault of NE–SW and
ENE–WNW trends (related to Nile Delta offshore
anticline) (Mokhtar et al., 2016). Activities of recent
exploration are focused on Pliocene–Pleistocene
sequences, where the principal gas reservoirs are
found. Among the most distinct seismic, horizons in
this area are the tops of Sidi Salem and Abu-Madi,
in addition to Kafr El-Sheikh base (Raslan, 2002).

The El-Wastani Formation is the main reservoir
of the Scarab gas field. It consists of thick sand
interbedded with thin clays that thin toward its top.
The sands are quartzose, coarse- to medium-grained,
with little feldspar and lithic fragments. The clays
are soft and very sandy. The upper boundary of this
formation is uncertain, but it is delineated where the
series becomes sandier for several tens of meters.
This formation is assigned to the Late Pliocene (Aly
Ismail et al., 2010), and it is 123 m thick in the El-
Wastani well 1 (Ismail, 1984).

The seismic data used in this study comprise 3D
post-stack time migration seismic data that cover the

area of Scarab field. In addition, well logs (gamma
ray (GR), resistivity (LLD), density (RHOB), neu-
tron (APLC), and compressional sonic (DTCO)
logs) of the four wells are available. In Figure 2, the
used wells are correlated referring to a datum at
depth of 1580 m (TVDSS) to demonstrate the
channel system and its litho-facies distribution.

METHODOLOGY

In this study, fluid substitution and ML tech-
niques were performed using the available borehole
logs in Scarab-Db well in the reservoir of Scarab
field. The well logs analyzed in these wells were the
GR, LLD, RHOB, APLC, and DTCO and DTSM
logs (Fig. 3). The petrophysical parameters (shale
content (VSH), effective porosity (PHIE), water
saturations (SW), and net pay (PayFlag)) calculated
using well log interpretation were used as input in
ML and fluid substitution estimations. The seismic
amplitude readings were derived from the seismic

Figure 4. Well log interpretation workflow (Larionov, 1969; Schlumberger, 1972, 1974; Crain, 1986; Nabih et al., 2022).
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traces extracted from the SEGY seismic cube
(Fig. 1). The used seismic traces were extracted near
the studied wells. The extraction of the seismic tra-
ces was done using a free software named SeiSee (h
ttps://seisee.software.informer.com/). All these log
and seismic data were used as inputs in ML algo-
rithms for predicting the Poisson�s ratio parameter in
the studied four fluid-content cases. These cases are
the reservoir saturated with gas, reservoir without
gas, reservoir saturated with oil, and reservoir satu-
rated with water. In the ML training, three Scarab
wells (named -1, -Da, and -Dd) were employed. To
validate the applicability of the ML algorithms, the
Scarab-Db well was utilized as the test well. The
Poisson�s ratio was calculated and utilized for rock-
physics analysis using the following equations:

VS

VP
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:5� r
1� r

r

ð1Þ

r ¼ VP
2 � 2VS

2

2ðVP
2 � VS

2Þ
ð2Þ

where r is Poisson�s ratio, q is density, VP is com-
pressional wave velocity, and VS is shear wave
velocity.

Well Log Analysis

Formation evaluation is essentially targeted
from well log analysis to estimate the shale content
(VSH), effective porosity (PHIE), water saturation
(SW), hydrocarbon saturation (SH), and net pay
thickness. The principle interpretation steps utilized
to calculate the petrophysical parameters for the
present study are shown in a flowchart in Figure 4
(Abd Elaziz et al., 2022; Nabih et al., 2022). The GR
log was used to determine the VSH (Atlas, 1979),
which aids in the differentiation of non-reservoir and
reservoir rocks. PHIE is a crucial parameter for
reservoir characterization. Generally, the most
favorable tool for PHIE determination is the neu-
tron-density (N-D) logs combination. Here, PHIE
was estimated from the RHOB–APLC relations
using the equations shown in the workflow in Fig-
ure 4 (Asquith et al., 2004; Bateman, 2012).

The fluid saturation estimation leads to dis-
criminate between the various types of fluid com-
ponents (water or hydrocarbons). Figure 4 shows
the workflow of estimating water saturation (SW)
using the Indonesian equation (Schlumberger,

1972). The net pay was calculated by applying suit-
able cutoffs for output petrophysical properties be-
cause the unproductive layers were not estimated.
Cutoffs were applied mainly to effective porosity,
shale volume, and water saturation. The used cutoffs
were VSHmax 35%, PHIEmin 10%, and SWmax 50%.
Figure 3 displays the VSH, PHIE, SW, SH, and net
pay computed from the well logs. The borehole log
data and the results of petrophysical analysis were
used as inputs in the following step of fluid substi-
tution method.

Figure 5. Fluid substitution workflow.
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Fluid Substitution Method

In seismic rock physics, fluid substitution is
useful for simulating various pore fluid types (Smith
et al., 2003). The work of Gassmann (1951) repre-
sents the most widely utilized fluid substitution
technique. His approach links the porosity to the
bulk moduli of saturated rock and its porous rock
frame, the mineral matrix, and the pore-filling fluids
(Gassmann, 1951). The effects of fluid substitution
on seismic properties utilizing rock frame properties
were calculated using the Gassmann equation (El-
Bahiry et al., 2017). These equations deal with the
rock’s bulk modulus, frame, pore, and fluid charac-
teristics. Before modeling the new fluid, the effect of
the original fluid must first be removed (Smith et al.,
2003) as the following workflow (Fig. 5).

Fluid substitution calculations were applied in
one well (i.e., Scarab-Db) in the study area focusing
on the gas-bearing Scarab channel. Fluid substitu-
tion was carried out to investigate the changes of
fluid saturation and its effect to density, Vp, and
Poisson�s ratio logs in the presence of fluid of this
reservoir. Fluid substitution analysis was performed
in the Scarab-Db well based on the following data:
formation temperature (reservoir), 120 �F1; forma-
tion pressure (reservoir), 3500 psi2; formation water

resistivity (Rw), 0.1Xm; salinity, 41,225 ppm; and
gas gravity, 0.57 g/cc.

Input data required in this analysis were the
fluid substitution compressional and shear sonic,
density, porosity, water saturation. Matrix properties
should also be used as input in the analysis of fluid
substitution. In this study, quartz mineral was used
as a default. Based on average Gassmann calcula-
tion, fluid substitution can be visualized in a cross-
plot, with the assumption that pore bulk modulus
and dry rock Poisson�s ratio are fixed although the
porosity of rock changes (Fig. 5).

Machine Learning Techniques

Here, we present the basic steps of the Cheetah
optimizer (CO) and the RVFL network.

Cheetah Optimizer (CO)

The CO is a metaheuristic algorithm recently
proposed as swarm intelligence by Akbari et al.
(2022). The CO is inspired by the four hunting
strategies of cheetahs in the wild, namely search, set
and wait, and attacking as the primary strategies, in
addition to premature converge avoidance strategy
called leave the prey and go back home strategy that
strengthen the search�s chance of converging to the
optimal solution.

The cheetah is a large cat breed predator, native
to Asia and Africa and considered the fastest land
mammal. The cheetah�s physical traits give it
advantages in hunting such as excellent eyesight to
spot far away preys, spotted body works as natural
camouflage in the territory. Their aerodynamic light
weighted body is designed for swift sprint attacks,
reaching speeds of over 120 km/h (Marker et al.,
2018), which drain the cheetah�s energy, therefore
lasting for small intervals of time estimated to be less
than half a minute. Because the duration of chasing
a prey is limited, the majority of hunting time is
spent selecting and stalking prey, while lurking from
minimum distance without being discovered then
swiftly ambushing and chasing the prey. Their
impressive acceleration is the main factor for a
successful hunt, yet it limits the hunting time dura-
tion. The algorithm is designed in three main simple
strategies used by hunting cheetahs in the wild and
an additional strategy tackling the lack of diversity
and premature convergence, which are challenges

Table 1. Annotations of the pseudocode algorithm and their

definitions

Notation Description

D Number of dimensions of the problem

n Number of Cheetahs (population size)

Xt
i;j Position of Cheetah ( i) in arrangement ( j)

Xt
B;j Position of prey ( B) in arrangement ( j)

t Current hunting time

T Maximum length of hunting time

r̂ Randomization parameter
�r Turning factor

a Step length

b Interaction factor

m Size of the Cheetah group

1 �C = (32 �F � 32) 9 5/9.

2 1 psi = 6.895 kPa.
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common in optimization problems. The mathemat-
ical modeling of the cheetah�s hunting routine is
simple and flexible, proven to effectively solve large-
scaled optimization problems. The CO depicted in
Figure 6 as a flowchart demonstrates the algorithm�s
flow from start to end, highlighting the main steps in
the blue boxes. The CO can be summarized in three
main steps summarized as follows.

Step 1: Initialization of the CO
In this step, the parameters (see Table 1) of the

CO are initialized. In addition, because the CO is a
population-based metaheuristic, the population of
cheetahs has a size of ( n;D) where n is the number
of cheetahs in the population (rows), and D refers to
the optimization problem�s dimensions (columns).

Each cheetah position Xt
i is initialized stochastically

within the problem�s domain, thus:

Xt
i ¼ lb þ rand 1;Dð Þ: � ðub � lbÞ ð3Þ

Each Xt
i is initialized randomly within the do-

main of each dimension [ lb; ub]. Therefore, Xt
i;j

refers to the position of cheetah ( i) in the
arrangement ( j) where i ¼ 1; 2; _s; n and j ¼ 1; 2; _s;D
at the current hunt time ( t). Then, the fitness of each
cheetah is calculated with the aim of sorting the
population by the fitness thereby electing best fitness
chetah as the leader. Also, the parameters of the CO
algorithm are initialized such as the current hunting
time ( t) to zero and the current iteration number (
iterÞ to one as well as limiting the number of itera-

tions and the hunting time such that number of
iterations ( max iter) of the algorithm is estimated
according to the problem in-hand, while the maxi-
mum hunting time ( T) is set in Akbari et al. (2022)
as follows:

T ¼ 60� D=10d e ð4Þ
The T parameter simulates the cheetah�s energy

during the hunting trip. As result of their swift
speedy attack, their energy is quickly consumed,
therefore limiting the hunt time, which is modeled in
Eq. 4 as independent of the prey, a function of the
problem dimension ( D).

Step 2: Improve the cheetahs population based
on their hunting strategies

In the real hunting operations of the cheetahs,
the group hunting behavior is adapted where each
cheetah can be seen moving differently than the
others such that in each dimension, each cheetah
could be in a different hunting mode. Modeling this
behavior in the algorithm, at each iteration, a subset
of the cheetah�s population is randomly picked with
a subset size of ( m) such that 2 � m � n to partic-
ipate by updating their position according to the
selected hunting strategy. After the updating process
is done, the hunting time is incremented followed by
execution of leave prey and go home strategy; if its
condition is met, then, the global best solution is
updated accordingly.

Figure 6. RVFL network.
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Step 2.1: Select strategy and computing the new
position of each solution

The primary hunting strategies, namely search
strategy, sit-and-wait strategy, and attack strategy as
demonstrated in Algorithm 1, are selected for each
solution based on five variables: r1; r2; r3; r4;H. The
first four variables are uniform random numbers,
such that the first three variables are within the
range [0,1], while r4 is from the range [0,3], and H is
computed according to Eq. 5 using the generated
random number ( r1), the current hunting time ( t),
and maximum hunting time ( T).

H ¼ e2 1�t=Tð Þð2r1 � 1Þ ð5Þ
The selection process compares r2 and r3 values,

and so, the sit-and-wait strategy is selected only
when r2[r3; otherwise, the selected strategy is either
search or attack. Attack strategy is chosen over the
search strategy if H � r4; else, the strategy choice is
search. Although the selection decision between
attack and search is random, it is deduced that
search is much more likely chosen over time ( t) due
to depletion of energy at later stages. After that, the
solutions and the leader of the cheetahs must be
updated accordingly.

Figure 7. Proposed CO–RVFL for predicting rock-physics parameters of gas-bearing reservoirs.
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� Search Strategy

The search strategy simulates the scanning
phase of the hunt whereby cheetahs inspect the
territory, actively moving or stationarily scanning,

depending on the size, speed of the prey, and energy
level of the cheetah. An arbitrary search is modeled
in Eq. 6 by updating the current cheetah location by
a randomization parameter ( br), which is a normal
random number, and a random step size ( a), which
is computed as Eq. 7 for most cases:

Algorithm 1 Pseudocode of Cheetah Optimizer

1: Step 1: Initialization the parameters
2:Initialize Cheetahs population: nPop
3: Initialize parameters:t,iter,T,Max_iter
4:Compute fitness of each cheetah and elect Leader

5: Step 2: Improve population
6: while iter ≤ max_iter do

7:Select members of Cheetahs population(m) randomly

8: Step 2.1: Compute new position based on the strategy
9:for each member i ∈ m do

10: define neighbor solution of i
11: for each arbitrary arrangement j do
12: Compute ̂ , ̌ , 1, , ,

13: Generate r2,r3

14: if r2 ≤ r3 then
15: Generate r4

16: if H ≥ r4 then
17: New position is computed during Attack strategy:

18:

19: else
20: New position is computed during Search strategy:

21:

22: end if
23: else
24:          New position is computed during sit and wait strategy:

25:

26: end if
27: end for
28: Update solutions of i and the leader

29:end for
30: t = t + 1

31: if t > rand × T and leader solution did not change for a time then 
Step 2.2: Execute leave prey and go back home strategy to avoid premature 

convergence
32: Update leader position

33:         return Cheetahs population to their last successful hunting positions

34:         Substitute the position of (i) by prey position

35: t ← 0

36:end if
37:iter ← iter + 1

38:Update the global best solution

39: end while
40: Step 3: Return global best solution after stopping condition is satisfied
41: return global best solution

___________________________________________________________________________
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Xtþ1
i;j ¼ Xt

i;j þ br
�1
i;j :a

t
i;j ð6Þ

at
i;j ¼ 0:001� t=T ð7Þ

� Attack Strategy

Similar to search strategy, attack strategy is a

random operation with turning factor �ri;j

� �

as a

randomization factor with interaction factor ( bt
i;jÞ

Figure 8. Regression analysis and resulting logs of calculated and predicted Poisson�s ratio in case of presence of gas. (a), (b), (c):

relationships and correlation coefficient. (d): correlation between output Poisson�s ratio logs.

Table 2. List of Poisson�s ratio annotations and their definitions

PRG rG Poisson�s ratio calculated from original well log data

PRGSCA rG1 Poisson�s ratio predicted from original well log data using SCA–RVFL model

PRGWOA rG2 Poisson�s ratio predicted from original well log data using WOA–RVFL model

PRGCO rG3 Poisson�s ratio predicted from original well log data using CO–RVFL model

PRGR rGr Poisson�s ratio calculated from well log data after removing the gas zones

PRGRSCA rGr1 Poisson�s ratio predicted after removing the well log data of the gas zones (using SCA–RVFL model)

PRGRWOA rGr2 Poisson�s ratio predicted after removing the well log data of the gas zones (using WOA–RVFL model)

PRGRCO rGr3 Poisson�s ratio predicted after removing the well log data of the gas zones (using CO–RVFL model)

PRO rO Poisson�s ratio calculated after fluid substitution with oil

PROSCA rO1 Poisson�s ratio predicted after fluid substitution with oil (using SCA–RVFL model)

PROWOA rO2 Poisson�s ratio predicted after fluid substitution with oil (using WOA–RVFL model)

PROCO rO3 Poisson�s ratio predicted after fluid substitution with oil (using CO–RVFL model)

PRW rW Poisson�s ratio calculated after fluid substitution with water

PRWSCA rW1 Poisson�s ratio predicted after fluid substitution with water (using SCA–RVFL model)

PRWWOA rW2 Poisson�s ratio predicted after fluid substitution with water (using WOA–RVFL model)

PRWCO rW3 Poisson�s ratio predicted after fluid substitution with water (using CO–RVFL model)

1997Contribution of Fluid Substitution and Cheetah Optimizer Algorithm



between the cheetah and its neighbor or the leader
of the cheetahs. Unlike search strategy, the updated
position in Eq. 8 is computed by adding the prey

position ( Xt
B;j) to the random term discussed earlier.

The first �ri;j

� �

is computed using ri;j (normally dis-

tributed random number) in Eq. 9 then used in
Eq. 8. The main distinction between the attack
strategy and search strategy is that attacking is
computing the new position of the cheetah to a
position relative to prey position instead of the
current cheetah position, which is done in search
mode:

Xtþ1
i;j ¼ Xt

B;j þ �ri;j � bt
i;j ð8Þ

bt
i;j ¼ ri;jje

ri;j=2ð Þ
sin 2pri;j

� �

ð9Þ

� Sit-and-Wait Strategy

A waiting and siting strategy in a hideout
behavior is observed on cheetahs in scenarios
whereby the animal is in danger of being exposed to

the prey, which is modeled in Eq. 10 as maintaining
the same position vector for each solution as hunting
time passes. This strategy enhances the algorithm�s
ability to avoid converging on a local optimum by
keeping part of the cheetah group unchanged:

Xtþ1
i;j ¼ Xt

i;j ð10Þ

Step 2.2: Leave the prey and go back home
strategy

Indeed, cheetah hunters have limited energy
that is depleted as time passes by. The cheetah�s
reaction to multiple failed attempts of hunting is

Table 3. Correlation coefficients (r) for the test well Scarab-Db

Predicted PRSCA PRWOA PRCO

Calculated (Model 1) (Model 2) (Model 3)

PRG rG 0.11 0.22 0.3

PRGR rGr 0.24 0.33 0.83

PRO rO 0.63 0.65 0.99

PRW rW 0.66 0.67 0.99

Figure 9. Regression analysis and resulting logs of calculated and predicted Poisson�s ratio in case of removal of gas. (a), (b), (c):

relationships and correlation coefficient. (d): correlation between output Poisson�s ratio logs.
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leaving the current area and returning back to home
area. This strategy improves the diversity of the
solutions in the population as well as boosts the
algorithm�s ability to converge on the optimal solu-
tion. The main indicator of the need of this strategy
is reaching performance plateau, like in the wild the
cheetahs either choose to change their hunting
place, or return home. This stage is only reached
upon satisfying two conditions, set here to be (a)
t\T and (b) leader position not improving for a
time.

Step 3: Termination
The algorithm increments the current number

of iterations executed after each group update loop
execution then re-runs again the code until a ter-
mination condition is satisfied (the condition in
Akbari et al. (2022) is reaching the maximum
number of iterations). In case, the termination con-
dition is met, the execution is stopped, and the

algorithm returns the global best solution found by
the algorithm.

The CO algorithm procedure is further ex-
plained in Algorithm 1, in which all steps are re-
written in pseudocode form and a table providing
details on the notations used throughout the algo-
rithm. The algorithm starts with the initialization
step of population and parameters, followed by
defining group of the population, then updating their
position according to the appropriate hunting strat-
egy, i.e., switching between exploitation phase and
exploration phase. In addition, a premature con-
verge avoidance mechanism ‘‘leave prey and go
home’’ is integrated to the hunting operation, which
proves to improve the overall performance of the
algorithm.

Figure 10. Scarab-Db well input data (from left, GR, neutron-density, seismic trace) and fluid substitution between Poisson�s ratio in the

presence of gas zoned (black color), Poisson�s ratio in the presence of oil (green color), and Poisson�s ratio in the presence of water (red

color).
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Random Vector Functional Link

In general, the RVFL can be considered as a
type of ANN with single-hidden layer but contains a
direct link between the input nodes and output
nodes (as in Fig. 6; Pao et al., 1994; Chan and El-
sheikhm 2019)). In RVFL, the weights between the
input and output nodes are required to be deter-
mined; however, the other weights are put randomly
and not changed during the prediction process.

The first step in RVFL prediction model is to
split the input data into training and testing sets,
then using the training set to learn the model and
evaluate it using the testing set. The data can be
represented as pair of values ðai;biÞ, where ai 2
Cn; bi 2 Cm; i ¼ 1; _s;M and M refers to the total
number of samples in the training set, whereas ai

and bi denote the sample i and their targets,
respectively.

Thereafter, the output of the jth hidden node is
computed as follows:

Oj cjai þ dj

� �

¼ 1

1þ e�ðcjaiþdjÞ
; dj 2 0; n½ 	; cj 2 �n; n½ 	

ð11Þ

where cj represents the weights of the input and the

hidden nodes, dj refers to the bias, and n denotes a

scalar factor. Then, the output of the RVFL network
is computed as follows:

Z ¼ Kw;w 2 RnþP;K ¼ K1;K2½ 	 ð12Þ

where K is the input data that depends on K1 and
K2, which are formulated as:

K1 ¼
a11 . . . a1n

..

. . .
. ..

.

aN1 . . . aNn

2

6

6

4

3

7

7

5

;

K2 ¼

O1 c1a1 þ d1ð Þ . . . OP cPa1 þ dPð Þ
..
. . .

. ..
.

O1 c1aN þ d1ð Þ . . . OP cPaN þ dPð Þ

2

6

6

4

3

7

7

5

ð13Þ

Figure 11. Regression analysis and resulting logs of calculated and predicted Poisson�s ratio in case of fluid substitution with oil. (a), (b),

(c): relationships and correlation coefficient. (d): correlation between output Poisson�s ratio logs.

2000 Abd Elaziz, Ghoneimi, Nabih, Bakry and Al-Betar



In Eq. 13, C and I are the coefficients of the
trade-off and the identity matrices, respectively. In
Eq. 12, w is the output weights and the next process
is to update its value using either Eqs. 14 or 15:

w ¼ KTK þ I

C

� ��1

KTZ; ð14Þ

w ¼ KyZ ð15Þ

where y is the Moore–Penrose pseudoinverse or the
ridge regression.

The Proposed CO–RVFL Method

First of all, the main target is to determine the
best parameters and structure of the RVFL by
considering it as an optimization problem and using
the operators of the CO to handle this problem.
Secondly, using this enhanced version of the RVFL
to improve the performance of prediction the fluid
substitution.

The framework of the developed method is gi-
ven in Figure 7, where the first step is to split the
data into two parts, namely training and testing sets,
which represent 70% and 30% of the data, respec-
tively. The next process is to construct the set of
solutions X that represents the structure of the
RVFL and this can be formulated as follows:

Xij ¼ lj þ r � uj � lj

� �

; i ¼ 1; . . . ;N; j ¼ 1; . . . ; dim; r

2 0; 1½ 	
ð16Þ

where dim ¼ 3 is the dimension of each solution and
indicates the number of parameters of the RVFL; N
is the number of solutions, and u and l refer to the
upper and lower boundaries, respectively, of the
search domain.

For clarity, consider the following representa-
tion of Xi ¼ ½3; 100; 1	, which means that there are
three parameters and according to the domain of
each parameter the value of first parameter Xi1 ¼ 3,
which refers to the kind of activation function that

Figure 12. Regression analysis and resulting logs of calculated and predicted Poisson�s ratio in case of fluid substitution with water. (a),

(b), (c): relationships and correlation coefficient. (d): correlation between output Poisson�s ratio logs.
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will be used. In this study, we can switch between
five types of activations, namely hardlim, tribas,
radbas, sign, and sig, and we used the encoding from
1 to 5 to refer to them, respectively. Whereas the Xi2

is the number of hidden nodes and we set its range
to be [1200], the Xi3 is the kind of approach that was
used to generate the weights, and here, we used ei-
ther uniform and Gaussian, which are encoded using
1 and 2, respectively. After that, we used the fol-
lowing fitness function to assess the efficiency of
each structure of the RVFL according to the values
of Xi:

Fiti ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PNs
i¼1 YP � YTð Þ2

Ns

s

ð17Þ

In Eq. 17, YP refers to the output obtained
from using the RVFL based on Xi, and YT is the
original output; Ns represents the number of sam-
ples in the training set. Thereafter, the best structure
is determined and using it to update the value of
other solutions per the operators of the CO as de-
fined in Eqs. 5–10. This process is conducted until
the stop conditions are met, which returns the best
solution and then, evaluate it using the testing
sample and finally compute the performance of the
structure of RVFL.

RESULTS AND DISCUSSION

In the case of the gas-bearing reservoir,
regression analysis was performed to show the reli-
ability of the relations of the log-calculated Poisson’s
ratio (rG) to the predicted Poisson’s ratio (rG1, rG2,
rG3) based on SCA3–RVFL, WOA4–RVFL, and
CO–RVFL models, respectively (Table 2), by using
these models on the fourth test well (Scarab-Db).
The relationship of rG versus rG1, rG2, rG3 shows
low r values of 0.11, 0.22, and 0.3, respectively
(Fig. 8a, b and c). This shows a weak match between
log-calculated Poisson�s ratio in the case of gas zones
and predicted Poisson�s ratio using the ML tech-
niques on the Scarab-Db test well (Fig. 8d).

Because of the low correlation coefficient val-
ues, we removed the log data of gas zones from the
well log data and applied these models again. The
correlation coefficient of rGr, after removing log
data of gas zones, with the predicted (rGr1 and rGr2)
(Table 2) increased to 0.24 and 0.33, respectively
(Fig. 9a and b), while the relation of rGr with the
predicted rGr3 shows higher correlation coefficient
of 0.83 (Fig. 9c). Figure 9d shows the very good

Figure 13. Histograms of correlation coefficients (r) for the test well Scarab-Db in the four cases.

3 Sine cosine algorithm.

4 Whale optimization algorithm.
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match between the log-calculated Poisson�s ratio
(rGr) and predicted Poisson�s ratio using the pro-
posed CO model (rGr3), while those using the SCA
and WOA (rGr1 and rGr2) are still weak.

As shown in the results, the ML results were
expected to be decrease because of the presence of
gas zones. Therefore, fluid substitution method was
employed, reflecting a particular fluid response be-
fore and after the change in fluid type. Figure 10
shows the comparison between the Poisson�s ratio
log after fluid substitution as if the original content
of the Poisson�s ratio log was 100% gas saturation
(gas case), Poisson�s ratio log after fluid replacement
as if the reservoir was 100% oil saturation (oil case),
and the reservoir was 100% water saturation (brine
case).

In addition, after the reservoir fluid was re-
placed by oil and water instead of gas, the ML
algorithms were applied on the two cases. The re-
sults improved in the presence of oil and water
compared to original case (gas). The relationship
between the Poisson�s ratio after gas was substituted
by oil (rO) and predicted rO3 displayed an excellent
correlation coefficient of 0.99 (Fig. 11c), while the
correlation coefficients of rO and predicted rGr1 and
rGr2 (Table 2) decreased to 0.63 and 0.65, respec-
tively (Fig. 11a and b). In addition, Figure 11d shows
the excellent match between log-calculated Pois-
son�s ratio in the case of oil and predicted Poisson�s
ratio using the CO model. Also, in the case of gas
replaced by water, the relationship between rW and
predicted rW3 showed excellent correlation coeffi-
cient of 0.99 (Fig. 12c), while the correlation coeffi-
cient of rW versus predicted rW1 and rW2 (Table 2)
increased to 0.66 and 0.67, respectively (Fig. 12a and
b). Figure 12d demonstrates the excellent match
between log-calculated Poisson�s ratio and predicted
Poisson�s ratio using the CO model. The results in
the case of reservoir saturated with water slightly
increased in case of oil.

The correlation coefficients calculated for the
Scarab-Db test well in four cases are presented in
Table 3 and demonstrated in histograms in Fig-
ure 13, which show the increase in the correlation
coefficients after removing the log data of gas zones
and further increase when the replaced oil and water
log data were used instead of the original log data
(gas). In addition, the proposed model�s (CO) cor-
relation coefficients were superior to those of the
other two models (SCA and WOA).

CONCLUSIONS

The Poisson�s ratio is a valuable rock-physics
parameter for gas-bearing reservoir discrimination.
This study presented an approach to avoid the
erroneous effect of gas on determining or predicting
rock-physics parameters, such as Poisson’s ratio,
without removing the gas points from the well log
data. This can be achieved by using the fluid sub-
stitution method before applying the proposed ML
models.

This study demonstrated how the efficiency of
ML models is impacted by the presence of gas zones.
This has been achieved by using a modified version
of the RVFL model per the operators of the CO.
Three fluid substitution models (gas, oil, and water)
were proposed for pure sandstone and were utilized
to measure the various sandstone saturations
behavior. A significant increased enhancement was
observed in the Poisson�s ratio parameter when the
initial gas saturation was replaced with the water in
the Scarab-Db well.

Removal of log data of gas-bearing zones in-
creases the correlation coefficient of the CO–RVFL
model and fluid substitution from gas to oil, or water
further enhances the correlation coefficient of all the
models and largely optimizes it for the CO–RVFL
model. Gassmann�s fluid substitution was utilized to
forecast the behavior of Poisson’s ratio of the rock,
and it was observed that the predicted Poisson’s
ratio matching validity increased for 100% oil and
water saturation. The integration of fluid substitu-
tion and ML techniques improves the quality and
reliability of the results.
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